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1. INTRODUCTION
The convenience of wireless networking and lightweight handheld devices has led to a large-scale
adoption of wireless technologies. Corporations, universities, hospitals, homes, and public places
are deploying these networks at a remarkable rate. Even many cities, such as Buffalo (MN), Ripon
(CA), Philadelphia (PA), and Portland (OR), have deployed or are planning to deploy city-wide
wireless networks. A single-hop wireless network (e.g., current hot-spots) has limited wireless cov-
erage. To enable a large-scale wireless network, wireless mesh networks (WMNs) (e.g., [1, 8, 11])
arise as a promising cost-effective solution that provides high network coverage and low infrastruc-
ture cost. In a wireless mesh network, a few Internet transmit access points (ITAPs), serving as
gateways to the Internet, are deployed across the neighborhood. Wireless nodes (e.g., houses) are
equipped with low-cost antennas, and serve as routers to send traffic for both itself and its neigh-
bors. In this way, a multihop wireless network is formed among wireless nodes to cooperatively
route traffic to the Internet through the ITAPs. Such a multihop structure dramatically reduces the
number of ITAPs, which is a major cost in deployment.

The promise of wireless mesh networks has attracted lots of research work in the area, ranging
from designing MAC protocols (e.g., [7]) to developing routing protocols and routing metrics
(e.g., [3, 4]), to studying interactions with TCP (e.g., [5, 6]), to controlling topology via power
control (e.g., [9]), channel assignment (e.g., [10]), and directional antennas (e.g., [2]).

In addition to network technologies, another major factor that determines the success of wireless
mesh networks is whether there exist viable business models. There is limited research on this
problem. In wireless mesh networks, wireless nodes are required to forward traffic for both itself
and its neighbors. If the nodes are controlled by self-interested users, they may not efficiently
share their capacity to route traffic for other nodes. Such possibility undermines the performance
and feasibility of wireless mesh networks. Therefore effective pricing mechanisms need to be
developed before the mesh technologies are commercialized.

Motivated by the observations, we develop two pricing mechanisms for non-cooperative wireless
mesh networks: a centralized pricing mechanism and a decentralized one. In the centralized pricing
mechanism, the service provider needs to monitor and price the traffic originated from every node,
while the decentralized scheme leaves the traffic monitoring and pricing to each router. We describe
algorithms a service provider uses to efficiently place the ITAPs, and determine the prices. We
evaluate the profitability and overall efficiency of the wireless mesh network under the centralized
and decentralized pricing mechanisms. As a comparison, we also analyze an alternative structure
based on a single-hop wireless network. In such a network, each user can directly communicate
with an ITAP, and does not rely on other users for its communication. On the other hand, the single-
hop wireless network requires more Internet access points to be deployed, thereby increasing the
infrastructure cost. Our analysis has important practical implications to wireless service providers
and the future of wireless mesh technologies.

The rest of the paper is organized as follow. In Section 2, we present our models, and develop
pricing mechanisms for mesh networks. In Section 3, we describe our evaluation methodology,
and present results for realistic mesh networks. Finally we conclude in Section 4.

2. DEMAND MODEL AND PRICING MECHANISMS
There is a collection of geographically distributed houses (indexed as i = 1, 2, · · · , N ) with po-
tential traffic demands for Internet accesses. Let αit denote the amount of Internet traffic each



house i intends to generate (also called intended demands) at time t, and Dit be network band-
width house i obtains (also called the actual demand) at time t. Note that Dit ≤ αit. Vit(Dit)
and Pit(Dit) be non-decreasing functions of Dit that represent house i’s value for the bandwidth
and the price it is charged at time t, respectively. We assume that the utility of a house i follows
uit(Dit, Pit) = Vit(Dit, αit)−Pit(Dit). We further assume that the value function Vit is increasing
and concave with respect to Dit. Without loss of generality, we assume that ∂2Vit

∂Dit∂αit
> 0, which

indicates that house i values the actual demand increment more at a higher intended demand αit.
Usage-based pricing and fixed pricing are two commonly used charging models. In this paper,

we focus on usage-based pricing for the following reasons. First, the usage-based charging is a
popular charging model. It also discourages wasting network resources. Second, the fixed pricing
gives ISPs less control in regulating users (e.g., in the worst case all the demands are routed through
a single user, from whom the ISP can charge). As part of our future work, we plan to directly
compare the performance under both charging models. In our analysis, we focus on linear pricing
schemes (i.e. Pit(Dit) = pitDit), because it is one of the simplest usage-based pricing schemes,
and users can easily estimate their bills based on their network usage.

