
1/26/2015

1

Backpatching

January 26, 2015

In Java, the address of foo() is often not

known until runtime (due to dynamic class

loading), so the method call requires a table

lookup.

After the first execution of this statement,

backpatching replaces the table lookup with a

direct call to the proper function.

o.foo();

Question of the Day

Q: How could backpatching ever hurt?

A: The Pentium 4 has a trace cache, when any instruction is

modified, the entire trace cache has to be flushed.
1Undergraduate Compilers in a Day

Undergraduate Compilers in a Day

Today

– Leftovers from last lecture

– Overall structure of a compiler

– Intermediate representations

– Focus on traditional imperative languages

2January 26, 2015 Undergraduate Compilers in a Day

1/26/2015

2

Leftovers from Last Class

January 26, 2015 Undergraduate Compilers in a Day 3

In what order should optimizations be performed?

Simple dependences

– One optimization creates opportunity for another

e.g., copy propagation and dead code elimination

Cyclic dependences

– e.g., constant folding and constant propagation

Adverse interactions

– e.g., common sub-expression elimination and register

allocation

e.g., register allocation and instruction scheduling

Phase Ordering Problem

January 26, 2015 Undergraduate Compilers in a Day 4

1/26/2015

3

January 26, 2015 5

Engineering Issues

Building a compiler is an engineering activity

Balance multiple goals

– Benefit for typical programs

– Complexity of implementation

– Compilation speed

Overall Goal

– Identify a small set of general analyses and optimization

– Easier said than done: just one more...

Undergraduate Compilers in a Day

Workload

The workload is heavy

– Facility with C++ is important

6January 26, 2015 Undergraduate Compilers in a Day

1/26/2015

4

Academic Dishonesty

Consequence

– Cheating will lead to failure of the course

If you have any questions, ask

7January 26, 2015 Undergraduate Compilers in a Day

Undergraduate Compilers in a Day

Today

– Leftovers from last lecture

– Overall structure of a compiler

– Intermediate representations

– Focus on traditional imperative languages

8January 26, 2015 Undergraduate Compilers in a Day

1/26/2015

5

January 26, 2014

Structure of a Typical Interpreter

“sentences”

Analysis

character stream

lexical analysis

“words”tokens

semantic analysis

syntactic analysis

AST

annotated AST

interpreter

Compiler

Synthesis

optimization

code generation

IR

IR code generation

IR

target language

9Undergraduate Compilers in a Day

January 26, 2014 10

Lexical Analysis (Scanning)

Break character stream into tokens (“words”)

– Tokens, lexemes, and patterns

– Lexical analyzers (e.g., lex) are usually automatically

generated from patterns (regular expressions)

Examples

token lexeme(s) pattern

const const const

if if if

relation <,<=,=,!=,... < | <= | = | != | ...

identifier foo,index [a-zA-Z_]+[a-zA-Z0-9_]*

number 3.14159,570 [0-9]+ | [0-9]*.[0-9]+

string “hi”, “mom” “.*”

const pi := 3.14159  const, identifier(pi), assign,number(3.14159)

Undergraduate Compilers in a Day

1/26/2015

6

Impose structure on token stream

– Limited to syntactic structure ( high-level)

– Structure usually represented with an abstract syntax tree

(AST)

– Theory meets practice:

– Regular expressions, formal languages, grammars,

parsing…

– Parsers are usually automatically generated from grammars

(e.g., yacc, bison, cup, javacc)

Syntactic Analysis (Parsing)

January 26, 2015 Undergraduate Compilers in a Day 11

Example

for i = 1 to 10 do

a[i] = x * 5;

for id(i) equal number(1) to number(10) do
id(a) lbracket id(i) rbracket equal id(x) times number(5) semi

array

Syntactic Analysis (Parsing)

for

i 1 10

a i x 5

assign

times

January 26, 2015 Undergraduate Compilers in a Day 12

1/26/2015

7

January 26, 2014 13

Structure of a Typical Interpreter

“sentences”

