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Control Flow Analysis

Last time

– Undergraduate compilers in a day

Today

– Assignment 0 due

– Control-flow analysis

– Building basic blocks

– Building control-flow graphs 

– Loops

Compiling Arrays

Array declaration

– Store name, size, and type in symbol table

Array allocation

– Call  malloc() or create space on the runtime stack

Array referencing 

– A[i] *(&A + i * sizeof(A_elem))

t1 := &A

t2 := sizeof(A_elem)

t3 := i * t2

t4 := t1 + t3

*t4
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Compiling Procedures

Properties of procedures

– Procedures define scopes

– Procedure lifetimes are nested

– Can store information related to dynamic

invocation of a procedure on a call stack 

(activation record or AR or stack frame):

– Space for saving registers

– Space for passing parameters and returning 

values

– Space for local variables

– Return address of calling instruction

AR: zoo

AR: goo

AR: foo

stack

January 26, 2015 Undergraduate Compilers in a Day 3

AR: foo

Compiling Procedures

Runtime stack management

– Push an AR on procedure entry

– Pop an AR on procedure exit

– Why do we need a stack?
AR: zoo

AR: goo

AR: foo

stack
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Compiling Procedures (cont)

Code generation for procedures

– Emit code to manage the stack

– Are we done?

Translate procedure body

– References to local variables must be translated to refer to the 

current activation record

– References to non-local variables must be translated to refer 

to the appropriate activation record or global data space
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Structure of a Typical Compiler

“sentences”

Synthesis

optimization

code generation

target language

IR

IR code generation

IR

Analysis

character stream

“words”tokens

AST

annotated AST

lexical analysis

semantic analysis

syntactic analysis

interpreter
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Code Generation

Conceptually easy

– Three address code is a generic machine language

– Instruction selection converts the low-level IR to actual 

machine instructions

The source of heroic effort on modern architectures

– Alias analysis

– Instruction scheduling for ILP

– Register allocation

– More later. . .
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Concepts

Compilation stages

– Scanning, parsing, semantic analysis, intermediate code 

generation, optimization, code generation

Representations

– AST, low-level IR (RTL)

January 26, 2015 Undergraduate Compilers in a Day 8



Calvin Lin

The University of Texas at Austin

CS380C Compilers 5

January 28, 2015 Control Flow Analysis 9

Control Flow Analysis

Last time

– Undergraduate compilers in a day

Today

– Assignment 0 due

– Control-flow analysis

– Building basic blocks

– Building control-flow graphs 

– Loops

Motivation

Q: Why is control flow analysis important? 

A: Control flow is a key component of program behavior

Control flow analysis

– Discovers the flow of control within a procedure

– Builds a representation of control flow (loops, etc)

January 28, 2015 Control Flow Analysis 10
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Representing Control Flow

High-level representation

– Control flow is implicit in an AST

Low-level representation  

– Use a control-flow graph (CFG)

– Nodes represent statements

– Edges represent explicit flow of control

Other options

– Control dependences in program dependence graph (PDG) 
[Ferrante87]

– Dependences on explicit state in value dependence graph 
(VDG) [Weise 94]

array

for

i 1 10

a i x 5

assign

times
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Source code

1 a := 0

2 b := a * b

3 L1: c := b/d

4 if c < x goto L2

5 e := b / c

6 f := e + 1

7 L2: g := f

8 h := t - g

9 if e > 0 goto L3

10 goto L1

11L3: return

Example

YesNo

1 a := 0

b := a * b

3 c := b/d

c < x?

5 e := b / c

f := e + 1

7 g := f

h := t - g

e > 0?

10 goto 11 return

YesNo

CFG
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Definition

– A basic block is a sequence of straight line code that can be 

entered only at the beginning and exited only at the end 

Why are basic blocks useful?

– Straightline code is easy to reason about

– They give rise to local optimizations

Yes

Basic Blocks

No

g := f

h := t - g

e > 0?

January 28, 2015 Control Flow Analysis 14

Source code

1 a := 0

2 b := a * b

3 L1: c := b/d

4 if c < x goto L2

5 e := b / c

6 f := e + 1

7 L2: g := f

8 h := t - g

9 if e > 0 goto L3

10 goto L1

11L3: return

How Might We Identify Basic Blocks?

