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Backpatching

January 26, 2015

In Java, the address of foo() is often not 

known until runtime (due to dynamic class 

loading), so the method call requires a table

lookup.

After the first execution of this statement, 

backpatching replaces the table lookup with a 

direct call to the proper function.

o.foo();

Question of the Day

Q: How could backpatching ever hurt?

A: The Pentium 4 has a trace cache, when any instruction is 

modified, the entire trace cache has to be flushed.
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Today

– Leftovers from last lecture

– Overall structure of a compiler

– Intermediate representations

– Focus on traditional imperative languages
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Leftovers from Last Class
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In what order should optimizations be performed?

Simple dependences

– One optimization creates opportunity for another

e.g., copy propagation and dead code elimination

Cyclic dependences

– e.g., constant folding and constant propagation

Adverse interactions

– e.g., common sub-expression elimination and register 

allocation

e.g., register allocation and instruction scheduling

Phase Ordering Problem
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Engineering Issues

Building a compiler is an engineering activity

Balance multiple goals

– Benefit for typical programs

– Complexity of implementation

– Compilation speed

Overall Goal

– Identify a small set of general analyses and optimization

– Easier said than done: just one more...
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Workload

The workload is heavy

– Facility with C++ is important
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Academic Dishonesty

Consequence

– Cheating will lead to failure of the course

If you have any questions, ask
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Lexical Analysis (Scanning)

Break character stream into tokens (“words”)

– Tokens, lexemes, and patterns

– Lexical analyzers (e.g., lex) are usually automatically 

generated from patterns (regular expressions)

Examples

token lexeme(s) pattern

const const const

if if if

relation <,<=,=,!=,... < | <= | = | != | ...

identifier foo,index [a-zA-Z_]+[a-zA-Z0-9_]*

number 3.14159,570 [0-9]+ | [0-9]*.[0-9]+

string “hi”, “mom” “.*”

const pi := 3.14159  const, identifier(pi), assign,number(3.14159)
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Impose structure on token stream

– Limited to syntactic structure ( high-level)

– Structure usually represented with an abstract syntax tree

(AST)

– Theory meets practice: 

– Regular expressions, formal languages, grammars, 

parsing…

– Parsers are usually automatically generated from grammars 

(e.g., yacc, bison, cup, javacc)

Syntactic Analysis (Parsing)
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Example

for i = 1 to 10 do

a[i] = x * 5;

for id(i) equal number(1) to number(10) do 
id(a) lbracket id(i) rbracket equal id(x) times number(5) semi 

array

Syntactic Analysis (Parsing)

for

i 1 10

a i x 5

assign

times
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Structure of a Typical Interpreter
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Semantic Analysis

Determine whether source is meaningful

– Check for semantic errors

– Check for type errors

– Gather type information for subsequent stages

– Relate variable uses to their declarations

– Some semantic analysis takes place during parsing

Example errors (from C)

function1 = 3.14159;

x = 570 + “hello, world!”

scalar[i];
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Compiler Data Structures

Symbol Tables

– Compile-time data structures 

– Hold names, type information, and scope information for 

variables

Scopes

– A name space

e.g., In Pascal, each procedure creates a new scope

e.g., In C, each set of curly braces defines a new scope

– Can create a separate symbol table for each scope
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Compiler Data Structures (cont)

Using Symbol Tables

– For each variable declaration:

– Check for symbol table entry

– Add new entry (parsing); add type info (semantic analysis)

– For each variable use:  

– Check symbol table entry (semantic analysis)
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Exercise:  Symbol Table Alternative

Idea

– Dispense with explicit symbol table structure

– Include declarations in AST

Example

{ 

int x;

x = 3;

}

Discuss the advantages and disadvantages of this idea

block

decl assign

x int 3x
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IR Code Generation

Goal

– Transform AST into low-level intermediate representation

(IR)

Simplifies the IR

– Removes high-level control structures: 

for, while, do, switch

– Removes high-level data structures: 

arrays, structs, unions, enums
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IR Code Generation (cont)

One possible result is assembly-like code

– Semantic lowering

– Control-flow expressed in terms of “gotos”

– Each expression is very simple (three-address code)

e.g., x := a * b * c t := a * b

x := t * c
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– Address of p := & y

– Load x := *(p+4)

– Store *(p+4) := y

A Low-Level IR

Register Transfer Language (RTL)

– Linear representation

– Typically language-independent 

– Nearly corresponds to machine instructions

Example operations

– Assignment x := y

– Unary op x := op y

– Binary op x := y op z

– Call x := f()

– Cbranch if (x==3) goto L1
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Example

Low-level IR (RTL)

i := 1

loop1:

t1 := x * 5

t2 := &a

t3 := sizeof(int)

t4 := t3 * i

t5 := t2 + t4

*t5 := t1

i := i + 1

if i <= 10 goto loop1

for

i 1 10 asg

arr

a i

tms

x 5

Source code 

for i = 1 to 10 do

a[i] = x * 5;

High-level IR (AST)
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Exercise

High-level IR vs. Low-Level IR?
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Next Time

Lecture

– Control flow analysis

Assignment 0

– Due Wednesday

Assignment 1

– Familiarize yourself with the LLVM compiler

– Due next Monday (February 2)
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