Analysis

character stream

lexical analysis

“words”tokens

semantic analysis

syntactic analysis

AST

annotated AST

interpreter

Undergraduate Compilers in a Day

Semantic Analysis

Determine whether source is meaningful

– Check for semantic errors

– Check for type errors

– Gather type information for subsequent stages

– Relate variable uses to their declarations

– Some semantic analysis takes place during parsing

Example errors (from C)

function1 = 3.14159;

x = 570 + “hello, world!”

scalar[i];

January 26, 2015 Undergraduate Compilers in a Day 14

1/26/2015

8

Compiler Data Structures

Symbol Tables

– Compile-time data structures

– Hold names, type information, and scope information for

variables

Scopes

– A name space

e.g., In Pascal, each procedure creates a new scope

e.g., In C, each set of curly braces defines a new scope

– Can create a separate symbol table for each scope

January 26, 2015 Undergraduate Compilers in a Day 15

Compiler Data Structures (cont)

Using Symbol Tables

– For each variable declaration:

– Check for symbol table entry

– Add new entry (parsing); add type info (semantic analysis)

– For each variable use:

– Check symbol table entry (semantic analysis)

January 26, 2015 Undergraduate Compilers in a Day 16

1/26/2015

9

Exercise: Symbol Table Alternative

Idea

– Dispense with explicit symbol table structure

– Include declarations in AST

Example

{

int x;

x = 3;

}

Discuss the advantages and disadvantages of this idea

block

decl assign

x int 3x

January 26, 2015 Undergraduate Compilers in a Day 17

lexical analysis

semantic analysis

interpreter

Structure of a Typical Compiler

“sentences”

Synthesis

optimization

code generation

target language

IR

IR code generation

IR

Analysis

character stream

“words”tokens

AST

annotated AST

syntactic analysis

January 26, 2015 Undergraduate Compilers in a Day 19

1/26/2015

10

IR Code Generation

Goal

– Transform AST into low-level intermediate representation

(IR)

Simplifies the IR

– Removes high-level control structures:

for, while, do, switch

– Removes high-level data structures:

arrays, structs, unions, enums

January 26, 2015 Undergraduate Compilers in a Day 20

IR Code Generation (cont)

One possible result is assembly-like code

– Semantic lowering

– Control-flow expressed in terms of “gotos”

– Each expression is very simple (three-address code)

e.g., x := a * b * c t := a * b

x := t * c

January 26, 2015 Undergraduate Compilers in a Day 21

1/26/2015

11

– Address of p := & y

– Load x := *(p+4)

– Store *(p+4) := y

A Low-Level IR

Register Transfer Language (RTL)

– Linear representation

– Typically language-independent

– Nearly corresponds to machine instructions

Example operations

– Assignment x := y

– Unary op x := op y

– Binary op x := y op z

– Call x := f()

– Cbranch if (x==3) goto L1

January 26, 2015 Undergraduate Compilers in a Day 22

Example

Low-level IR (RTL)

i := 1

loop1:

t1 := x * 5

t2 := &a

t3 := sizeof(int)

t4 := t3 * i

t5 := t2 + t4

*t5 := t1

i := i + 1

if i <= 10 goto loop1

for

i 1 10 asg

arr

a i

tms

x 5

Source code

for i = 1 to 10 do

a[i] = x * 5;

High-level IR (AST)

January 26, 2015 Undergraduate Compilers in a Day 23

1/26/2015

12

Exercise

High-level IR vs. Low-Level IR?

January 26, 2015 Undergraduate Compilers in a Day 24

Next Time

Lecture

– Control flow analysis

Assignment 0

– Due Wednesday

Assignment 1

– Familiarize yourself with the LLVM compiler

– Due next Monday (February 2)

January 26, 2015 Undergraduate Compilers in a Day 25

