Recap

Last Time
— Algorithm to compute dominators
— Did you understand it?

Exercise
— Can we start with the empty set and grow the set of
dominators?

February 2, 2015 Data-flow Analysis

Computing Dominators: Example

Input: Set of nodes N and an entry node s
Output: Dom[i] = set of all nodes that dominate node i

Dom(s) = {s}
foreachn e N —{s}
Dom[n] =N
repeat Initially
change = false Dom[s] = {s}
for eachn e N — {s} Dom[q] ={n, p, g, 1, S}. ..
D= {n} 4 (mpepred(n) Dom[p]) Flnally
if D = Dom|[n] Dom[q] = {q, s}
change = true Dom[r] = {r, s}
Dom{n] =D Dom[p] = {p, s}

il 1
until 'change Dom[n] = {n, p, s}
January 28, 2015 Control Flow Analysis

Introduction to Data-flow Analysis

Last Time
— Control flow analysis

Today
— Introduce iterative data-flow analysis
— Liveness analysis
— Introduce other useful concepts

February 2, 2015 Data-flow Analysis

Data-flow Analysis

Idea
— Data-flow analysis derives information about the
dynamic behavior of a program by only examining
the static code
Example

— How many variables does
this code have?

— How many registers do we
need for these variables?

— Easy bound: 3

February 2, 2015 Data-flow Analysis

Data-flow Analysis

Idea

— Data-flow analysis derives information about the
dynamic behavior of a program by only examining
the static code

Example

— Better answer is found by
considering the dynamic
requirements of the program

February 2, 2015 Data-flow Analysis

Liveness Analysis

Definition
— Avariable is live at a particular point in the program if its

value at that point will be used in the future (dead, otherwise).

.. To compute liveness at a given point, we need to look into
the future .

Example
— Is b live on line 2?
— Is b live on line 4?

February 2, 2015 Data-flow Analysis

Motivation for Liveness Analysis

Register Allocation
— A program contains an unbounded number of variables

— Must execute on a machine with a bounded number of
registers

— Two variables can use the same register if they are never in
use at the same time (i.e, never simultaneously live).

.. Register allocation uses liveness information

February 2, 2015 Data-flow Analysis

Liveness by Example

What is the live range of b?

— Variable b isread in statement 4,
so b is live on the (3 — 4) edge

— Since statement 3 does not assign
into b, b is also live on the (2—3)

edge

— Statement 2 assigns b, so
any value of b on the
(1—2) and (5—2) edges o return c |
are not needed, so b is dead b’s live range is (2—>3—4)

along these edges
February 2, 2015 Data-flow Analysis

Exercise: Liveness by Example

Live range of a
—a s live from (1—2) and again
from (4—>5-2)
— a is dead from (2—>3—4)

Live range of b
—bis live from (2—>3—4)

Live range of ¢

— c is live from 6| return c |

(entry—>1—-2—3—>4—->5—2, 556)

a and b are never simultaneously live, so they can share a register
February 2, 2015 Data-flow Analysis 9

Control Flow Graphs (CFGs)

Simplification
— For now, we will use CFGs in which nodes represent
program statements rather than basic blocks)

Example

Ll:

6| return c

February 2, 2015 Data-flow Analysis

Terminology

Flow Graph Terms

— A CFG node has out-edges that lead to successor nodes
and in-edges that come from predecessor nodes

— pred[n] is the set of predecessors of node n'
succ[n] is the set of successors of node n

Examples
— Out-edges of node 5: (5—6) and (5—2)
— succ[5] = {2,6}
— pred[5] = {4}
— pred[2] = {1,5}
February 2, 2015 : ;

Defs and Uses

Def (or definition) [IESCKH

— An assignment of a value to a variable
— def[v] = set of CFG nodes that define variable v
— def[n] = set of variables that are defined at node n

Use /

— A read of a variable’s value
— use[v] = set of CFG nodes that use variable v
— use[n] = set of variables that are used at node n

February 2, 2015 Data-flow Analysis

Uses and Defs (cont)

More precise definition of liveness
— Avariable v is live on a CFG edge if

(1) 3 a directed path from that edge to a use of v (node in
use[v]), and

(2) that path does not go through any def of v (no nodes in
def[v]) —

¢ def[v]

February 2, 2015 Data-flow Analysis

The Flow of Liveness

Data-flow

— Liveness of variables is a property
that flows through the edges of the
CFG

Direction of Flow

— Liveness flows backwards through
the CFG, because the behavior at
future nodes determines liveness at a

given noce o[return < |

— Consider a .
— Later, we’ll see other properties

— Consider b that flow forward
February 2, 2015 Data-flow Analysis

: -
Liveness at Nodes

edges 7 _
We have liveness on edges «—— just before computation
— How do we talk about m

just after computation
liveness at nodes?

