
1

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 11, 2015 Static Single Assignment Form 1

Recall the MOP Solution

Goal

– For a forward problem, consider all possible paths 

from the entry to a given program point, compute 

the flow values at the end of each path, and then 

meet these values together

– Meet-over-all-paths (MOP) solution at each 

program point

– ⊓all paths n1, n2, ..., ni (fni(...fn2(fn1(ventry))))

entry

ventry

???

February 11, 2015 Static Single Assignment Form 2

Legality

“Is vMFP legal?”   “Is vMFP⊑ vMOP?”

Look at Merges

– vMOP = Fr(vp1) ⊓ Fr(vp2)

– vMFP = Fr(vp1 ⊓ vp2)

– vMFP ⊑ vMOP  Fr(vp1 ⊓ vp2)  ⊑ Fr(vp1) ⊓ Fr(vp2)

Observation

x,yV

f(x ⊓ y)  ⊑ f(x) ⊓ f(y)      x ⊑ y  f(x) ⊑ f(y)

 vMFP legal when Fr (the flow functions) are monotonic

p1 p2

vp2vp1

Fr

vMFP vMOP



2

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 11, 2015 Static Single Assignment Form 3

Monotonicity

Monotonicity:  (x,yV)[x⊑ y  f(x) ⊑ f(y)]

– If the flow function f is applied to two members of V, the result of 

applying f to the “lesser” of the two members will be under the result of 

applying f to the “greater” of the two

– Giving a flow function more conservative inputs leads to more 

conservative outputs (never more optimistic outputs)

Why else is monotonicity important?

For monotonic F over domain V

– The maximum number of times F can be applied to 

self w/o reaching a fixed point is height(V)  1

– IDFA is guaranteed to terminate if the flow 

functions are monotonic and the lattice has finite 

height

{}

{k}{j}{i}

{j,k}{i,k}{i,j}

{i,j,k}

February 11, 2015 Static Single Assignment Form 4

Efficiency

Parameters

– n: Number of nodes in the CFG

– k: Height of lattice

– t: Time to execute one flow function

Complexity

– O(nkt)

Example

– Reaching definitions?



3

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 11, 2015 Static Single Assignment Form 5

Accuracy

Distributivity

– f(u⊓v) = f(u) ⊓ f(v)

– vMFP ⊑ vMOP  Fr(vp1 ⊓ vp2)  ⊑ Fr(vp1) ⊓ Fr(vp2)

– If the flow functions are distributive, MFP = MOP

Examples

– Liveness?

– Reaching constants?

f(u ⊓ v) = f({x=2,y=3} ⊓ {x=3,y=2}) 

= f() = 

f(u) ⊓ f(v) = f({x=2,y=3}) ⊓ f({x=3,y=2})

= [{x=2,y=3,w=5} ⊓ {x=3,y=2,w=5}]

= {w=5}

 MFP  MOP

x=2

y=3

x=3

y=2

w=x+y

February 11, 2015 Static Single Assignment Form 7

Concepts

Lattices

– Conservative approximation

– Optimistic (initial guess)

– Data-flow analysis frameworks

– Tuples of lattices

Data-flow analysis

– Fixed point

– Meet-over-all-paths (MOP)

– Maximum fixed point (MFP)

– Legal/safe (monotonic)

– Efficient

– Accurate (distributive)



4

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 11, 2015 Static Single Assignment Form 8

Static Single Assignment Form

Last Time

– Lattice theoretic framework for data-flow analysis

Today

– Program representations

– Static single assignment (SSA) form

– Program representation for sparse data-flow

– Conversion to and from SSA

Next Time

– Reuse optimizations

February 11, 2015 Static Single Assignment Form 9

Data Dependence

Definition

– Data dependences are constraints on the order in which statements may be 

executed

Types of dependences

– Flow dependence: s1 writes memory that s2 later reads (RAW)

s1: x = 17

s2: print (x)

– Anti-dependence: s1 reads memory that s2 later writes (WAR)

s1: print (x)

s2: x = 18

– Output dependences: s1 writes memory that s2 later writes (WAW)

s1: x = 19

s2: x = 20



5

Calvin Lin

The University of Texas at Austin

CS380C Compilers

Data Dependence (cont)

