
Calvin Lin

The University of Texas at Austin

CS380C Compilers 1

January 28, 2015 Control Flow Analysis 1

Control Flow Analysis

Last time

– Undergraduate compilers in a day

Today

– Assignment 0 due

– Control-flow analysis

– Building basic blocks

– Building control-flow graphs

– Loops

Compiling Arrays

Array declaration

– Store name, size, and type in symbol table

Array allocation

– Call malloc() or create space on the runtime stack

Array referencing

– A[i] *(&A + i * sizeof(A_elem))

t1 := &A

t2 := sizeof(A_elem)

t3 := i * t2

t4 := t1 + t3

*t4

January 26, 2015 Undergraduate Compilers in a Day 2

Calvin Lin

The University of Texas at Austin

CS380C Compilers 2

Compiling Procedures

Properties of procedures

– Procedures define scopes

– Procedure lifetimes are nested

– Can store information related to dynamic

invocation of a procedure on a call stack

(activation record or AR or stack frame):

– Space for saving registers

– Space for passing parameters and returning

values

– Space for local variables

– Return address of calling instruction

AR: zoo

AR: goo

AR: foo

stack

January 26, 2015 Undergraduate Compilers in a Day 3

AR: foo

Compiling Procedures

Runtime stack management

– Push an AR on procedure entry

– Pop an AR on procedure exit

– Why do we need a stack?
AR: zoo

AR: goo

AR: foo

stack

January 26, 2015 Undergraduate Compilers in a Day 4

Calvin Lin

The University of Texas at Austin

CS380C Compilers 3

Compiling Procedures (cont)

Code generation for procedures

– Emit code to manage the stack

– Are we done?

Translate procedure body

– References to local variables must be translated to refer to the

current activation record

– References to non-local variables must be translated to refer

to the appropriate activation record or global data space

January 26, 2015 Undergraduate Compilers in a Day 5

Structure of a Typical Compiler

“sentences”

Synthesis

optimization

code generation

target language

IR

IR code generation

IR

Analysis

character stream

“words”tokens

AST

annotated AST

lexical analysis

semantic analysis

syntactic analysis

interpreter

January 26, 2015 Undergraduate Compilers in a Day 6

Calvin Lin

The University of Texas at Austin

CS380C Compilers 4

Code Generation

Conceptually easy

– Three address code is a generic machine language

– Instruction selection converts the low-level IR to actual

machine instructions

The source of heroic effort on modern architectures

– Alias analysis

– Instruction scheduling for ILP

– Register allocation

– More later. . .

January 26, 2015 Undergraduate Compilers in a Day 7

Concepts

Compilation stages

– Scanning, parsing, semantic analysis, intermediate code

generation, optimization, code generation

Representations

– AST, low-level IR (RTL)

January 26, 2015 Undergraduate Compilers in a Day 8

Calvin Lin

The University of Texas at Austin

CS380C Compilers 5

January 28, 2015 Control Flow Analysis 9

Control Flow Analysis

Last time

– Undergraduate compilers in a day

Today

– Assignment 0 due

– Control-flow analysis

– Building basic blocks

– Building control-flow graphs

– Loops

Motivation

Q: Why is control flow analysis important?

A: Control flow is a key component of program behavior

Control flow analysis

– Discovers the flow of control within a procedure

– Builds a representation of control flow (loops, etc)

January 28, 2015 Control Flow Analysis 10

Calvin Lin

The University of Texas at Austin

CS380C Compilers 6

January 28, 2015 Control Flow Analysis 11

Representing Control Flow

High-level representation

– Control flow is implicit in an AST

Low-level representation

– Use a control-flow graph (CFG)

– Nodes represent statements

– Edges represent explicit flow of control

Other options

– Control dependences in program dependence graph (PDG)
[Ferrante87]

– Dependences on explicit state in value dependence graph
(VDG) [Weise 94]

array

for

i 1 10

a i x 5

assign

times

January 28, 2015 Control Flow Analysis 12

Source code

1 a := 0

2 b := a * b

3 L1: c := b/d

4 if c < x goto L2

5 e := b / c

6 f := e + 1

7 L2: g := f

8 h := t - g

9 if e > 0 goto L3

10 goto L1

11L3: return

Example

YesNo

1 a := 0

b := a * b

3 c := b/d

c < x?