Below we introduce both the centralized and decentralized pricing mechanisms, and illustrate
the pricing strategy using a simple chain topology with only two houses (see figure 1). House
1 directly connects to ITAP 0, but house 2 can only connect to house 1 and use house 1 as a
relay for Internet access. ITAP 0 is placed by a profit maximizing service provider. For ease of
demonstration, we use the value function Vit = αitDit − 1

2
D2

it, where i ∈ {1, 2}. We assume
that αit’s are independently drawn from a distribution function F (α) in the range of [a, b], where
a > 1

2
b. E(α) and var(α) are the mean and variance of αits, respectively. To evaluate different

pricing schemes, we compare the expected profit (EΠ), and the overall value of the Internet service
EV , E(V1) + E(V2).

  ITAP 0 House 1 House 2

Comm Range

FIGURE 1. A linear topology with 2 houses.

Lemma 1. Given unit price pit, house i’s demand Dit = αit − pit if αit ≥ pit, and 0 otherwise.

2.1. Centralized pricing mechanism.
Dynamically changing price: Suppose both houses subscribe to the service provider, and house
1 agrees to forward traffic for house 2. The profit-maximizing service provider charges a unit
price pcen

t for both houses. The price changes according to the realization of α1t and α2t to
maximize the service provider’s expected profit Πt at time t. That is, pcen

t = argmaxpt
Πt =

argmaxpt
{pt [D∗

1t(pt) + D∗
2t(pt)]}.

Proposition 1. With a dynamic centralized pricing mechanism, pcen
t = α1t+α2t

4
. The service

provider’s expected profit EΠcen = (Eα)2

2
+ var(α)

4
and the expected overall value of the network

EV cen = 3(Eα)2

4
+ 7var(α)

8
.

This version of the centralized pricing scheme dynamically changes price based on the changing
intended traffic demands. To implement such a pricing mechanism, the service provide is required
to monitor both the intended demand αits and the traffic demands Dits from all the users. Such a
fine-grained traffic monitoring is expensive and impractical.



One fixed price: If the ISP cannot obtain the information about the real time demand characteris-
tics αits or it has to agree upon a fixed unit price when the customers subscribe, it would choose the
one that maximizes its expected profit EΠfix. That is, pfix = argmaxpp {E [D∗

1t(p)] + E [D∗
2t(p)]}.

Proposition 2. The optimal fixed price pfix = 1
2
Eα, the ISP’s expected profit EΠfix = 1

2
(Eα)2,

and the expected overall value of the service EV fix = 3(Eα)2

4
+ var(α).

To implement a fixed centralized price, the service provider does not need to know the dynam-
ically changing αit. Only the distribution of αits is required. In addition, customers prefer a fixed
price to an unpredictable price. However, the profit is lower than that of the dynamically changing
prices for the same demand level αit because the service provider cannot adjust the price based
on a particular realization of (uncertain) demand. However, the overall value is generally higher
when using a fix price scheme. This indicates that the service provider’s pricing power may hurt
the overall benefit a WMN generates.

2.2. Decentralized pricing mechanism. In such a pricing mechanism, we allow each relay node
to determine its own price for routing traffic. This way, the relay node can increase (decrease) the
routing price to reduce (increase) the routing traffic when it itself has a large (small) demand to
send. However, such a pricing mechanism allows the relays some positive profit and reduce the
service provider’s potential profitability.

In the example of figure 1, to decide the optimal price for ITAP0, p0t, the service provider
needs to first figure out the pricing strategy house 1 uses to make profit from house 2. Given
the price p0t and house 2’s demand function (α2t − p2t)

+, House 1’s pricing strategy p∗1t(p0t) =
argmaxp1t

(p1t − p0t) (α2t − p2t)
+.

Lemma 2. House 1’s optimal pricing strategy p∗1t = α2t+p0t

2
if α2t ≥ p0t and p∗1t > α2t otherwise.

Hence, the profit maximizing problem for ITAP0 is:

pdec
0t = argmaxp0t

Πdec
t = argmaxp0t

p0t

{
(α1t − p0t)

+ + (α2t − p∗1t)
+}

Proposition 3. The ISP’s optimal price pdec
0t = 1

3
α1t + 1

6
α2t, the expected profit EΠ = 3

8
(Eα)2 +

5
24

var(α) and the expected overall value EV = 19
32

(Eα)2 + 215
288

var(α). Meanwhile, the house 1
expect to collect Eπ1 = 9

16
(Eα)2 + 61

144
var(α) profit by serving as a router.

The decentralized pricing scheme requires all nodes in the network (including both the ITAPs
and the houses) to constantly monitor the dynamic changing demand of their neighbors. Different
from the first version of centralized scheme, in this case an ITAP only needs to monitor the load on
its incoming link, and do not need to distinguish and verify how much traffic is originated from its
neighbors and how much traffic is relayed by its neighbors for other nodes. Hence, such a coarse-
grained traffic monitoring incurs a significantly lower cost, As a tradeoff, part of the profit will be
taken away by the routers.

