
2/2/2015

1

Data-flow Analysis 1

Recap

Last Time

– Algorithm to compute dominators

– Did you understand it?

Exercise

– Can we start with the empty set and grow the set of

dominators?

February 2, 2015

January 28, 2015 Control Flow Analysis 2

Dom(s) = {s}

for each n  N – {s}

Dom[n] = N

repeat

change = false

for each n  N – {s}

D = {n}  (ppred(n) Dom[p])

if D  Dom[n]

change = true

Dom[n] = D

until !change

{n, p, q, r, s}

Input: Set of nodes N and an entry node s

Output: Dom[i] = set of all nodes that dominate node i

{n, p, q, r, s}

{n, p, q, r, s}

{s}

{n, p, q, r, s}

Computing Dominators: Example

n

p

r

Initially

Dom[s] = {s}

Dom[q] = {n, p, q, r, s}. . .

Finally

Dom[q] =

Dom[r] =

Dom[p] =

Dom[n] =

s

{n, p, q, r, s}

{q, s}

{r, s}

{p, s}

{n, p, s}

q

2/2/2015

2

Data-flow Analysis 3

Introduction to Data-flow Analysis

Last Time

– Control flow analysis

Today

– Introduce iterative data-flow analysis

– Liveness analysis

– Introduce other useful concepts

February 2, 2015

Data-flow Analysis 4

Data-flow Analysis

Idea

– Data-flow analysis derives information about the

dynamic behavior of a program by only examining

the static code

1 a := 0

2 L1: b := a + 1

3 c := c + b

4 a := b * 2

5 if a < 9 goto L1

6 return c

Example

– How many variables does

this code have?

– How many registers do we

need for these variables?

– Easy bound: 3

February 2, 2015

2/2/2015

3

Data-flow Analysis 5

Data-flow Analysis

Idea

– Data-flow analysis derives information about the

dynamic behavior of a program by only examining

the static code

Example

– Better answer is found by

considering the dynamic

requirements of the program

1 a := 0

2 L1: b := a + 1

3 c := c + b

4 a := b * 2

5 if a < 9 goto L1

6 return c

February 2, 2015

Data-flow Analysis 6

Liveness Analysis

Definition

– A variable is live at a particular point in the program if its

value at that point will be used in the future (dead, otherwise).

 To compute liveness at a given point, we need to look into

the future

Example

– Is b live on line 2?

– Is b live on line 4?

1 a := 0

2 L1: b := a + 1

3 c := c + b

4 a := b * 2

5 if a < 9 goto L1

6 return c

February 2, 2015

2/2/2015

4

Data-flow Analysis 7

Motivation for Liveness Analysis

Register Allocation

– A program contains an unbounded number of variables

– Must execute on a machine with a bounded number of

registers

– Two variables can use the same register if they are never in

use at the same time (i.e, never simultaneously live).

 Register allocation uses liveness information

February 2, 2015

Data-flow Analysis 8

Liveness by Example

What is the live range of b?

– Variable b is read in statement 4,

so b is live on the (3  4) edge

– Since statement 3 does not assign

into b, b is also live on the (23)

edge

a = 0

b = a + 1

c = c + b

a = b * 2

a<9

return c

1

2

6

5

3

4

YesNo

b’s live range is (234)

– Statement 2 assigns b, so

any value of b on the

(12) and (52) edges
are not needed, so b is dead

along these edges
February 2, 2015

2/2/2015

5

Data-flow Analysis 9

Exercise: Liveness by Example

Live range of a, b, and c?

