
Calvin Lin

The University of Texas at Austin

CS380C Compilers 1

January 21, 2015 Introduction 1

CS380C Compilers

Instructor: Calvin Lin

lin@cs.utexas.edu

Office Hours: Mon/Wed 3:30-4:30

GDC 5.512

TA: Jia Chen

jchen@cs.utexas.edu

Office Hours: Tue 3:30-4:30

Thu 3:30-4:30

GDC 5.440

January 21, 2015 Introduction 2

Today’s Plan

 Motivation

 Why study compilers?

 Let’s get started

 Look at some sample optimizations and assorted issues

 A few administrative matters

 Course details

Calvin Lin

The University of Texas at Austin

CS380C Compilers 2

January 21, 2015 Introduction 3

Motivation

 Q: Why study compilers?

January 21, 2015 Introduction 4

Life B.C.

 Before compilers

Machine

Code

Hardware

Calvin Lin

The University of Texas at Austin

CS380C Compilers 3

January 21, 2015 Introduction 5

Liberation

Along came Backus

High-level

Code

Hardware

Compilers liberate the programmer from the machine

January 21, 2015 Introduction 6

Traditional View of Compilers

 Translate high-level language to machine code

 High-level programming languages

 Increase programmer productivity

 Improve program maintenance

 Improve portability

 Low-level architectural details

 Instruction set

 Addressing modes

 Registers, cache, and the rest of the memory hierarchy

 Pipelines, instruction-level parallelism

Calvin Lin

The University of Texas at Austin

CS380C Compilers 4

January 21, 2015 Introduction 7

Optimization

 Translation is not enough

 Backus recognized the importance of obtaining good

performance

 Can perform tedious optimizations that programmers won’t do

January 21, 2015 Introduction 8

Consider Matrix Multiplication

 Obvious code

 Tiled code– can be significantly faster

for i = 1 to n

for j = 1 to n

for k = 1 to n

c[i,j] = c[i, j] + a[i, k]* b[k,j]

for it = 1 to n by t

for jt = 1 to n by t

for kt = 1 to n by t

for i = it to it+t-1

for j = jt to jt+t-1

for k = kt to kt+t-1

c[i,j] = c[i, j] + a[i, k]* b[k,j]

Why don’t we want

programmers to write this code?

Calvin Lin

The University of Texas at Austin

CS380C Compilers 5

January 21, 2015 Introduction 9

Translation + Optimization

 Enable language design to flourish

 Functional languages

 Object oriented languages

 . . .

 Logic languages

Compilers liberate language designers

January 21, 2015 Introduction 10

Isn’t Compilation A Solved Problem?

 “Optimization for scalar

machines is a problem that

was solved ten years ago”

-- David Kuck, 1990

 Machines keep changing

 New features present new

problems (e.g., MMX,

IA64, trace caches)

 Changing costs lead to

different concerns (e.g.,

loads)

 Languages keep changing

 Wacky ideas (e.g., OOP

and GC) have gone

mainstream

 Applications keep changing

 Interactive, real-time,

mobile

Calvin Lin

The University of Texas at Austin

CS380C Compilers 6

January 21, 2015 Introduction 11

Isn’t Compilation A Solved Problem? (cont)

 Values keep changing

 We used to just care about run-time performance

 Now?

 Compile-time performance

 Code size

 Correctness

 Energy consumption

 Security

 Fault tolerance

January 21, 2015 Introduction 12

Value-Added Compilation

 The more we rely on software, the more we demand more of it

 Compilers can help– treat code as data

 Analyze the code

 Correctness

 Security

Calvin Lin

The University of Texas at Austin

CS380C Compilers 7

January 21, 2015 Introduction 13

Correctness and Security

 Can we check whether pointers and addresses are valid?

 Can we detect when untrusted code accesses a sensitive part

of a system?

 Can we detect whether locks are used properly?

 Can we use compilers to certify that code is correct?

 Can we use compilers to verify that a given compiler

transformation is correct?

January 21, 2015 Introduction 14

Value-Added Compilation

 The more we rely on software, the more we demand more of it

 Compilers can help– treat code as data

 Analyze the code

 Correctness

 Security

 Reliability

 Program understanding

 Program evolution

 Software testing

 Reverse engineering

 Program obfuscation

 Code compaction

 Energy efficiency

Computation important  understanding computation important

Calvin Lin

The University of Texas at Austin

CS380C Compilers 8

January 21, 2015 Introduction 15

Freedom Cuts Both Ways

 Just as compilers liberate the language designer, they also

liberate the computer architect

 Can we change the ISA from one generation to the next?