Comparisons of Proposition 1 - 3 shows that the decentralized pricing scheme yields the least
value because both ITAP 0 and house 1 can exert pricing power to control the overall network
traffic. However, the decentralized pricing scheme has the potential to yield higher profit than the
fix price scheme if the variance is large enough.

2.3. Placement of ITAP. If ITAP 0 can be moved from the current location to the place in between
the two houses, then both houses can directly communicate with it. This becomes a traditional
single hop wireless network. Based on the fact that the service provider aims to maximize profit,
we can show that different ITAP placement will not change the profit under the first two pricing
schemes. However, both the profit and the customer value increase under the decentralized pricing



scheme. This is because the placement of ITAP0 changes how traffic is routed in the network,
and hence changes the routers’ pricing power. This example demonstrates that the placement of
ITAPs is especially important to the profit and efficiency of the decentralized pricing scheme. This
motivates us to focus on analyzing the decentralized pricing scheme in the following section.

3. EVALUATION METHODOLOGY AND RESULTS

In this section, we first describe our evaluation methodology, and then present our evaluation
results and explain the intuition behind them.

3.1. Evaluation Methodology. We evaluate the efficiency and profitability of different pricing
mechanisms as follow. We randomly place houses in a region of size R × R. There is a wireless
link between two houses if and only if their distance is within the wireless communication range
(CR). Given a neighborhood layout, finding the optimal placement of ITAPs (i.e., the smallest
number of ITAPs that serve the houses) is an NP-hard problem, which means that there is no
polynomial algorithm that optimizes ITAP locations unless P = NP. To achieve efficiency and low
computational cost, we determine the location of ITAPs using the following greedy algorithm. In
the first iteration, we compute how many houses can be served if we place an ITAP at each of
possible locations, and select the one that results in the largest number of served houses. Then in
the next iteration, we pick the one that in conjunction with the already chosen ITAP that results
in the largest number of served houses. We iterate until all the houses are served. We consider a
house is served by an ITAP if it is within HC hops away from the ITAP, where HC is an input
parameter specifying the maximum allowed hop count (i.e., the number of links a house traverses
before reaching the ITAP). After placing the ITAPs, each house uses the closest ITAP in terms of
the number of hop count to access the Internet. The exact route a house uses towards the ITAP
is based on the shortest hop count, which is found using Dijkstra’s algorithm. The motivation of
limiting the hop count between a house and an ITAP and for routing traffic along the path with the
smallest hop-count is that wireless network throughput tends to decrease fast with an increasing
hop count.

Based on the path, we then decide the real time price pit each router i uses if the traffic is sent
through it. A router chooses a price such that it maximizes the aggregate profit of routing the traffic
for all its children. That is, p∗it = argmaxpit

(pit − pparent)
∑

j∈{children of i} Djt(pit). Similarly each
ITAP chooses a price to maximize its aggregate profit except that the price pparent = 0.

Proposition 4. Given pparent, the optimal price for each router i, pit = 1
2

(
Ait

Bit
+ pparent

)
, where

Ai and Bi are defined as Ai ,
∑

j∈Si

αjt

2nj−ni
and Bi ,

∑
j∈Si

1

2nj−ni
. In the expression, ni and

nj denote the length of node i and j’s routing path and Si is the set of node j whose routing path

include router i and αjt <
√

Bit−
√

Bit−2ni−nj

2ni−nj

[
Ait√
Bit

+
√

Bit − 2ni−njpparent

]
.

To measure the profitability of the decentralized pricing scheme, we mainly focus on the fol-
lowing three measures: (1) the expected revenue for the service provider, which is calculated as
the aggregate revenue all the ITAPs collect (EΠ , E

{∑
k∈{ITAPs} [pk ·Dk]

}
); (2) the expected

aggregate customer valuation of the WMN (
∑

i∈{Houses} EVi); (3) the expected number of ITAPs
to be placed, which directly reflects the installation cost of the WMN.

In our evaluation, we vary the following parameters: (1) N : the number of houses; (2) HC: the
maximum allowed hop count; (3) R ∗R: the size of neighborhood.



