Recall the MOP Solution

Goal
- For a forward problem, consider all possible paths from the entry to a given program point, compute the flow values at the end of each path, and then meet these values together
- **Meet-over-all-paths (MOP) solution at each program point**
- $\cap_{\text{all paths } n_1, n_2, \ldots, n_i} (f_{n_1}(\ldots f_{n_2}(f_{n_i}(v_{entry})))))$

Legality

“Is v_{MFP} legal?” = “Is $v_{MFP} \subseteq v_{MOP}$?”

Look at Merges
- $v_{MOP} = F_r(v_{p1}) \cap F_r(v_{p2})$
- $v_{MFP} = F_r(v_{p1} \cap v_{p2})$
- $v_{MFP} \subseteq v_{MOP} = F_r(v_{p1} \cap v_{p2}) \subseteq F_r(v_{p1}) \cap F_r(v_{p2})$

Observation
\[\forall x, y \in V \quad f(x \cap y) \subseteq f(x) \cap f(y) \quad \iff \quad x \subseteq y \Rightarrow f(x) \subseteq f(y) \]

\[\therefore \quad v_{MFP} \text{ legal when } F_r \text{ (the flow functions) are monotonic} \]
Monotonicity

Monotonicity: $(\forall x, y \in V)(x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y))$

- If the flow function f is applied to two members of V, the result of applying f to the “lesser” of the two members will be under the result of applying f to the “greater” of the two.
- Giving a flow function more conservative inputs leads to more conservative outputs (never more optimistic outputs).

Why else is monotonicity important?

For monotonic F over domain V

- The maximum number of times F can be applied to self w/o reaching a fixed point is $\text{height}(V) - 1$.
- IDFA is guaranteed to terminate if the flow functions are monotonic and the lattice has finite height.

Efficiency

Parameters

- n: Number of nodes in the CFG
- k: Height of lattice
- t: Time to execute one flow function

Complexity

- $O(nkt)$

Example

- Reaching definitions?
Accuracy

Distributivity
- \(f(u \sqcap v) = f(u) \sqcap f(v) \)
- \(V_{\text{MFP}} \sqsubseteq V_{\text{MOP}} \equiv F_{r}(v_{p1} \sqcap v_{p2}) \sqsubseteq F_{r}(v_{p1}) \sqcap F_{r}(v_{p2}) \)
- If the flow functions are distributive, MFP = MOP

Examples
- Liveness?
- Reaching constants?

\[
\begin{align*}
 f(u \sqcap v) &= f(\{x=2,y=3\} \sqcap \{x=3,y=2\}) \\
 &= f(\emptyset) = \emptyset \\
 f(u) \sqcap f(v) &= f(\{(x=2,y=3\}) \sqcap f(\{x=3,y=2\}) \\
 &= \{ \{x=2,y=3,w=5\} \sqcap \{x=3,y=2,w=5\} \} \\
 &= \{w=5\}
\end{align*}
\]

\(\Rightarrow MFP \neq MOP\)

Concepts

Lattices
- Conservative approximation
- Optimistic (initial guess)
- Data-flow analysis frameworks
- Tuples of lattices

Data-flow analysis
- Fixed point
- Meet-over-all-paths (MOP)
- Maximum fixed point (MFP)
- Legal/safe (monotonic)
- Efficient
- Accurate (distributive)
Static Single Assignment Form

Last Time
- Lattice theoretic framework for data-flow analysis

Today
- Program representations
- Static single assignment (SSA) form
 - Program representation for sparse data-flow
 - Conversion to and from SSA

Next Time
- Reuse optimizations

Data Dependence

Definition
- Data dependences are constraints on the order in which statements may be executed

Types of dependences
- Flow dependence: \(s_1 \) writes memory that \(s_2 \) later reads (RAW)
 \[
 s_1: \ x = 17 \\
 s_2: \ \text{print}(x)
 \]
- Anti-dependence: \(s_1 \) reads memory that \(s_2 \) later writes (WAR)
 \[
 s_1: \ \text{print}(x) \\
 s_2: \ x = 18
 \]
- Output dependences: \(s_1 \) writes memory that \(s_2 \) later writes (WAW)
 \[
 s_1: \ x = 19 \\
 s_2: \ x = 20
 \]
Data Dependence (cont)

True dependences
– Flow dependences represent actual flow of data

False dependences
– Anti- and output dependences reflect reuse of memory, not actual data flow; can often be eliminated

\[s_1: \text{print} (x) \quad s_1: \text{print} (x_1) \]
\[s_2: x = 18 \quad s_2: x_2 = 18 \]

Other dependences
– Input dependences: \(s_1 \) reads memory that \(s_2 \) later reads (RAR)

\[s_1: y = x + 1 \]
\[s_2: \text{print} (x) \]