Two More Definitions

— Avariable is live-out at a node if it is live just after ¢
computation \ | /

out-edges

— Avariable is live-in at a node if it is live just before that nod4

computation @ in-edges
=

February 2, 2015 Data-flow Analysis

Liveness at Nodes (cont)

Live-out
— Avariable is live-out at a node if it is live on any of that node’s out-edges

Live-in
— How do we know if a variable is live-in at a node?

n

February 2, 2015 Data-flow Analysis

Computing Liveness

Rules for computing liveness

1) Generate liveness: Tive-in
If a variable is in use[n], "| “*
then it is live-in at node n

(2) Push liveness across edges: _ pred[n]
- . - o 1ve-out| H
If a variable is live-in at a node n

then it is live-out at all nodes in pred[n]

(3) Push liveness across nodes:
If a variable is live-out at node n and not in def[n], Tive-in
then the variable is also live-in at n !

Data-flow equations

()] infn] = usen]] L (outin] - deffm])| ()
outln] = @)

February 2, 2015 Data-flow Analysis

Solving the Data-flow Equations

Algorithm

for each node n in CFG
in[n] = &; out[n] = &
repeat

for each node n in CFG

in’[n] = in[n]

} initialize solutions

} save current results
out’[n] = out[n]

in[n] = use[n] w (out[n] —def[n]) | s5jve data-flow equations
out[n] = in[s]

until in’[n]=in[n] and out’[n]=out[n] for all n } test for convergence

s e succ[n]

This is iterative data-flow analysis (for liveness analysis)
February 2, 2015 Data-flow Analysis

Exercise: Compute the First Iteration

1st 2nd 3rd 4th 5th 6th 7th
ngge use def|in out | in out | in out

Data-flow Equations for Liveness
in[n] = use[n] U (out[n] — def[n])
outfn] = U in[s] f

s e succ[n] [

(W

return c

February 2, 2015 Data-flow Analysis

Example (cont)

Data-flow Equations for Liveness
in[n] = use[n] \U (out[n] — def[n])
outin] = U in[s]

s e succ[n]
&
out[3]—

Improving Performance _
in[4] —

Consider the (3—4) edge in the graph:
is used to compute in[4];

in[4] is used to compute out[3] . ..

So we should compute the sets in the

order: in[4], out[3], in[3], . .. 6
The order of computation should follow the direction of flow

February 2, 2015 Data-flow Analysis

Iterating Through the Flow Graph
Backwards

Converges much faster!

return c

February 2, 2015 Data-flow Analysis

Solving the Data-flow Equations (reprise)

Algorithm

for each node n in CFG
in[n] = &; out[n] = &
repeat

for each node n in CFG in reverse topsort order

in’[n] = in[n]

} initialize solutions

. save current results
out’[n] = out[n]
out[n] = o e in[s]

in[n] = use[n] L (out[n] — def[n]) solve data-flow equations

until in’[n]=in[n] and out’[n]=out[n] for all n } test for convergence

February 2, 2015 Data-flow Analysis

Time Complexity

Consider a program of size N
— Has N nodes in the flow graph and at most N variables
— Each live-in or live-out set has at most N elements
— Each set-union operation takes O(N) time
— The for loop body
— constant # of set operations per node
— O(N) nodes = O(N?) time for the loop
— Each iteration of the repeat loop can only make the set larger
— Each set can contain at most N variables = 2N? iterations

Worst case: O(N%
Typical case: 2 to 3 iterations with good ordering & sparse sets
= O(N) to O(N?)

February 2, 2015 Data-flow Analysis

Concepts

Liveness
— Use in register allocation
— Generating liveness
— Flow and direction
— Data-flow equations and analysis
— Complexity
— Improving performance (basic blocks, single variable, bit sets)

Control flow graphs
— Predecessors and successors
Defs and uses

February 2, 2015 Data-flow Analysis

Next Time

Lecture
— Generalizing data-flow analysis

Assignment 2
— Now available
— Due February 13
— Please start early

February 2, 2015 Data-flow Analysis

