Recap

Last Time
— Algorithm to compute dominators
— Did you understand it?

Exercise
— Can we start with the empty set and grow the set of
dominators?
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Computing Dominators: Example

Input:  Set of nodes N and an entry node s
Output: Dom[i] = set of all nodes that dominate node i

Dom(s) = {s}
foreachn e N —{s}
Dom[n] =N
repeat Initially
change = false Dom[s] = {s}
for eachn e N — {s} Dom[q] ={n, p, g, 1, S}. ..
D= {n} 4 (mpepred(n) Dom[p]) Flnally
if D = Dom|[n] Dom[q] = {q, s}
change = true Dom[r] = {r, s}
Dom{n] =D Dom[p] = {p, s}

il 1
until 'change Dom[n] = {n, p, s}
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Introduction to Data-flow Analysis

Last Time
— Control flow analysis

Today
— Introduce iterative data-flow analysis
— Liveness analysis
— Introduce other useful concepts
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Data-flow Analysis

Idea
— Data-flow analysis derives information about the
dynamic behavior of a program by only examining
the static code
Example

— How many variables does
this code have?

— How many registers do we
need for these variables?

— Easy bound: 3
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Data-flow Analysis

Idea

— Data-flow analysis derives information about the
dynamic behavior of a program by only examining
the static code

Example

— Better answer is found by
considering the dynamic
requirements of the program
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Liveness Analysis

Definition
— Avariable is live at a particular point in the program if its

value at that point will be used in the future (dead, otherwise).

.. To compute liveness at a given point, we need to look into
the future .

Example
— Is b live on line 2?
— Is b live on line 4?
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Motivation for Liveness Analysis

Register Allocation
— A program contains an unbounded number of variables

— Must execute on a machine with a bounded number of
registers

— Two variables can use the same register if they are never in
use at the same time (i.e, never simultaneously live).

.. Register allocation uses liveness information
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Liveness by Example

What is the live range of b?

— Variable b isread in statement 4,
so b is live on the (3 — 4) edge

— Since statement 3 does not assign
into b, b is also live on the (2—3)

edge

— Statement 2 assigns b, so
any value of b on the
(1—2) and (5—2) edges o return c |
are not needed, so b is dead b’s live range is (2—>3—4)

along these edges
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Exercise: Liveness by Example

Live range of a
—a s live from (1—2) and again
from (4—>5-2)
— a is dead from (2—>3—4)

Live range of b
—bis live from (2—>3—4)

Live range of ¢

— c is live from 6| return c |

(entry—>1—-2—3—>4—->5—2, 556)

a and b are never simultaneously live, so they can share a register
February 2, 2015 Data-flow Analysis 9

Control Flow Graphs (CFGs)

Simplification
— For now, we will use CFGs in which nodes represent
program statements rather than basic blocks )

Example

Ll:

6| return c
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Terminology

Flow Graph Terms

— A CFG node has out-edges that lead to successor nodes
and in-edges that come from predecessor nodes

— pred[n] is the set of predecessors of node n'
succ[n] is the set of successors of node n

Examples
— Out-edges of node 5: (5—6) and (5—2)
— succ[5] = {2,6}
— pred[5] = {4}
— pred[2] = {1,5}
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Defs and Uses

Def (or definition) [ IESCKH

— An assignment of a value to a variable
— def[v] = set of CFG nodes that define variable v
— def[n] = set of variables that are defined at node n

Use /

— A read of a variable’s value
— use[v] = set of CFG nodes that use variable v
— use[n] = set of variables that are used at node n
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Uses and Defs (cont)

More precise definition of liveness
— Avariable v is live on a CFG edge if

(1) 3 a directed path from that edge to a use of v (node in
use[v]), and

(2) that path does not go through any def of v (no nodes in
def[v]) —

¢ def[v]
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The Flow of Liveness

Data-flow

— Liveness of variables is a property
that flows through the edges of the
CFG

Direction of Flow

— Liveness flows backwards through
the CFG, because the behavior at
future nodes determines liveness at a

given noce o[ return < |

— Consider a .
— Later, we’ll see other properties

— Consider b that flow forward
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: -
Liveness at Nodes

edges 7 _
We have liveness on edges «—— just before computation
— How do we talk about m

just after computation
liveness at nodes?