Example

Identify the dependences

\[s_1: a = b; \]
\[s_2: b = c + d; \]
\[s_3: e = a + d; \]
\[s_4: b = 3; \]
\[s_5: f = b * 2; \]
Representing Data Dependences

Implicitly
- Use variable defs and uses
- Pros: simple
- Cons: hides data dependence (analyses must find this info)

Def-use chains (du chains)
- Link each def to its uses
- Pros: explicit; therefore fast
- Cons: must be computed and updated, consumes space

DU Chains

Definition
- du chains link each def to its uses

Example

```plaintext
s_1  a = b;
s_2  b = c + d;
s_3  e = a + d;
s_4  b = 3;
s_5  f = b * 2;
```

UD Chains

Definition
- ud chains link each use to its defs

Example

\[
\begin{align*}
 s_1 & : \quad a = b; \\
 s_2 & : \quad b = c + d; \\
 s_3 & : \quad e = a + d; \\
 s_4 & : \quad b = 3; \\
 s_5 & : \quad f = b * 2;
\end{align*}
\]

Representing Data Dependences (cont)

Implicitly
- Use variable defs and uses
- Pros: simple
- Cons: hides data dependence (analyses must find this info)

Def-use chains (du chains)
- Link each def to its uses
- Pros: explicit; therefore fast
- Cons: must be computed and updated, consumes space

Alternate representations
- e.g., Static single assignment form (SSA), dependence flow graphs (DFG), value dependence graphs (VDG)
Static Single Assignment Form

Idea
– Each variable has only one static definition
– Makes it easier to reason about values instead of variables
– Similar to the notion of functional programming

Transformation to SSA
– Rename each definition
– Rename all uses reached by that definition

Example
\[
\begin{align*}
\mathbf{v} & := \ldots \\
\ldots & := \ldots \mathbf{v} \ldots \\
\mathbf{v} & := \ldots \\
\ldots & := \ldots \mathbf{v} \ldots \\
\mathbf{v} & := \ldots \\
\ldots & := \ldots \mathbf{v} \ldots \\
\mathbf{v}_0 & := \ldots \\
\ldots & := \ldots \mathbf{v}_0 \ldots \\
\mathbf{v}_1 & := \ldots \\
\ldots & := \ldots \mathbf{v}_1 \ldots
\end{align*}
\]

What do we do when there's control flow?
SSA and Control Flow

Problem
- A use may be reached by several definitions

SSA and Control Flow (cont)

Merging Definitions
- ϕ-functions merge multiple reaching definitions

Example
Exercise

Q: How do we transform the following code to SSA form?

\[
\begin{align*}
1 & \quad v := 1 \\
2 & \quad v := v + 1
\end{align*}
\]

\[
\begin{align*}
1 & \quad v_0 := 1 \\
2 & \quad v_1 := v_0 + v_2 \\
2 & \quad v_2 := v_1 + 1
\end{align*}
\]

SSA vs. ud/du Chains

SSA form is more constrained

Advantages of SSA
- More compact
- Some analyses become simpler when each use has only one def
- Value merging is explicit
- Easier to update and manipulate?

Furthermore
- Eliminates false dependences (simplifying context)

```plaintext
for (i=0; i<n; i++)
    A[i] = i;
for (i=0; i<n; i++)
    print(foo(i));
```

Unrelated uses of \(i\) are given different variable names
SSA vs. ud/du Chains (cont)

Worst case du-chains?

```
switch (c1) {
    case 1:   x = 1; break;
    case 2:   x = 2; break;
    case 3:   x = 3; break;
}
x_4 = \phi(x_1, x_2, x_3)
```

```
switch (c2) {
    case 1:   y1 = x; break;
    case 2:   y2 = x; break;
    case 3:   y3 = x; break;
    case 4:   y4 = x; break;
}
```

mdefs and nuses leads to $m \times n$ du chains

Transformation to SSA Form

Two steps

- Insert ϕ-functions
- Rename variables
Where Do We Place ϕ-Functions?

Basic Rule
- If two distinct (non-null) paths $x \rightarrow z$ and $y \rightarrow z$ converge at node z, and nodes x and y contain definitions of variable v, then we insert a ϕ-function for v at z

$$
\begin{align*}
 v_1 := & \ldots \\
 v_2 := & \ldots \\
 \phi(v_1, v_2) := & \ldots v_3 \ldots \\
 v_1 := & \ldots \\
 v_2 := & \ldots
\end{align*}
$$

Approaches to Placing ϕ-Functions

Minimal
- As few as possible subject to the basic rule
- How is this sub-optimal?

