
1

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 4, 2015 Generalizing Data-flow Analysis 1

Generalizing Data-flow Analysis

Last Time

– Introduction to data-flow analysis

Today

– Other examples of data-flow analysis

– Abstracting data-flow analysis

– What’s common among these different analyses?

Data-flow Analysis 2

Time Complexity

Consider a program of size N

– Has N nodes in the flow graph and at most N variables

– Each live-in or live-out set has at most N elements

– Each set-union operation takes O(N) time

– The for loop body

– constant # of set operations per node

– O(N) nodes  O(N2) time for the loop

– Each iteration of the repeat loop can only make the set larger

– Each set can contain at most N variables  2N2 iterations

Worst case: O(N4)

Typical case: 2 to 3 iterations with good ordering & sparse sets

 O(N) to O(N2)

February 2, 2015

2

Calvin Lin

The University of Texas at Austin

CS380C Compilers

Data-flow Analysis 3

More Performance Considerations

Basic blocks

– Decrease the size of the CFG by merging nodes

that have a single predecessor and a single

successor into basic blocks

One variable at a time

– Instead of computing data-flow information

for all variables at once using sets,

compute a (simplified) analysis for

each variable separately

Representation of sets

– For dense sets, use a bit vector representation

– For sparse sets, use a sorted list (e.g., linked list)

a = 01

b = a + 1

c = c + b

a = b * 2

a<9?

return c

2

6

YesNo

February 2, 2015

Data-flow Analysis 4

3 bc c bc bc bcd bcd b b

5 a ac ac acd acd ac ac

2 a b ac bc acd bcd ac b

6 c c c c

1 a c ac cd acd c ac

node
use def in out in out in out

4 b a bc ac bcd acd b ac

X Y Z

Conservative Approximation

Solution X

– Our solution as computed on previous slides

a = 0

b = a + 1

c = c + b

a = b * 2

a<9

return c

1

2

6

5

3

4

YesNo

February 2, 2015

3

Calvin Lin

The University of Texas at Austin

CS380C Compilers

Data-flow Analysis 5

3 bc c bc bc bcd bcd b b

5 a ac ac acd acd ac ac

2 a b ac bc acd bcd ac b

6 c c c c

1 a c ac cd acd c ac

node
use def in out in out in out

4 b a bc ac bcd acd b ac

X Y Z

Imprecise conservative solutions  sub-optimal but correct programs

Conservative Approximation (cont)

Solution Y

– Carries variable d uselessly around loop

– Does Y solve the equations?

– Is d live?

– Does Y lead to a correct program?

a = 0

b = a + 1

c = c + b

a = b * 2

a<9

return c

1

2

6

5

3

4

YesNoYes

No

Yes

February 2, 2015

Data-flow Analysis 6

Non-conservative solutions  incorrect programs

3 bc c bc bc bcd bcd b b

5 a ac ac acd acd ac ac

2 a b ac bc acd bcd ac b

6 c c c c

1 a c ac cd acd c ac

node
use def in out in out in out

4 b a bc ac bcd acd b ac

X Y Z

Conservative Approximation (cont)

Solution Z

– Does not identify c as live in all cases

– Does Z solve the equations?

– Does Z lead to a correct program?

a = 0

b = a + 1

c = c + b

a = b * 2

a<9

return c

1

2

6

5

3

4

YesNoNo

No

February 2, 2015

4

Calvin Lin

The University of Texas at Austin

CS380C Compilers

Data-flow Analysis 7

No compiler can statically know all of a program’s dynamic properties!

The Need for Approximations

Static vs. Dynamic Liveness

– In the following graph, b*b is always non-negative, so c >= b is always

true and a’s value will never be used after node 2

YesNo

2 c := a + b

3 c >= b?

1 a := b * b

4 return a 5 return c

Rule (2) for computing liveness

– Since a is live-in at node 4, it is live-out

at nodes 3 and 2

– This rule ignores actual control flow

February 2, 2015

February 4, 2015 Generalizing Data-flow Analysis 8

Generalizing Data-flow Analysis

Last Time

Introduction to data-flow analysis

Today

Other examples of data-flow analysis

Abstracting data-flow analysis

What’s common among these different analyses?