– a is live from (12) and again

from (452)

– a is dead from (234)

Live range of b

– b is live from (234)

Live range of c

a and b are never simultaneously live, so they can share a register

a = 0

b = a + 1

c = c + b

a = b * 2

a<9

return c

1

2

6

5

3

4

YesNo

– c is live from

(entry123452, 56)

February 2, 2015

Data-flow Analysis 10

Control Flow Graphs (CFGs)

Simplification

– For now, we will use CFGs in which nodes represent

program statements rather than basic blocks

Example

1 a := 0

2 L1: b := a + 1

3 c := c + b

4 a := b * 2

5 if a < 9 goto L1

6 return c

a = 0

b = a + 1

c = c + b

a = b * 2

a<9

return c

1

2

6

5

3

4

YesNo

February 2, 2015

2/2/2015

6

Data-flow Analysis 11

Terminology

Flow Graph Terms

– A CFG node has out-edges that lead to successor nodes

and in-edges that come from predecessor nodes

– pred[n] is the set of predecessors of node n

succ[n] is the set of successors of node n

Examples

– Out-edges of node 5:

– succ[5] =

– pred[5] =

– pred[2] =

a = 0

b = a + 1

c = c + b

a = b * 2

a<9

return c

1

2

6

5

3

4

YesNo

(56) and (52)

{2,6}

{1,5}

{4}

February 2, 2015

Data-flow Analysis 12

Defs and Uses

Def (or definition)

– An assignment of a value to a variable

– def[v] = set of CFG nodes that define variable v

– def[n] = set of variables that are defined at node n

Use

– A read of a variable’s value

– use[v] = set of CFG nodes that use variable v

– use[n] = set of variables that are used at node n

a = 0

a < 9?

February 2, 2015

2/2/2015

7

Data-flow Analysis 13

Uses and Defs (cont)

More precise definition of liveness

– A variable v is live on a CFG edge if

(1)  a directed path from that edge to a use of v (node in

use[v]), and

(2) that path does not go through any def of v (no nodes in

def[v])

 def[v]

 use[v]

v live

February 2, 2015

Data-flow Analysis 14

The Flow of Liveness

Data-flow

– Liveness of variables is a property

that flows through the edges of the

CFG

Direction of Flow

– Liveness flows backwards through

the CFG, because the behavior at

future nodes determines liveness at a

given node

– Consider a

– Consider b

a = 0

b = a + 1

c = c + b

a = b * 2

a<9

return c

1

2

6

5

3

4

YesNo

– Later, we’ll see other properties

that flow forward
February 2, 2015

2/2/2015

8

Data-flow Analysis 15

Liveness at Nodes
edges

a = 0

Two More Definitions

– A variable is live-out at a node if it is live just after that node’s

computation

– A variable is live-in at a node if it is live just before that node’s

computation

We have liveness on edges

– How do we talk about

liveness at nodes?

just after computation

just before computation

n
live-out

out-edges

n
live-in

in-edges

program points

a = 0

b = a + 1

c = c + b

a = b * 2

a<9

return c

1

2

6

5

3

4

YesNo

February 2, 2015

Data-flow Analysis 16

Live-out

– A variable is live-out at a node if it is live on any of that node’s out-edges

Live-in

– How do we know if a variable is live-in at a node?

Liveness at Nodes (cont)

n
live-out

out-edges

n
live-in

in-edges

February 2, 2015

2/2/2015

9

Data-flow Analysis 17

Data-flow equations

in[n] = use[n]  (out[n] – def[n])

out[n] =  in[s]
s  succ[n]

(1) (3)

(2)

Rules for computing liveness

(1) Generate liveness:

If a variable is in use[n],

then it is live-in at node n

n
live-in

use

live-in
n

live-out

(3) Push liveness across nodes:

If a variable is live-out at node n and not in def[n],

then the variable is also live-in at n

live-out

n
live-in

pred[n]
live-out live-out

(2) Push liveness across edges:

If a variable is live-in at a node n

then it is live-out at all nodes in pred[n]