Briggs-Minimal
- Same as minimal, except v must be live across some edge of the CFG

$$
\begin{align*}
 v = & v \\
 v = & v
\end{align*}
$$

Briggs Minimal will not place a ϕ function in this case because v is not live across any CFG edge. Exploits the short lifetimes of many temporary variables

Can we do better than Briggs-Minimal?
Approaches to Placing \(\phi \)-Functions (cont)

Pruned
- Same as minimal, except does not insert dead \(\phi \)-functions
- What's the difference between Pruned and Briggs-Minimal?

\[
\begin{align*}
\text{Briggs Minimal will add a } & \phi \text{ function because } v \text{ is live across the blue edge, but Pruned SSA will not because the } \\
\text{\(\phi \) function is dead (assuming that this is the entire CFG)}\end{align*}
\]

Why would we ever use Briggs Minimal instead of Pruned SSA?

Machinery for Placing \(\phi \)-Functions

Recall Dominators
- \(d \text{ dom } i \) if all paths from entry to node \(i \) include \(d \)
- \(d \text{ sdom } i \) if \(d \text{ dom } i \) and \(d \neq i \)

Dominance Frontiers
- The **dominance frontier** of a node \(d \) is the set of nodes that are “just barely” not dominated by \(d \); i.e., the set of nodes \(n \), such that
 - \(d \) dominates a predecessor \(p \) of \(n \), and
 - \(d \) does **not** strictly dominate \(n \)
- \(\text{DF}(d) = \{ n \mid \exists p \in \text{pred}(n), d \text{ dom } p \text{ and } d \neq \text{sdom } n \} \)

Notational Convenience
- \(\text{DF}(S) = \bigcup_{s \in S} \text{DF}(s) \)

What is the significance of the dominance frontier?
Dominance Frontier Example

\[
\text{DF}(d) = \{n \mid \exists p \in \text{pred}(n), \ d \text{ dom } p \text{ and } d \not\text{sdom } n\}
\]

\[
\text{Dom}(5) = \{5, 6, 7, 8\}
\]

\[
\text{DF}(5) = \{4, 5, 12, 13\}
\]

Where shall we place \(\phi\) functions?

In SSA form, definitions must dominate uses

Dominance Frontier Example II

\[
\text{DF}(d) = \{n \mid \exists p \in \text{pred}(n), \ d \text{ dom } p \text{ and } d \not\text{sdom } n\}
\]

\[
\text{Dom}(5) = \{5, 6, 7, 8\}
\]

\[
\text{DF}(5) = \{4, 5, 13\}
\]

Node 4 is the first point of convergence between the entry and node 5, so do we need a \(\phi\) function at node 13?
SSA Exercise

DF(8) = \{10\}
DF(9) = \{10\}
DF(2) = \{6\}
DF({8,9}) = \{10\}
DF(10) = \{6\}
DF({2,8,9,10}) = \{6,10\}

Dominance Frontiers Revisited

Suppose that node 3 defines variable x

DF(3) = \{5\}

Do we need to insert a \(\phi\)-function for \(x\) anywhere else?
Yes. At node 6. Why?
Dominance Frontiers and SSA

Let
- \(DF_1(S) = DF(S) \)
- \(DF_{i+1}(S) = DF(S \cup DF_i(S)) \)

Iterated Dominance Frontier
- \(DF_\infty(S) \)

Theorem
- If \(S \) is the set of CFG nodes that define variable \(v \), then \(DF_\infty(S) \) is the set of nodes that require \(\phi \)-functions for \(v \)

Algorithm for Inserting \(\phi \)-Functions

for each variable \(v \)
 WorkList \(\leftarrow \emptyset \)
 EverOnWorkList \(\leftarrow \emptyset \)
 AlreadyHasPhiFunc \(\leftarrow \emptyset \)
 for each node \(n \) containing an assignment to \(v \)
 WorkList \(\leftarrow \text{WorkList} \cup \{n\} \)
 EverOnWorkList \(\leftarrow \text{WorkList} \)
 while WorkList \(\neq \emptyset \)
 Remove some node \(n \) from WorkList
 for each \(d \in DF(n) \)
 if \(d \notin \text{AlreadyHasPhiFunc} \)
 Insert \(\phi \)-function for \(v \) at \(d \)
 AlreadyHasPhiFunc \(\leftarrow \text{AlreadyHasPhiFunc} \cup \{d\} \)
 if \(d \notin \text{EverOnWorkList} \)
 WorkList \(\leftarrow \text{WorkList} \cup \{d\} \)
 EverOnWorkList \(\leftarrow \text{EverOnWorkList} \cup \{d\} \)
 Process each node at most once
 Insert at most one \(\phi \) function per node

Next Time

Lecture
- Will start at 2:15pm
- Data-flow analysis and SSA

Reading
- Csmith paper due Sunday February 15th at 5:00pm