5

Calvin Lin

The University of Texas at Austin

CS380C Compilers

Definition

– A definition (statement) d of a variable v reaches

node n if there is a path from d to n such that v is

not redefined along that path

Uses of reaching definitions

– Build use/def chains

– Constant propagation

– Loop invariant code motion

February 4, 2015 Generalizing Data-flow Analysis 9

1 a = . . .;

2 b = . . .;

3 for (. . .) {

4 x = a + b;

5 . . .

6 }

To determine whether it’s legal to move statement 4

out of the loop, we need to ensure that there are no

reaching definitions of a or b inside the loop

Reaching Definitions

v :=...d

n

Reaching definitions of a and b

x := 5d

n f(x)

Does this def of x reach n?

Can we replace n with f(5)?

 def[v]

February 4, 2015 Generalizing Data-flow Analysis 10

{s} def[t] – {s}

{s} def[t] – {s}

{} {}

{} {}

Defining Gen and Kill for various statement types

statement Gen[s] Kill[s]

s: t = b op c

s: t = M[b]

s: M[a] = b

s: if a op b goto L

statement Gen[s] Kill[s]

s: goto L

s: L:

s: f(a,…)

s: t=f(a, …)

Computing Reaching Definitions

Assumption

– At most one definition per node

– We can refer to definitions by their node number

Gen[n]: Definitions that are generated by node n (at most one)

Kill[n]: Definitions that are killed by node n

{} {}

{} {}

{} {}

{s} def[t] – {s}

{s} {*} – {s}

6

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 4, 2015 Generalizing Data-flow Analysis 11

Data-flow Equations for Reaching Definitions

The In set

– A definition reaches the beginning of a node if it reaches the end of any of

the predecessors of that node

The Out set

– A definition reaches the end of a node if (1) the node itself generates the

definition or if (2) the definition reaches the beginning of the node and the

node does not kill it

in[n] =  out[p]

out[n] = gen[n]  (in[n] – kill[n])

p  pred[n]

n
in

pred[n]
out out

n

out

Gen

(1)

n

out

in

(2)

February 4, 2015 Generalizing Data-flow Analysis 12

Recall Liveness Analysis

Data-flow equations for liveness

in[n] = use[n]  (out[n] – def[n])

out[n] =  in[s]
s  succ[n]

Gen: New information that’s added at a node

Kill: Old information that’s removed at a node

Can define almost any data-flow analysis in terms of Gen and Kill

in[n] = gen[n]  (out[n] – kill[n])

out[n] =  in[s]
s  succ[n]

A use of a variable generates liveness

A def of a variable kills liveness

Liveness equations in terms of Gen and Kill

7

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 4, 2015 Generalizing Data-flow Analysis 13

Backward data-flow analysis

– Information at a node is based on what happens later in the flow graph
i.e., in[] is defined in terms of out[]

in[n] = gen[n]  (out[n] – kill[n])

out[n] =  in[s]

Forward data-flow analysis

– Information at a node is based on what happens earlier in the flow graph
i.e., out[] is defined in terms of in[]

in[n] =  out[p]

out[n] = gen[n]  (in[n] – kill[n])

Some problems need both forward and backward analysis (rare)

– e.g., Partial redundancy elimination

Direction of Flow

in

out

n

s  succ[n]

p  pred[n]

liveness

in

out

n

reaching

definitions

February 4, 2015 Generalizing Data-flow Analysis 14

out[n] =  in[s]

in[n] = gen[n]  (out[n] – kill[n])

in[n] =  out[s]

out[n] = gen[n]  (in[n] – kill[n])

=x

n

entry

Is x def’d along

this path?
Use of x

LivenessReaching Definitions

x=

n

entry

Def of x

Is x def’d along

this path?

Symmetry between reaching definitions and liveness

– Swap in[] and out[] and swap the directions of the arcs

s  succ[n]

Data-flow Equations for Reaching Definitions

p  pred[n]

8

Calvin Lin

The University of Texas at Austin

CS380C Compilers

What are the key differences?