True dependences

– Flow dependences represent actual flow of data

False dependences

– Anti- and output dependences reflect reuse of memory, not actual data flow; 

can often be eliminated

s1: print (x) s1: print (x1) s2: x2 = 18

s2: x = 18 s2: x2 = 18 s1: print (x1)

Other dependences

– Input dependences: s1 reads memory that s2 later reads (RAR)

s1: y = x + 1

s2: print (x)

February 11, 2015 Static Single Assignment Form 10

Identify the dependences

February 11, 2015 Static Single Assignment Form 11

s1 a = b;

s2 b = c + d;

s3 e = a + d;

s4 b = 3;

s5 f = b * 2;

Example

flow (RAW)

input (RAR)

anti (WAR) 

output (WAW)



6

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 11, 2015 Static Single Assignment Form 12

Representing Data Dependences

Implicitly

– Use variable defs and uses

– Pros: simple

– Cons: hides data dependence (analyses must find this info)

Def-use chains (du chains)

– Link each def to its uses

– Pros: explicit; therefore fast

– Cons: must be computed and updated, consumes space

February 11, 2015 Static Single Assignment Form 13

DU Chains

Definition

– du chains link each def to its uses

Example
s1 a = b;

s2 b = c + d;

s3 e = a + d;

s4 b = 3;

s5 f = b * 2;

du chain



7

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 11, 2015 Static Single Assignment Form 14

UD Chains

Definition

– ud chains link each use to its defs

Example
s1 a = b;

s2 b = c + d;

s3 e = a + d;

s4 b = 3;

s5 f = b * 2;

ud chain

February 11, 2015 Static Single Assignment Form 15

Representing Data Dependences (cont)

Implicitly

– Use variable defs and uses

– Pros: simple

– Cons: hides data dependence (analyses must find this info)

Def-use chains (du chains)

– Link each def to its uses

– Pros: explicit; therefore fast

– Cons: must be computed and updated, consumes space

Alternate representations

– e.g., Static single assignment form (SSA), dependence flow graphs 

(DFG), value dependence graphs (VDG)



8

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 11, 2015 Static Single Assignment Form 16

Advantage

– Allow analyses and transformations to be simpler & more efficient/effective

Disadvantage

– May not be “executable” (requires extra translations to and from)

– May be expensive (in terms of time or space)

Role of Alternate Program Representations

Process

Original Code (RTL)

SSA Code1 SSA Code2 SSA Code3

Optimized Code (RTL)

T1 T2

February 11, 2015 Static Single Assignment Form 17

Static Single Assignment (SSA) Form

Idea

– Each variable has only one static definition

– Makes it easier to reason about values instead of variables

– Similar to the notion of functional programming

Transformation to SSA

– Rename each definition

– Rename all uses reached by that definition

Example

v := ...

... := ... v ...

v := ...

... := ... v ...

v0 := ...

... := ... v0 ...

v1 := ...

... := ... v1 ...

What do we do when there’s control flow?



9

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 11, 2015 Static Single Assignment Form 18

SSA and Control Flow

Problem

– A use may be reached by several definitions

...v...4

v := ...2 v := ...3

1

...v?...4

v0 :=...2 v1 :=...3

1

February 11, 2015 Static Single Assignment Form 19

SSA and Control Flow (cont)

Merging Definitions

– -functions merge multiple reaching definitions

Example

v2 := (v0,v1)

...v2...
4

v0 :=...2 v1 :=...3

1



10

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 11, 2015 Static Single Assignment Form 20

Exercise

Q: How do we transform the following code to SSA form?

v := 11

v := v+12

v0 := 11

v1 := (v0,v2)

v2 := v1+1
2

February 11, 2015 Static Single Assignment Form 21

SSA vs. ud/du Chains

SSA form is more constrained

Advantages of SSA

– More compact

– Some analyses become simpler when each use has only one def

– Value merging is explicit

– Easier to update and manipulate?

Furthermore

– Eliminates false dependences (simplifying context)

for (i=0; i<n; i++)

A[i] = i;

for (i=0; i<n; i++)

print(foo(i));

Unrelated uses of i are given 

different variable names



11

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 11, 2015 Static Single Assignment Form 22

SSA vs. ud/du Chains (cont)

Worst case du-chains?

switch (c1) {

case 1: x = 1; break;

case 2: x = 2; break;

case 3: x = 3; break;

}

switch (c2) {

case 1: y1 = x; break;

case 2: y2 = x; break;

case 3: y3 = x; break;

case 4: y4 = x; break;

}
m defs and n uses leads to mn du chains

x4 = (x1, x2, x3)

February 11, 2015 Static Single Assignment Form 23

Transformation to SSA Form

Two steps

– Insert -functions

– Rename variables



12

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 11, 2015 Static Single Assignment Form 24

Where Do We Place -Functions?

