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Today’s Plan

 Motivation

 Why study compilers? 

 Let’s get started

 Look at some sample optimizations and assorted issues

 A few administrative matters

 Course details
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Motivation

 Q: Why study compilers?
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Life B.C.

 Before compilers

Machine

Code

Hardware
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Liberation

Along came Backus

High-level

Code

Hardware

Compilers liberate the programmer from the machine
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Traditional View of Compilers

 Translate high-level language to machine code

 High-level programming languages

 Increase programmer productivity

 Improve program maintenance

 Improve portability

 Low-level architectural details

 Instruction set

 Addressing modes

 Registers, cache, and the rest of the memory hierarchy

 Pipelines, instruction-level parallelism
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Optimization

 Translation is not enough

 Backus recognized the importance of obtaining good 

performance

 Can perform tedious optimizations that programmers won’t do
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Consider Matrix Multiplication

 Obvious code

 Tiled code– can be significantly faster

for i = 1 to n

for j = 1 to n

for k = 1 to n

c[i,j] = c[i, j] + a[i, k]* b[k,j]

for it = 1 to n by t

for jt = 1 to n by t

for kt = 1 to n by t

for i = it to it+t-1

for j = jt to jt+t-1

for k = kt to kt+t-1

c[i,j] = c[i, j] + a[i, k]* b[k,j]

Why don’t we want

programmers to write this code?
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Translation + Optimization

 Enable language design to flourish

 Functional languages

 Object oriented languages

 . . .

 Logic languages

Compilers liberate language designers
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Isn’t Compilation A Solved Problem?

 “Optimization for scalar 

machines is a problem that 

was solved ten years ago”

-- David Kuck, 1990

 Machines keep changing

 New features present new 

problems (e.g., MMX, 

IA64, trace caches)

 Changing costs lead to 

different concerns (e.g.,

loads)

 Languages keep changing

 Wacky ideas (e.g., OOP 

and GC) have gone 

mainstream

 Applications keep changing

 Interactive, real-time, 

mobile
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Isn’t Compilation A Solved Problem? (cont)

 Values keep changing

 We used to just care about run-time performance

 Now?

 Compile-time performance

 Code size

 Correctness

 Energy consumption

 Security

 Fault tolerance
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Value-Added Compilation

 The more we rely on software, the more we demand more of it

 Compilers can help– treat code as data

 Analyze the code

 Correctness

 Security
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Correctness and Security

 Can we check whether pointers and addresses are valid?

 Can we detect when untrusted code accesses a sensitive part 

of a system?

 Can we detect whether locks are used properly?

 Can we use compilers to certify that code is correct?

 Can we use compilers to verify that a given compiler 

transformation is correct?
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Value-Added Compilation

 The more we rely on software, the more we demand more of it

 Compilers can help– treat code as data

 Analyze the code

 Correctness

 Security

 Reliability

 Program understanding

 Program evolution

 Software testing

 Reverse engineering

 Program obfuscation

 Code compaction

 Energy efficiency

Computation important  understanding computation important
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Freedom Cuts Both Ways

 Just as compilers liberate the language designer, they also 

liberate the computer architect

 Can we change the ISA from one generation to the next?

 Yes, if we trust our compilers

 Enables richer design space

 VLIW

 IA64

 TRIPS

 Multicore

 Heterogeneous multi-core

 Reconfigurable architectures
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Benefits to the Architect (cont)

 Two benefits of the compiler

 Can simplify the hardware by shifting burden to the 

compiler

 VLIW, IA64, TRIPS, software controlled caches, Cell

 Can let the compiler inform the hardware

 Bias bits

 Prefetch instructions
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Virtualization is a Virtue

 High-level languages provide virtualization

 Why is virtualization good?

 We can virtualize at many levels

 Transmeta:  dynamically compile x86 to VLIW

 GPUs rely on dynamic compilation

 JVMs and JITs
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The Point

 Compilers are a fundamental building block of modern 

systems

 We need to understand their power and limitations

 Computer architects

 Language designers

 Software engineers

 OS/Runtime system researchers

 Security researchers

 Formal methods researchers (model checking, automated 

theorem proving)
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Plan For Today

 Motivation

 Why study compilers?

 Let’s get started

 Look at some sample optimizations and assorted issues

 A few administrative matters

 Course details
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Types of Optimizations

 Definition

 An optimization is a transformation that is expected to 

improve the program in some way; often consists of 

analysis and transformation

e.g., decreasing the running time or decreasing memory 

requirements

 Machine-independent optimizations

 Eliminate redundant computation

 Move computation to less frequently executed place

 Specialize some general purpose code

 Remove useless code
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Types of Optimizations (cont)

 Machine-dependent optimizations

 Replace a costly operation with a cheaper one

 Replace a sequence of operations with a cheaper one

 Hide latency

 Improve locality

 Reduce power consumption

 Enabling transformations

 Expose opportunities for other optimizations

 Help structure optimizations
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Sample Optimizations

 Arithmetic simplification

Constant folding
e.g., x = 8/2; x = 4;