Building basic blocks

– Identify leaders

– The first instruction in a 

procedure, or

– The target of any branch, or

– An instruction immediately 

following a branch 

(implicit target)

– Gobble all subsequent 

instructions until the next 

leader
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Algorithm for Building Basic Blocks

Input: List of n instructions (instr[i] = ith instruction)

Output: Set of leaders & list of basic blocks

(block[x] is block with leader x)

leaders = {1} // First instruction is a leader

for i = 1 to n // Find all leaders

if instr[i] is a branch
leaders = leaders  set of potential targets of instr[i]

foreach x  leaders

block[x] = { x }

i = x+1 // Fill out x’s basic block

while i  n and i  leaders // Gobble, gobble, gobble

block[x] = block[x]  { i }

i = i + 1

January 28, 2015 Control Flow Analysis 16

Building Basic Blocks Example

1 a := 0

2 b := a * b

3 L1: c := b/d

4 if c < x goto L2

5 e := b / c

6 f := e + 1

7 L2: g := f

8 h := t - g

9 if e > 0 goto L3

10 goto L1

11 L3: return

Leaders?

Blocks?

{1, 3, 5, 7, 10, 11}

{1, 2}

{3, 4}

{5, 6}

{7, 8, 9}

{10}

{11}
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x=3

y=x

Extended Basic Blocks

Extended basic blocks

– A maximal sequence of instructions that 

has no merge points in it (except perhaps 

in the leader)

– Single entry, multiple exits

How are these useful?

– Increases the scope of any local analysis 

or transformation that “flows forwards” 

(e.g., copy propagation, register 

renaming, instruction scheduling)

January 28, 2015 Control Flow Analysis 18

x=3

f(x)

Extended Basic Blocks (cont)

Reverse extended basic blocks

– Useful for “backward flow” problems
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Basic idea

– Each CFG node represents a basic block

– There is an edge from node i to j if

– Last statement of block i branches to the first statement of 
j, or

– Block i does not end with an unconditional branch and is 
immediately followed in program order by block j (fall 
through)

Building a CFG from Basic Blocks

goto L1:

L1:
j

i

j

i

January 28, 2015 Control Flow Analysis 20

Building a CFG from Basic Blocks (cont)

Input:    A list of m basic blocks (block)

Output: A CFG where each node is a basic block

for i = 1 to m

x = last instruction of block[i]

if instr x is a branch

for each target (to block j) of instr x

create an edge from block i to block j

if instr x  is not an unconditional branch

create an edge from block i to block i+1
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Multiple edges between two nodes

...

if (a<b) goto L2

L2: ...

Unreachable code

...

goto L1

L0: a = 10

L1: ...

Details

– Perform DFS from entry node

– Mark each basic block as it is 
visited

– Unmarked blocks are 
unreachable and can be deleted

– Combine these edges into one 
edge

January 28, 2015 Control Flow Analysis 22

Challenges

When is CFG construction more complex?

Languages with user-defined control structures 

– e.g., Cecil

if ( &{x = 3}, &{a := a + 1}, &{a := a - 1} );

Languages where branch targets may be unknown

– e.g., Executable code
ld $8, 104($7)

jmp $8 

Binary translation

– Can’t statically distinguish code from data with x86 ISA
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head

What is a Loop?

A strongly connected 

component of a CFG

tail

January 28, 2015 Control Flow Analysis 24

What is a nested 

loop?

What is an 

entry edge?

What is an exit 

edge?

What is a 

header node?

What is a tail 

node?
What is a back 

edge?

What is a 

preheader node?

Identify the loop

tail

head

nested loop

Loop Concepts

preheader

exit edge

loop

back edge
entry edge
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The Value of Preheader Nodes

Not all loops have preheaders

– Sometimes it is useful to create them

Without preheader node

– There can be multiple entry edges

With single preheader node

– There is only one entry edge

Useful when moving code outside the loop

– Don’t have to replicate code for multiple 
entry edges

h

t

pre-headerp

h

t

January 28, 2015 Control Flow Analysis 26

Loop Concepts

Loop: Strongly connected component of CFG

Loop entry edge: Source not in loop & target in loop

Loop exit edge: Source in loop & target not in loop

Loop header node: Target of loop entry edge

Natural loop: Loop with only a single loop header

Back edge: Target is loop header & source is in the 

loop

Loop tail node: Source of back edge
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Loop Concepts (cont)

Loop preheader node: Single node that’s source of the loop entry

edge

Nested loop: Loop whose  header is inside another loop

Reducible flow graph: CFG whose loops are all natural loops

January 28, 2015 Control Flow Analysis 28

Identifying Loops

Why is it important?