5 e := b / c

f := e + 1

7 g := f

h := t - g

e > 0?

10 goto 11 return

YesNo

CFG

Calvin Lin

The University of Texas at Austin

CS380C Compilers 7

January 28, 2015 Control Flow Analysis 13

Definition

– A basic block is a sequence of straight line code that can be

entered only at the beginning and exited only at the end

Why are basic blocks useful?

– Straightline code is easy to reason about

– They give rise to local optimizations

Yes

Basic Blocks

No

g := f

h := t - g

e > 0?

January 28, 2015 Control Flow Analysis 14

Source code

1 a := 0

2 b := a * b

3 L1: c := b/d

4 if c < x goto L2

5 e := b / c

6 f := e + 1

7 L2: g := f

8 h := t - g

9 if e > 0 goto L3

10 goto L1

11L3: return

How Might We Identify Basic Blocks?

Building basic blocks

– Identify leaders

– The first instruction in a

procedure, or

– The target of any branch, or

– An instruction immediately

following a branch

(implicit target)

– Gobble all subsequent

instructions until the next

leader

Calvin Lin

The University of Texas at Austin

CS380C Compilers 8

January 28, 2015 Control Flow Analysis 15

Algorithm for Building Basic Blocks

Input: List of n instructions (instr[i] = ith instruction)

Output: Set of leaders & list of basic blocks

(block[x] is block with leader x)

leaders = {1} // First instruction is a leader

for i = 1 to n // Find all leaders

if instr[i] is a branch
leaders = leaders  set of potential targets of instr[i]

foreach x  leaders

block[x] = { x }

i = x+1 // Fill out x’s basic block

while i  n and i  leaders // Gobble, gobble, gobble

block[x] = block[x]  { i }

i = i + 1

January 28, 2015 Control Flow Analysis 16

Building Basic Blocks Example

1 a := 0

2 b := a * b

3 L1: c := b/d

4 if c < x goto L2

5 e := b / c

6 f := e + 1

7 L2: g := f

8 h := t - g

9 if e > 0 goto L3

10 goto L1

11 L3: return

Leaders?

Blocks?

{1, 3, 5, 7, 10, 11}

{1, 2}

{3, 4}

{5, 6}

{7, 8, 9}

{10}

{11}

Calvin Lin

The University of Texas at Austin

CS380C Compilers 9

January 28, 2015 Control Flow Analysis 17

x=3

y=x

Extended Basic Blocks

Extended basic blocks

– A maximal sequence of instructions that

has no merge points in it (except perhaps

in the leader)

– Single entry, multiple exits

How are these useful?

– Increases the scope of any local analysis

or transformation that “flows forwards”

(e.g., copy propagation, register

renaming, instruction scheduling)

January 28, 2015 Control Flow Analysis 18

x=3

f(x)

Extended Basic Blocks (cont)

Reverse extended basic blocks

– Useful for “backward flow” problems

Calvin Lin

The University of Texas at Austin

CS380C Compilers 10

January 28, 2015 Control Flow Analysis 19

Basic idea

– Each CFG node represents a basic block

– There is an edge from node i to j if

– Last statement of block i branches to the first statement of
j, or

– Block i does not end with an unconditional branch and is
immediately followed in program order by block j (fall
through)

Building a CFG from Basic Blocks

goto L1:

L1:
j

i

j

i

January 28, 2015 Control Flow Analysis 20

Building a CFG from Basic Blocks (cont)

Input: A list of m basic blocks (block)

Output: A CFG where each node is a basic block

for i = 1 to m

x = last instruction of block[i]

if instr x is a branch

for each target (to block j) of instr x

create an edge from block i to block j

if instr x is not an unconditional branch

create an edge from block i to block i+1

Calvin Lin

The University of Texas at Austin

CS380C Compilers 11

January 28, 2015 Control Flow Analysis 21

Multiple edges between two nodes

...

if (a<b) goto L2

L2: ...

Unreachable code

...

goto L1

L0: a = 10

L1: ...