3.2. Evaluation Results. We first examine the overall profit as we vary the unit cost of installing
an ITAP (c) and the maximum allowed hops (HC). The overall profit is defined as the service
provider’s expected revenue minus the aggregate cost of installing the ITAPs. As shown in Figure
(2), as the unit cost of installing ITAPs increases, the expected overall profit decreases. Its reduction
rate is smaller when the number of maximal allowed hop count is larger. This is as what we would
expect, since increasing the maximal allowed hop count decreases the number of required ITAPs
and hence reduce the installation cost. In addition, the figure also shows that the decrease in the
installation cost can overcome the revenue loss of increasing the allowed hops, making the single
hop structure suboptimal in some circumstance. This result demonstrates that the mesh technology
is cost effectiveness.
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FIGURE 2. Expected profit as the unit cost of installing an ITAP and maximum
allowed number of hops change (R = 70, N = 20, and α ∼ U [3, 4])

Next we study the impact of the region size R, which in turn changes network density (N/R2).
In our evaluation, the number of houses is fixed to be 35. Figures 3 (a)-(c) summarize the results.
As shown in Figure 3(a), the service providers’ revenue first decreases and then increases as R
increases when HC ≥ 2. This trend can be explained as follows. When R is small, every node can
easily connect to an ITAP without using many routers. As R initially increases, more nodes need
to go through multihop paths in order to reach ITAPs, which makes profit be taken away by the
intermediate relay nodes. As R continues to increase, the mesh network becomes disconnected,
and at least one ITAP is required in each disconnected component. So more houses are directly
connected with an ITAP, which reduces the likelihood of intermediate relay nodes’ taking away
profit. This is also evident from figure 3(b), which shows that the expected number of ITAPs
increases as the density decreases. Meanwhile, the total welfare decreases first and then increase
when HC ≥ 2.

Finally we fix the density of houses (defined as N/R2) and increase the number of houses.
Figures 4(a)-(c) show the change of profitability, the expected number of ITAPs, and customer
value, respectively. Since the number of houses varies, we use revenue/house, the number of
ITAPs/house, and customer value/house to measure the profitability, infrastructure cost, and effi-
ciency. These measures give us a good idea about the ability of the service provider to make profit
from its users and the users’ expected efficiency loss due to the decentralized pricing. As the figures
show, all the measures decreases as HC increases. This suggests that there is a tradeoff between
the profitability (efficiency as well) and the cost saving under decentralized pricing scheme. In all
the three figures, we cannot find significant change of profit/house, welfare/house and expected
number of ITAPs as the number of houses changes. This indicates that network density is a more
important factor than the number of houses that determines profitability and efficiency in a WMN.
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(a)Expected revenue (b)Expected number of ITAPs (c) Expected customer value
FIGURE 3. Varying the network density, where N = 35, CR = 15, and α ∼ U [3, 4].
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, and α ∼ U [3, 4].

4. CONCLUSION

In this paper, we study the potential pricing schemes for implementing emerging wireless mesh
networks in a non-cooperative network. We propose several pricing schemes, and analyze their
efficiency and profitability. We also evaluate a dynamic decentralized pricing scheme under vary-
ing network configurations. Our results show that the efficiency and profitability is sensitive to
network density and the maximum number of allowed hop count.

REFERENCES

[1] 802.11b community network list. http://www.toaster.net/wireless/community.html.
[2] R. R. Choudhury and N. H. Vaidya. Impact of directional antennas on ad hoc routing. In Proc. of 8th International

Conference on Personal Wireless Communication (PWC), September 2003.
[3] D. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput path metric for multi-hop wireless routing.

In Proc. of ACM MOBICOM ’2003, Sept. 2003.
[4] R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-hop wireless mesh networks. In Proc. of ACM

MOBICOM, Sept. - Oct. 2004.
[5] M. Gerla, R. Bagrodia, L. Zhang, K. Tang, and L. Wang. TCP over wireless multi-hop protocols: Simulation and

experiments. In Proc. of 1999 IEEE International Conference on Communications (ICC), Jun. 1999.
[6] G. Holland and N. Vaidya. Analysis of TCP performance over mobile ad hoc networks. In Proc. of ACM MOBI-

COM, 1999.
[7] Y. Liu and E. Knightly. Opportunistic fair scheduling over multiple wireless channels. In Proc. of IEEE INFO-

COM, 2003.
[8] Self-organizing neighborhood wireless mesh networks. http://www.research.microsoft.com/mesh.
[9] S. Narayanaswamy, V. Kawadia, R. S. Sreenivas, and P. R. Kumar. Power control in ad-hoc networks: Theory,

architecture, algorithm and implementation of the compow protocol. In Proc. of European Wireless Conference,
2002.

[10] A. Raniwala, K. Gopalan, and T. Chiueh. Centralized algorithms for multi-channel wireless mesh networks. In
Proc. of ACM Mobile Computing and Communications Review (MC2R), April 2004.

[11] MIT Roofnet. http://www.pdos.lcs.mit.edu/roofnet/.