– Most execution time spent in loops, so optimizing loops will 

often give most benefit

Many approaches

– Interval analysis

– Exploit the natural hierarchical structure of programs

– Decompose the program into nested regions called 

intervals

– Structural analysis: a generalization of interval analysis

– Identify dominators to discover loops
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Dominators

Dominance

d dom i if all paths from entry to node i 
include d

Strict dominance

d sdom i if d dom i and d  i

Immediate dominance

a idom b if a sdom b and there does not exist a 
node c such that c  a, c  b, a dom c, and c 
dom b

d

i

entry

d dom i

a

b

entry

a idom b

not  c, a sdom c and c sdom b

January 28, 2015 Control Flow Analysis 30

Exercise

Immediate dominance

– If x idom y, is x necessarily a predecessor of y?
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Dominators (cont)

Post dominators

p pdom i if every possible path from i to exit 

includes p

(p dom i in the flow graph whose arcs are 

reversed and entry and exit are interchanged)

p

i

exit

p pdom i

Back edges

– A back edge of a natural loop is one whose 

target dominates its source

Natural loop

– The natural loop of a back edge (mn),

where n dominates m, is the set of nodes x

such that n dominates x and there is a path 

from x to m not containing n

– Why do we need this last clause?

January 28, 2015 Control Flow Analysis 32

Identifying Natural Loops with Dominators

t

s

back edge

n

m

natural 

loop
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b

a

c

d

e

b

c

a

d

e

Natural Loops

Counterexamples

– This loop has two entry points, c and d, 

so it is not a natural loop

– The target, c, of the edge (dc) does  not  

dominate its source, d, so (dc) does not 

define a natural loop

January 28, 2015 Control Flow Analysis 34

Dom[s] = {s}

for each n   N – {s}

Dom[n] = N

repeat

change = false

for each n  N – {s}

D = {n}  (ppred(n) Dom[p])

if D  Dom[n]

change = true

Dom[n] = D

until !change

Computing Dominators

Input:     Set of nodes N (in CFG) and an entry node s

Output:  Dom[i] = set of all nodes that dominate node i

Key Idea

If a node dominates all 

predecessors of node n, then it 

also dominates node n

n

pred[n]p1 p2 p3

x  Dom(p1) ∧ x  Dom(p2) ∧ x  Dom(p3)   x  Dom(n)
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Dom(s) = {s}

for each n   N – {s}

Dom[n] = N

repeat

change = false

for each n  N – {s}

D = {n}  (ppred(n) Dom[p])

if D  Dom[n]

change = true

Dom[n] = D

until !change

{n, p, q, r, s}

Input:     Set of nodes N and an entry node s

Output:  Dom[i] = set of all nodes that dominate node i

{n, p, q, r, s}

{n, p, q, r, s}

{s}

{n, p, q, r, s}

Computing Dominators: Example

n

p

r

Initially

Dom[s] = {s}

Dom[q] = {n, p, q, r, s}. . .

Finally

Dom[q] =

Dom[r]  =

Dom[p] =

Dom[n] = 

s

{n, p, q, r, s}

{q, s}

{r, s}

{p, s}

{n, p, s}

q
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Reducibility

Definition

– A CFG is reducible (well-structured) if we can partition its 
edges into two disjoint sets, the forward edges and the back
edges, such that

– The forward edges form an acyclic graph in which every 
node can be reached from the entry node

– The back edges consist only of edges whose targets 
dominate their sources

– Non-natural loops  irreducibility

Structured control-flow constructs give rise to reducible 

CFGs
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Reducibility (cont)

Value of reducibility

– Can use dominance to identify loops

– Simplifies code transformations (every loop has a single 

header)

– Permits interval analysis

January 28, 2015 Control Flow Analysis 38

Example

Is the following CFG reducible?

– No.  The loop between c and d has two entry points

– Can we convert this CFG to a reducible CFG?

b

c

a

d

e
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Handling Irreducible CFG’s

Node splitting

– Can turn irreducible CFGs into reducible CFGs

b

c

a

d

e

b

c

a

d

d

e

e
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Why Go To All This Trouble?

Modern languages provide structured control flow

– Shouldn’t the compiler remember this information rather than 

throw it away and then re-compute it?

Answers?

– We may want to work on the binary code in which case such 

information is unavailable

– Most modern languages still provide a goto statement

– Languages typically provide multiple types of loops.  This 

analysis lets us treat them all uniformly
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Why Go To All This Trouble? (cont)

Answers? (cont)

– Reduce engineering effort for compilers that support multiple 

languages

LA LB LC

AST A AST B AST C

LA LB LC

AST A AST B AST C

IR

January 28, 2015 Control Flow Analysis 42

Concepts

Control-flow analysis

Basic blocks

– Computing basic blocks

– Extended basic blocks

Control-flow graph (CFG)

Loop terminology

Identifying loops

Dominators

Reducibility
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Next Time

Lecture

– Introduction to data-flow analysis