Computing Liveness

February 2, 2015

Data-flow Analysis 18

Solving the Data-flow Equations

Algorithm

This is iterative data-flow analysis (for liveness analysis)

for each node n in CFG

in[n] = ; out[n] = 

repeat

for each node n in CFG

in’[n] = in[n]

out’[n] = out[n]

in[n] = use[n]  (out[n] – def[n])

out[n] =  in[s]

until in’[n]=in[n] and out’[n]=out[n] for all n

s  succ[n]

initialize solutions

solve data-flow equations

test for convergence

save current results

February 2, 2015

2/2/2015

10

Data-flow Analysis 19

3 bc c

5 a

2 a b

1 a

node
use def in out in out in out in out in out in out in out

4 b a

6 c

1st 2nd 3rd 4th 5th 6th 7th

c

a

b

a a

bc

a

c

a bc

bc b

b a

a ac

a

c

ac bc

bc b

b a

ac ac

ac

c

ac bc

bc b

b ac

ac ac

c ac

c

ac bc

bc b

bc ac

ac ac

c ac

c

ac bc

bc bc

bc ac

ac ac

c ac

c

ac bc

bc bc

bc ac

ac ac

Data-flow Equations for Liveness

in[n] = use[n]  (out[n] – def[n])

out[n] =  in[s]
s  succ[n]

Exercise: Compute the First Iteration

a = 0

b = a + 1

c = c + b

a = b * 2

a<9

return c

1

2

6

5

3

4

YesNo

February 2, 2015

Data-flow Analysis 20

Improving Performance

Consider the (34) edge in the graph:

out[4] is used to compute in[4];

in[4] is used to compute out[3] . . .

So we should compute the sets in the

order: out[4], in[4], out[3], in[3], . . .

Data-flow Equations for Liveness

in[n] = use[n]  (out[n] – def[n])

out[n] =  in[s]

The order of computation should follow the direction of flow

Example (cont)

a = 0

b = a + 1

c = c + b

a = b * 2

a<9

return c

1

2

6

5

3

4

YesNo

out[4]

in[4]

out[3]

s  succ[n]

February 2, 2015

2/2/2015

11

Data-flow Analysis 21

Iterating Through the Flow Graph

Backwards

a = 0

b = a + 1

c = c + b

a = b * 2

a<9

return c

1

2

6

5

3

4

YesNo

4 b a ac bc ac bc ac bc

2 a b bc ac bc ac bc ac

5 a c ac ac ac ac ac

1 a ac c ac c ac c

6 c c c c

node
use def out in out in out in

3 bc c bc bc bc bc bc bc

1st 2nd 3rd

Converges much faster!

February 2, 2015

Data-flow Analysis 22

Solving the Data-flow Equations (reprise)

Algorithm

for each node n in CFG

in[n] = ; out[n] = 

repeat

for each node n in CFG in reverse topsort order

in’[n] = in[n]

out’[n] = out[n]

out[n] =  in[s]

in[n] = use[n]  (out[n] – def[n])

until in’[n]=in[n] and out’[n]=out[n] for all n

s  succ[n]

initialize solutions

solve data-flow equations

test for convergence

save current results

February 2, 2015

2/2/2015

12

Data-flow Analysis 23

Time Complexity

Consider a program of size N

– Has N nodes in the flow graph and at most N variables

– Each live-in or live-out set has at most N elements

– Each set-union operation takes O(N) time

– The for loop body

– constant # of set operations per node

– O(N) nodes  O(N2) time for the loop

– Each iteration of the repeat loop can only make the set larger

– Each set can contain at most N variables  2N2 iterations

Worst case: O(N4)

Typical case: 2 to 3 iterations with good ordering & sparse sets

 O(N) to O(N2)

February 2, 2015

Liveness

– Use in register allocation

– Generating liveness

– Flow and direction

– Data-flow equations and analysis

– Complexity

– Improving performance (basic blocks, single variable, bit sets)

Control flow graphs

– Predecessors and successors

Defs and uses

Data-flow Analysis 24

Concepts

February 2, 2015

2/2/2015

13

Data-flow Analysis 25

Next Time

Lecture

– Generalizing data-flow analysis

Assignment 2

– Now available

– Due February 13

– Please start early

February 2, 2015