Strength reduction
e.g., x = y * 4; x = y << 2;
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Sample Optimizations (cont)

 Constant propagation

 e.g., x = 3; x = 3; x = 3;

y = 4+x; y = 4+3; y = 7;

 Copy propagation

 e.g., x = z; x = z;

y = 4+x; y = 4+z;
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Sample Optimizations (cont)

 Common subexpression elimination (CSE)

 e.g., x = a + b;

y = a + b;

t = a + b;

x = t;

y = t;
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Sample Optimizations (cont)

 Dead (unused) assignment elimination

 e.g., x = 3;

... x not used...

x = 4;

 Dead (unreachable) code elimination

 e.g., if (false == true) {

printf(“debugging...”);

}

This assignment is dead

This statement is dead
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Sample Optimizations (cont)

 Loop-invariant code motion

 e.g., for i = 1 to 10 do

x = 3;

...

x = 3;

for i = 1 to 10 do

...
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Sample Optimizations (cont)

 Induction variable elimination

 e.g., for i = 1 to 10 do

a[i] = a[i] + 1;

for p = &a[1] to &a[10] do

*p = *p + 1
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Sample Optimizations (cont)

 Loop unrolling

 e.g., for i = 1 to 10 do

a[i] = a[i] + 1;

for i = 1 to 10 by 2 do

a[i]   = a[i] + 1;

a[i+1] = a[i+1] + 1;
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Is an Optimization Worthwhile?

 Criteria for evaluating optimizations

 Safety:  Does it preserve behavior?

 Profitability:  Does it actually improve the code?

 Opportunity:  Is it widely applicable?

 Cost (compilation time): Can it be practically performed?

 Cost (complexity): Can it be practically implemented?
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Scope of Analysis/Optimizations

 Peephole

 Consider a small window 

of instructions

 Usually machine-specific

 Local

 Consider blocks of straight 

line code (no control flow)

 Simple to analyze 
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Scope of Analysis/Optimizations (cont)

 Global (intraprocedural)

 Consider entire procedures

 Must consider branches, loops, merging of control flow

 Use data-flow analysis

 Make simplifying assumptions at procedure calls

 Whole program (interprocedural)

 Consider multiple procedures

 Analysis even more complex (calls, returns)

 Hard with separate compilation
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Time of Optimization

 Compile time

 Link time

 Configuration time

 Runtime
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Optimization Dimensions: A Rich Space

 Abstraction level

 Machine-dependent, machine-independent

 Goal

 Performance, correctness, etc

 Enabling transformation

 Scope

 Peephole, local, global, interprocedural 

 Timing

 Compile time, link time, configuration time,run time
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Limits of Compiler Optimizations

 Fully Optimizing Compiler (FOC)

 FOC(P) = Popt

 Popt is the smallest program with same I/O behavior as P

 Observe

 If program Q produces no output and never halts, FOC(Q) = 
L: goto L

 Aha!  We’ve solved the halting problem?!

 Moral

 Cannot build FOC

 Can always build a better optimizing compiler 
(full employment theorem for compiler writers!)
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Optimizations Don’t Always Help

 Common Sub-expression Elimination

t = a + b

x = t

y = t

2 adds 1 add

x = a + b

y = a + b

4 variables 5 variables
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for i = 1 to n

T[i] = A[i] + B[i]

for i = 1 to n                  

C[i] = D[i] + T[i]

Optimizations Don’t Always Help (cont)

 Fusion and Contraction

t fits in a register, so no loads 

or stores in this loop.

Huge win on most machines.

Degrades performance on 

machines with hardware 

managed stream buffers.

for i = 1 to n

t = A[i] + B[i] 

C[i] = D[i] + t
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In Java, the address of foo() is often not 

known until runtime (due to dynamic class 

loading), so the method call requires a table 

lookup.

After the first execution of this statement, 

backpatching replaces the table lookup with a 

direct call to the proper function.

o.foo();

Optimizations Don’t Always Help (cont)

 Backpatching

Q: How could this optimization ever hurt?
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Phase Ordering Problem

 In what order should optimizations be performed?

 Simple dependences

 One optimization creates opportunity for another

e.g., copy propagation and dead code elimination

 Cyclic dependences

 e.g., constant folding and constant propagation

 Adverse interactions

 e.g., common sub-expression elimination and register 

allocation

e.g., register allocation and instruction scheduling
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Engineering Issues

 Building a compiler is an engineering activity

 Balance multiple goals

 Benefit for typical programs

 Complexity of implementation

 Compilation speed

 Overall Goal

 Identify a small set of general analyses and optimization

 Easier said than done: just one more...

Two Approaches– Which is Better?

 Build a compiler from scratch

 Clean and simple

 Typically implement a toy language

 Can only build the basics

 Extend an existing compiler

 Stand on the shoulders of others (can build more complex 

and complete solutions)

 Can do more interesting things

 More complex and more to learn
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Administrative Matters

 Turn to your syllabus
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Next Time

 Reading

 Syllabus

 Lecture

 Undergraduate compilers in a day!