Details

– Perform DFS from entry node

– Mark each basic block as it is
visited

– Unmarked blocks are
unreachable and can be deleted

– Combine these edges into one
edge

January 28, 2015 Control Flow Analysis 22

Challenges

When is CFG construction more complex?

Languages with user-defined control structures

– e.g., Cecil

if (&{x = 3}, &{a := a + 1}, &{a := a - 1});

Languages where branch targets may be unknown

– e.g., Executable code
ld $8, 104($7)

jmp $8

Binary translation

– Can’t statically distinguish code from data with x86 ISA

Calvin Lin

The University of Texas at Austin

CS380C Compilers 12

January 28, 2015 Control Flow Analysis 23

head

What is a Loop?

A strongly connected

component of a CFG

tail

January 28, 2015 Control Flow Analysis 24

What is a nested

loop?

What is an

entry edge?

What is an exit

edge?

What is a

header node?

What is a tail

node?
What is a back

edge?

What is a

preheader node?

Identify the loop

tail

head

nested loop

Loop Concepts

preheader

exit edge

loop

back edge
entry edge

Calvin Lin

The University of Texas at Austin

CS380C Compilers 13

January 28, 2015 Control Flow Analysis 25

The Value of Preheader Nodes

Not all loops have preheaders

– Sometimes it is useful to create them

Without preheader node

– There can be multiple entry edges

With single preheader node

– There is only one entry edge

Useful when moving code outside the loop

– Don’t have to replicate code for multiple
entry edges

h

t

pre-headerp

h

t

January 28, 2015 Control Flow Analysis 26

Loop Concepts

Loop: Strongly connected component of CFG

Loop entry edge: Source not in loop & target in loop

Loop exit edge: Source in loop & target not in loop

Loop header node: Target of loop entry edge

Natural loop: Loop with only a single loop header

Back edge: Target is loop header & source is in the

loop

Loop tail node: Source of back edge

Calvin Lin

The University of Texas at Austin

CS380C Compilers 14

January 28, 2015 Control Flow Analysis 27

Loop Concepts (cont)

Loop preheader node: Single node that’s source of the loop entry

edge

Nested loop: Loop whose header is inside another loop

Reducible flow graph: CFG whose loops are all natural loops

January 28, 2015 Control Flow Analysis 28

Identifying Loops

Why is it important?

– Most execution time spent in loops, so optimizing loops will

often give most benefit

Many approaches

– Interval analysis

– Exploit the natural hierarchical structure of programs

– Decompose the program into nested regions called

intervals

– Structural analysis: a generalization of interval analysis

– Identify dominators to discover loops

Calvin Lin

The University of Texas at Austin

CS380C Compilers 15

January 28, 2015 Control Flow Analysis 29

Dominators

Dominance

d dom i if all paths from entry to node i
include d

Strict dominance

d sdom i if d dom i and d  i

Immediate dominance

a idom b if a sdom b and there does not exist a
node c such that c  a, c  b, a dom c, and c
dom b

d

i

entry

d dom i

a

b

entry

a idom b

not  c, a sdom c and c sdom b

January 28, 2015 Control Flow Analysis 30

Exercise

Immediate dominance

– If x idom y, is x necessarily a predecessor of y?

Calvin Lin

The University of Texas at Austin

CS380C Compilers 16

January 28, 2015 Control Flow Analysis 31

Dominators (cont)

Post dominators

p pdom i if every possible path from i to exit

includes p

(p dom i in the flow graph whose arcs are

reversed and entry and exit are interchanged)

p

i

exit

p pdom i

Back edges

– A back edge of a natural loop is one whose

target dominates its source

Natural loop

– The natural loop of a back edge (mn),

where n dominates m, is the set of nodes x

such that n dominates x and there is a path

from x to m not containing n

– Why do we need this last clause?