– Direction of flow

– ?– Flow values

– Liveness operates on variables

– Reaching definitions operates on definitions (statements)

February 4, 2015 Generalizing Data-flow Analysis 15

Liveness vs. Reaching Definitions

February 4, 2015 Generalizing Data-flow Analysis 16

A Better Formulation of Reaching Definitions

Problem

– Reaching definitions gives you a set of definitions (nodes)

– Doesn’t tell you what variable is defined

– Expensive to find definitions of variable v (Why?)

Solution

– Reformulate to include the variable

e.g., Use a set of (var, def) pairs

x= a y= b

n in[n] = {(x,a),(y,b),...}

9

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 4, 2015 Generalizing Data-flow Analysis 17

Merging Flow Values

Liveness and reaching definitions

– Merge flow values via set union

Why Use Union?

When might this be inappropriate?

out[n] =  in[s]

in[n] = gen[n]  (out[n] – kill[n])

in[n] =  out[s]

out[n] = gen[n]  (in[n] – kill[n])

LivenessReaching Definitions

s  succ[n]p  pred[n]

February 4, 2015 Generalizing Data-flow Analysis 18

Available Expressions

Definition

– An expression, x+y, is available at node n if every path from the

entry node to n evaluates x+y, and there are no definitions of x or y

after the last evaluation

...x+y...

...x+y...

...x+y...

entry

n

x and y not defined

along yellow edges

10

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 4, 2015 Generalizing Data-flow Analysis 19

i := i + 1

b := 4 * i

2

Available Expressions for CSE

How is this information useful?

Common Subexpression Elimination (CSE)

– If an expression is available at a point where it is evaluated, it need not be

recomputed

Example

3 c := 4 * i

i := i + 1

t := 4 * i

b := t

2

i := j

t := 4 * i

a := t

1

3 c := t

1 i := j

a := 4 * i

February 4, 2015 Generalizing Data-flow Analysis 20

Must vs. May Information

Must information

– Implies a guarantee

May information

– Identifies possibilities

May Must

safe overly large set overly small set

desired information small set large set

Gen add everything that add only facts that are

might be true guaranteed to be true

Kill remove only facts that remove everything that

are guaranteed to be false might be false

merge union intersection

initial guess empty set universal set

Liveness? Available expressions?

11

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 4, 2015 Generalizing Data-flow Analysis 21

Reaching Definitions: Must or May Analysis?

Consider constant propagation

x = 5d

f(x)n

We need to know if d’

might reach node n

x = 4d’

February 4, 2015 Generalizing Data-flow Analysis 22

Must

Forward

Sets of expressions

Universal set

Set of expressions killed by statement s

Set of expressions evaluated by s

Intersection

Must or may Information?

Direction?

Flow values?

Initial guess?

Kill?

Gen?

Merge?

Exercise: Define Available Expressions Analysis

12

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 4, 2015 Generalizing Data-flow Analysis 23

Data-Flow Equations

in[n] =  out[p]

out[n] = gen[n]  (in[n] – kill[n])

Plug it in to our general DFA algorithm

for each node n

in[n] = u; out[n] = u

repeat

for each n

in[n] = in[n]

out[n] = out[n]

in[n] =  out[p]

out[n] = gen[n]  (in[n] – kill[n])

until in[n]=in[n] and out[n]=out[n] for all n

p  pred[n]

Available Expressions (cont)

p  pred[n]

February 4, 2015 Generalizing Data-flow Analysis 24

Exercise: Reaching Constants

Goal

– Compute value of each variable at each program point (if possible)

Flow values

– Set of (variable,constant) pairs

Merge function

– Intersection

Gen and Kill

– Effect of node n x = c

– kill[n] = {(x,d)| d}

– gen[n] = {(x,c)}

– Effect of node n x = y + z

– kill[n] = {(x,c)| c}

– gen[n] = {(x,c) | c=valy+valz, (y, valy)  in[n], (z, valz)  in[n]}

