Question of the Day

Backpatching

1 In Java, the address of £oo () is often not

% known until runtime (due to dynamic class
loading), so the method call requires a table
lookup.

o.foo() ;

After the first execution of this statement,
backpatching replaces the table lookup with a
direct call to the proper function.

Q: How could backpatching ever hurt?

A: The Pentium 4 has a trace cache, when any instruction is

modified, the entire trace cache has to be flushed.
January 26, 2015 Undergraduate Compilers in a Day

Undergraduate Compilers in a Day

Today
— Leftovers from last lecture
— Overall structure of a compiler
— Intermediate representations

— Focus on traditional imperative languages

January 26, 2015 Undergraduate Compilers in a Day

Leftovers from Last Class

January 26, 2015 Undergraduate Compilers in a Day

Phase Ordering Problem

In what order should optimizations be performed?

Simple dependences

— One optimization creates opportunity for another
e.g., copy propagation and dead code elimination

Cyclic dependences
— e.g., constant folding and constant propagation

Adverse interactions

— e.g., common sub-expression elimination and register
allocation

e.g., register allocation and instruction scheduling
January 26, 2015 Undergraduate Compilers in a Day

Engineering Issues

Building a compiler is an engineering activity

Balance multiple goals
— Benefit for typical programs
— Complexity of implementation
— Compilation speed

Overall Goal

— ldentify a small set of general analyses and optimization
— Easier said than done: just one more...

January 26, 2015 Undergraduate Compilers in a Day

Workload

The workload is heavy
— Facility with C++ is important

January 26, 2015 Undergraduate Compilers in a Day

Academic Dishonesty

Consequence
— Cheating will lead to failure of the course

If you have any questions, ask

January 26, 2015 Undergraduate Compilers in a Day

Undergraduate Compilers in a Day

Today
— Leftovers from last lecture
— Overall structure of a compiler
— Intermediate representations

— Focus on traditional imperative languages

January 26, 2015 Undergraduate Compilers in a Day

Structure of a Typical Inte:gr=rer Compiler

Analysis Synthesis

character stream

|
lexical analysis IR code generation
IR
syntactic analysis

ST l“sentences” IR ‘

semantic analysis code generation

annotated AST target language

January 26, 2014 Undergraduate Compilers in a Day

Lexical Analysis (Scanning)

Break character stream into tokens (“words”)
— Tokens, lexemes, and patterns

— Lexical analyzers (e.g., lex) are usually automatically
generated from patterns (regular expressions)

const const
if i if
relation ==,1=,... | | <= | =] '= |
identifier | £foo, index [a-zA-Z_]+[a-2zA-20-9]*
number 3.14159,570 [0-9]+ | [0-9]1*.[0-9]+
string “*hi”, “mom” Nk
Examples
const pi := 3.14159 = const, identifier(pi), assign,number(3.14159)

January 26, 2014 Undergraduate Compilers in a Day

Syntactic Analysis (Parsing)

Impose structure on token stream
Limited to syntactic structure (= high-level)

Structure usually represented with an abstract syntax tree
(AST)

Theory meets practice:

— Regular expressions, formal languages, grammars,
parsing...

Parsers are usually automatically generated from grammars
(e.g., yacc, bison, cup, javacc)

January 26, 2015 Undergraduate Compilers in a Day

Syntactic Analysis (Parsing)

Example

for i =1 to 10 do
a[i] = x * 5;

for id(i) equal number(1) to number(10) do
id(a) Ibracket id(i) rbracket equal id(x) times number(5) semi

January 26, 2015 Undergraduate Compilers in a Day

Structure of a Typical Interpreter

Analysis

character stream

lexical analysis

syntactic analysis

AST l “sentences”

annotated AST

January 26, 2014 Undergraduate Compilers in a Day

Semantic Analysis

Determine whether source is meaningful
— Check for semantic errors
— Check for type errors
— Gather type information for subsequent stages
— Relate variable uses to their declarations
— Some semantic analysis takes place during parsing

Example errors (from C)
functionl = 3.14159;
570 + “hello, world!”

scalar[i];

January 26, 2015 Undergraduate Compilers in a Day

Compiler Data Structures

Symbol Tables
— Compile-time data structures
— Hold names, type information, and scope information for
variables
Scopes

— A name space
e.g., In Pascal, each procedure creates a new scope
e.g., In C, each set of curly braces defines a new scope

— Can create a separate symbol table for each scope

January 26, 2015 Undergraduate Compilers in a Day

Compiler Data Structures (cont)

Using Symbol Tables
— For each variable declaration:
— Check for symbol table entry
— Add new entry (parsing); add type info (semantic analysis)

— For each variable use:
— Check symbol table entry (semantic analysis)

January 26, 2015 Undergraduate Compilers in a Day

Exercise: Symbol Table Alternative

Idea
— Dispense with explicit symbol table structure
— Include declarations in AST

Example
{

int x;
x = 3;

Discuss the advantages and disadvantages of this idea

January 26, 2015 Undergraduate Compilers in a Day

Structure of a Typical Compiler

Analysis Synthesis

character stream

lexical analysis IR code generation

tokens ‘ “words”

syntactic analysis

AST J “sentences”

semantic analysis code generation

v
annotated AST target language

January 26, 2015 Undergraduate Compilers in a Day

IR Code Generation

Goal
— Transform AST into low-level intermediate representation

(IR)

Simplifies the IR
— Removes high-level control structures:

for,while, do, switch
— Removes high-level data structures:
arrays, structs, unions, enums

January 26, 2015 Undergraduate Compilers in a Day

IR Code Generation (cont)

One possible result is assembly-like code
— Semantic lowering
— Control-flow expressed in terms of “gotos”

— Each expression is very simple (three-address code)
€0, x :(=a *b *c mm) t :=a*b
X 1=t * c

January 26, 2015 Undergraduate Compilers in a Day

A Low-Level IR

Register Transfer Language (RTL)

— Linear representation

— Typically language-independent

— Nearly corresponds to machine instructions

Example operations

—Assignment x := y —Addressof p := & y
—Unaryop x :=opy — Load X = *(p+4)
—Binaryop x :=y op z — Store *(p+d) =y
— Call x = £()

— Cbranch if (x==3) goto Ll

January 26, 2015 Undergraduate Compilers in a Day

Example

Source code Low-level IR (RTL)

for i = 1 to 10 do i:=1
a[i] = x * 5; loopl:
tl :=x * 5

t2 := &a
t3 := sizeof (int)
t4d = t3 * i
t5 = t2 + t4
*t5 = tl
i::=1i+1
if i <= 10 goto loopl

High-level IR (AST)

January 26, 2015 Undergraduate Compilers in a Day

Exercise

High-level IR vs. Low-Level IR?

January 26, 2015 Undergraduate Compilers in a Day

Next Time

Lecture
— Control flow analysis

Assignment 0
— Due Wednesday

Assignment 1
— Familiarize yourself with the LLVM compiler
— Due next Monday (February 2)

January 26, 2015 Undergraduate Compilers in a Day