 Yes, if we trust our compilers

 Enables richer design space

 VLIW

 IA64

 TRIPS

 Multicore

 Heterogeneous multi-core

 Reconfigurable architectures

January 21, 2015 Introduction 16

Benefits to the Architect (cont)

 Two benefits of the compiler

 Can simplify the hardware by shifting burden to the

compiler

 VLIW, IA64, TRIPS, software controlled caches, Cell

 Can let the compiler inform the hardware

 Bias bits

 Prefetch instructions

Calvin Lin

The University of Texas at Austin

CS380C Compilers 9

January 21, 2015 Introduction 17

Virtualization is a Virtue

 High-level languages provide virtualization

 Why is virtualization good?

 We can virtualize at many levels

 Transmeta: dynamically compile x86 to VLIW

 GPUs rely on dynamic compilation

 JVMs and JITs

January 21, 2015 Introduction 18

The Point

 Compilers are a fundamental building block of modern

systems

 We need to understand their power and limitations

 Computer architects

 Language designers

 Software engineers

 OS/Runtime system researchers

 Security researchers

 Formal methods researchers (model checking, automated

theorem proving)

Calvin Lin

The University of Texas at Austin

CS380C Compilers 10

January 21, 2015 Introduction 19

Plan For Today

 Motivation

 Why study compilers?

 Let’s get started

 Look at some sample optimizations and assorted issues

 A few administrative matters

 Course details

January 21, 2015 Introduction 20

Types of Optimizations

 Definition

 An optimization is a transformation that is expected to

improve the program in some way; often consists of

analysis and transformation

e.g., decreasing the running time or decreasing memory

requirements

 Machine-independent optimizations

 Eliminate redundant computation

 Move computation to less frequently executed place

 Specialize some general purpose code

 Remove useless code

Calvin Lin

The University of Texas at Austin

CS380C Compilers 11

January 21, 2015 Introduction 21

Types of Optimizations (cont)

 Machine-dependent optimizations

 Replace a costly operation with a cheaper one

 Replace a sequence of operations with a cheaper one

 Hide latency

 Improve locality

 Reduce power consumption

 Enabling transformations

 Expose opportunities for other optimizations

 Help structure optimizations

January 21, 2015 Introduction 22

Sample Optimizations

 Arithmetic simplification

Constant folding
e.g., x = 8/2; x = 4;

Strength reduction
e.g., x = y * 4; x = y << 2;

Calvin Lin

The University of Texas at Austin

CS380C Compilers 12

January 21, 2015 Introduction 23

Sample Optimizations (cont)

 Constant propagation

 e.g., x = 3; x = 3; x = 3;

y = 4+x; y = 4+3; y = 7;

 Copy propagation

 e.g., x = z; x = z;

y = 4+x; y = 4+z;

January 21, 2015 Introduction 24

Sample Optimizations (cont)

 Common subexpression elimination (CSE)

 e.g., x = a + b;

y = a + b;

t = a + b;

x = t;

y = t;

Calvin Lin

The University of Texas at Austin

CS380C Compilers 13

January 21, 2015 Introduction 25

Sample Optimizations (cont)

 Dead (unused) assignment elimination

 e.g., x = 3;

... x not used...

x = 4;

 Dead (unreachable) code elimination

 e.g., if (false == true) {

printf(“debugging...”);

}

This assignment is dead

This statement is dead

January 21, 2015 Introduction 26

Sample Optimizations (cont)

 Loop-invariant code motion

 e.g., for i = 1 to 10 do

x = 3;

...

x = 3;

for i = 1 to 10 do

...

Calvin Lin

The University of Texas at Austin

CS380C Compilers 14

January 21, 2015 Introduction 27

Sample Optimizations (cont)

 Induction variable elimination

 e.g., for i = 1 to 10 do

a[i] = a[i] + 1;

for p = &a[1] to &a[10] do

*p = *p + 1

January 21, 2015 Introduction 28

Sample Optimizations (cont)

 Loop unrolling

 e.g., for i = 1 to 10 do

a[i] = a[i] + 1;

for i = 1 to 10 by 2 do

a[i] = a[i] + 1;

a[i+1] = a[i+1] + 1;

Calvin Lin

The University of Texas at Austin

CS380C Compilers 15

January 21, 2015 Introduction 29

Is an Optimization Worthwhile?