January 28, 2015 Control Flow Analysis 32

Identifying Natural Loops with Dominators

t

s

back edge

n

m

natural

loop

Calvin Lin

The University of Texas at Austin

CS380C Compilers 17

January 28, 2015 Control Flow Analysis 33

b

a

c

d

e

b

c

a

d

e

Natural Loops

Counterexamples

– This loop has two entry points, c and d,

so it is not a natural loop

– The target, c, of the edge (dc) does not

dominate its source, d, so (dc) does not

define a natural loop

January 28, 2015 Control Flow Analysis 34

Dom[s] = {s}

for each n  N – {s}

Dom[n] = N

repeat

change = false

for each n  N – {s}

D = {n}  (ppred(n) Dom[p])

if D  Dom[n]

change = true

Dom[n] = D

until !change

Computing Dominators

Input: Set of nodes N (in CFG) and an entry node s

Output: Dom[i] = set of all nodes that dominate node i

Key Idea

If a node dominates all

predecessors of node n, then it

also dominates node n

n

pred[n]p1 p2 p3

x  Dom(p1) ∧ x  Dom(p2) ∧ x  Dom(p3)  x  Dom(n)

Calvin Lin

The University of Texas at Austin

CS380C Compilers 18

January 28, 2015 Control Flow Analysis 35

Dom(s) = {s}

for each n  N – {s}

Dom[n] = N

repeat

change = false

for each n  N – {s}

D = {n}  (ppred(n) Dom[p])

if D  Dom[n]

change = true

Dom[n] = D

until !change

{n, p, q, r, s}

Input: Set of nodes N and an entry node s

Output: Dom[i] = set of all nodes that dominate node i

{n, p, q, r, s}

{n, p, q, r, s}

{s}

{n, p, q, r, s}

Computing Dominators: Example

n

p

r

Initially

Dom[s] = {s}

Dom[q] = {n, p, q, r, s}. . .

Finally

Dom[q] =

Dom[r] =

Dom[p] =

Dom[n] =

s

{n, p, q, r, s}

{q, s}

{r, s}

{p, s}

{n, p, s}

q

January 28, 2015 Control Flow Analysis 36

Reducibility

Definition

– A CFG is reducible (well-structured) if we can partition its
edges into two disjoint sets, the forward edges and the back
edges, such that

– The forward edges form an acyclic graph in which every
node can be reached from the entry node

– The back edges consist only of edges whose targets
dominate their sources

– Non-natural loops  irreducibility

Structured control-flow constructs give rise to reducible

CFGs

Calvin Lin

The University of Texas at Austin

CS380C Compilers 19

January 28, 2015 Control Flow Analysis 37

Reducibility (cont)

Value of reducibility

– Can use dominance to identify loops

– Simplifies code transformations (every loop has a single

header)

– Permits interval analysis

January 28, 2015 Control Flow Analysis 38

Example

Is the following CFG reducible?

– No. The loop between c and d has two entry points

– Can we convert this CFG to a reducible CFG?

b

c

a

d

e

Calvin Lin

The University of Texas at Austin

CS380C Compilers 20

January 28, 2015 Control Flow Analysis 39

Handling Irreducible CFG’s

Node splitting

– Can turn irreducible CFGs into reducible CFGs

b

c

a

d

e

b

c

a

d

d

e

e

January 28, 2015 Control Flow Analysis 40

Why Go To All This Trouble?

Modern languages provide structured control flow

– Shouldn’t the compiler remember this information rather than

throw it away and then re-compute it?

Answers?

– We may want to work on the binary code in which case such

information is unavailable

– Most modern languages still provide a goto statement

– Languages typically provide multiple types of loops. This

analysis lets us treat them all uniformly

Calvin Lin

The University of Texas at Austin

CS380C Compilers 21

January 28, 2015 Control Flow Analysis 41

Why Go To All This Trouble? (cont)

Answers? (cont)

– Reduce engineering effort for compilers that support multiple

languages

LA LB LC

AST A AST B AST C

LA LB LC

AST A AST B AST C

IR

January 28, 2015 Control Flow Analysis 42

Concepts

Control-flow analysis

Basic blocks

– Computing basic blocks

– Extended basic blocks

Control-flow graph (CFG)

Loop terminology

Identifying loops

Dominators

Reducibility

Calvin Lin

The University of Texas at Austin

CS380C Compilers 22

January 28, 2015 Control Flow Analysis 43

Next Time

Lecture

– Introduction to data-flow analysis