Two More Definitions

— Avariable is live-out at a node if it is live just after ¢
computation \ | /

out-edges

— Avariable is live-in at a node if it is live just before that nod4

computation @ in-edges
=
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Liveness at Nodes (cont)

Live-out
— Avariable is live-out at a node if it is live on any of that node’s out-edges

Live-in
— How do we know if a variable is live-in at a node?

n
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Computing Liveness

Rules for computing liveness

1) Generate liveness: Tive-in
If a variable is in use[n], "| “*
then it is live-in at node n

(2) Push liveness across edges: _ pred[n]
- . - o 1ve-out| H
If a variable is live-in at a node n

then it is live-out at all nodes in pred[n]

(3) Push liveness across nodes:
If a variable is live-out at node n and not in def[n], Tive-in
then the variable is also live-in at n !

Data-flow equations

()] infn] = usen]] L (outin] - deffm])| ()
outln] = @)
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Solving the Data-flow Equations

Algorithm

for each node n in CFG
in[n] = &; out[n] = &
repeat

for each node n in CFG

in’[n] = in[n]

} initialize solutions

} save current results
out’[n] = out[n]

in[n] = use[n] w (out[n] —def[n]) | s5jve data-flow equations
out[n] = in[s]

until in’[n]=in[n] and out’[n]=out[n] for all n } test for convergence

s e succ[n]

This is iterative data-flow analysis (for liveness analysis)
February 2, 2015 Data-flow Analysis




Exercise: Compute the First Iteration

1st 2nd  3rd 4th 5th 6th 7th
ngge use def|in out | in out | in out

Data-flow Equations for Liveness
in[n] = use[n] U (out[n] — def[n])
outfn] = U in[s] f

s e succ[n] [

(W

return c
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Example (cont)

Data-flow Equations for Liveness
in[n] = use[n] \U (out[n] — def[n])
outin] = U in[s]

s e succ[n]
&
out[3]—

Improving Performance _
in[4] —

Consider the (3—4) edge in the graph:
is used to compute in[4];

in[4] is used to compute out[3] . ..

So we should compute the sets in the

order: in[4], out[3], in[3], . .. 6
The order of computation should follow the direction of flow
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Iterating Through the Flow Graph
Backwards

Converges much faster!

return c
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Solving the Data-flow Equations (reprise)

Algorithm

for each node n in CFG
in[n] = &; out[n] = &
repeat

for each node n in CFG in reverse topsort order

in’[n] = in[n]

} initialize solutions

. save current results
out’[n] = out[n]
out[n] = o e in[s]

in[n] = use[n] L (out[n] — def[n]) solve data-flow equations

until in’[n]=in[n] and out’[n]=out[n] for all n } test for convergence
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Time Complexity

Consider a program of size N
— Has N nodes in the flow graph and at most N variables
— Each live-in or live-out set has at most N elements
— Each set-union operation takes O(N) time
— The for loop body
— constant # of set operations per node
— O(N) nodes = O(N?) time for the loop
— Each iteration of the repeat loop can only make the set larger
— Each set can contain at most N variables = 2N? iterations

Worst case: O(N%
Typical case: 2 to 3 iterations with good ordering & sparse sets
= O(N) to O(N?)
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Concepts

Liveness
— Use in register allocation
— Generating liveness
— Flow and direction
— Data-flow equations and analysis
— Complexity
— Improving performance (basic blocks, single variable, bit sets)

Control flow graphs
— Predecessors and successors
Defs and uses
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Next Time

Lecture
— Generalizing data-flow analysis

Assignment 2
— Now available
— Due February 13
— Please start early
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