 Criteria for evaluating optimizations

 Safety: Does it preserve behavior?

 Profitability: Does it actually improve the code?

 Opportunity: Is it widely applicable?

 Cost (compilation time): Can it be practically performed?

 Cost (complexity): Can it be practically implemented?

January 21, 2015 Introduction 30

Scope of Analysis/Optimizations

 Peephole

 Consider a small window

of instructions

 Usually machine-specific

 Local

 Consider blocks of straight

line code (no control flow)

 Simple to analyze

Calvin Lin

The University of Texas at Austin

CS380C Compilers 16

January 21, 2015 Introduction 31

Scope of Analysis/Optimizations (cont)

 Global (intraprocedural)

 Consider entire procedures

 Must consider branches, loops, merging of control flow

 Use data-flow analysis

 Make simplifying assumptions at procedure calls

 Whole program (interprocedural)

 Consider multiple procedures

 Analysis even more complex (calls, returns)

 Hard with separate compilation

January 21, 2015 Introduction 32

Time of Optimization

 Compile time

 Link time

 Configuration time

 Runtime

Calvin Lin

The University of Texas at Austin

CS380C Compilers 17

Optimization Dimensions: A Rich Space

 Abstraction level

 Machine-dependent, machine-independent

 Goal

 Performance, correctness, etc

 Enabling transformation

 Scope

 Peephole, local, global, interprocedural

 Timing

 Compile time, link time, configuration time,run time
January 21, 2015 Introduction 33

January 21, 2015 Introduction 34

Limits of Compiler Optimizations

 Fully Optimizing Compiler (FOC)

 FOC(P) = Popt

 Popt is the smallest program with same I/O behavior as P

 Observe

 If program Q produces no output and never halts, FOC(Q) =
L: goto L

 Aha! We’ve solved the halting problem?!

 Moral

 Cannot build FOC

 Can always build a better optimizing compiler
(full employment theorem for compiler writers!)

Calvin Lin

The University of Texas at Austin

CS380C Compilers 18

January 21, 2015 Introduction 35

Optimizations Don’t Always Help

 Common Sub-expression Elimination

t = a + b

x = t

y = t

2 adds 1 add

x = a + b

y = a + b

4 variables 5 variables

January 21, 2015 Introduction 36

for i = 1 to n

T[i] = A[i] + B[i]

for i = 1 to n

C[i] = D[i] + T[i]

Optimizations Don’t Always Help (cont)

 Fusion and Contraction

t fits in a register, so no loads

or stores in this loop.

Huge win on most machines.

Degrades performance on

machines with hardware

managed stream buffers.

for i = 1 to n

t = A[i] + B[i]

C[i] = D[i] + t

Calvin Lin

The University of Texas at Austin

CS380C Compilers 19

January 21, 2015 Introduction 37

In Java, the address of foo() is often not

known until runtime (due to dynamic class

loading), so the method call requires a table

lookup.

After the first execution of this statement,

backpatching replaces the table lookup with a

direct call to the proper function.

o.foo();

Optimizations Don’t Always Help (cont)

 Backpatching

Q: How could this optimization ever hurt?

January 21, 2015 Introduction 38

Phase Ordering Problem

 In what order should optimizations be performed?

 Simple dependences

 One optimization creates opportunity for another

e.g., copy propagation and dead code elimination

 Cyclic dependences

 e.g., constant folding and constant propagation

 Adverse interactions

 e.g., common sub-expression elimination and register

allocation

e.g., register allocation and instruction scheduling

Calvin Lin

The University of Texas at Austin

CS380C Compilers 20

January 21, 2015 Introduction 39

Engineering Issues

 Building a compiler is an engineering activity

 Balance multiple goals

 Benefit for typical programs

 Complexity of implementation

 Compilation speed

 Overall Goal

 Identify a small set of general analyses and optimization

 Easier said than done: just one more...

Two Approaches– Which is Better?

 Build a compiler from scratch

 Clean and simple

 Typically implement a toy language

 Can only build the basics

 Extend an existing compiler

 Stand on the shoulders of others (can build more complex

and complete solutions)

 Can do more interesting things

 More complex and more to learn

January 21, 2015 Introduction 40

Calvin Lin

The University of Texas at Austin

CS380C Compilers 21

January 21, 2015 Introduction 41

Administrative Matters

 Turn to your syllabus

January 21, 2015 Introduction 42

Next Time

 Reading

 Syllabus

 Lecture

 Undergraduate compilers in a day!