Basic Rule

– If two distinct (non-null) paths xz and yz converge at node z, and 

nodes x and y contain definitions of variable v, then we insert a

-function for v at z

v3 := (v1,v2)

...v3...
z

v1 :=...x v2 :=...y

February 11, 2015 Static Single Assignment Form 25

Approaches to Placing -Functions

Minimal

– As few as possible subject to the basic rule

– How is this sub-optimal?

Briggs-Minimal

– Same as minimal, except v must be live across some edge of the CFG

Can we do better than Briggs-Minimal?

no uses of v

v = 

= v

v = 

= v

Briggs Minimal will not place a

 function in this case because v

is not live across any CFG edge.

Exploits the short lifetimes of 

many temporary variables



13

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 11, 2015 Static Single Assignment Form 26

Approaches to Placing -Functions (cont)

Pruned

– Same as minimal, except does not insert dead -functions

– What’s the difference between Pruned and Briggs-Minimal?

Briggs Minimal will add a

 function because v is live 

across the blue edge, but Pruned 

SSA will not because the 

function is dead (assuming that 

this is the entire CFG)

= (v2,v3)

v = 

= v

v = 

= v

v2= (v0,v1)

= v2

Why would we ever use Briggs Minimal instead of Pruned SSA?

February 11, 2015 Static Single Assignment Form 27

Machinery for Placing -Functions

Recall Dominators

– d dom i if all paths from entry to node i include d

– d sdom i if d dom i and di

Dominance Frontiers

– The dominance frontier of a node d is the set of nodes that are “just 

barely” not dominated by d; i.e., the set of nodes n, such that

– d dominates a predecessor p of n, and

– d does not strictly dominate n

– DF(d) = {n | ppred(n), d dom p and d !sdom n}

Notational Convenience

– DF(S) = sS DF(s)

d

i

entry

d dom i

What is the significance of the

dominance frontier? 



14

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 11, 2015 Static Single Assignment Form 28

Nodes in Dom(5)

4

5

13

12

Dominance Frontier Example

2

3 6 7

8

9

1110

DF(d) = {n | ppred(n), d dom p and d !sdom n}

Dom(5) = {5, 6, 7, 8}

Where shall we place  functions?

1

In SSA form, definitions must dominate uses

DF(5) = {4, 5, 12, 13}

February 11, 2015 Static Single Assignment Form 29

Nodes in Dom(5)

4

5

13

Dominance Frontier Example II

2

3 6 7

8

DF(d) = {n | ppred(n), d dom p and d !sdom n}

Dom(5) = {5, 6, 7, 8}

Node 4 is the first point of convergence between the entry and node 5, 

so do we need a - function at node 13? 

1

DF(5) = {4, 5, 13}



15

Calvin Lin

The University of Texas at Austin

CS380C Compilers

DF(8) =

DF(9) =

DF(2) =

DF({8,9}) =

DF(10) =

DF({2,8,9,10}) = 

{10}

{10}

{6}

{10}

{6}

{6,10} 

February 11, 2015 Static Single Assignment Form 30

SSA Exercise

v5:= ϕ(v3,v4)6

5 v4:= ϕ(v1,v2)10

3 4 v := ...8 v := ...9

v :=...2 7

1

DF(d) = {n | ppred(n), d dom p and d !sdom n}

1 2

3

February 11, 2015 Static Single Assignment Form 31

Do we need to insert a - function for x anywhere else?

Dominance Frontiers Revisited

Suppose that node 3 defines variable x

DF(3) = {5}

6

2 3 4

5

1

Yes.  At node 6.  Why?

x  Def(3)



16

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 11, 2015 Static Single Assignment Form 32

Dominance Frontiers and SSA

Let

– DF1(S) = DF(S)

– DFi+1(S) = DF(S  DFi(S))

Iterated Dominance Frontier

– DF(S)

Theorem

– If S is the set of CFG nodes that define variable v, then DF(S) is the set 

of nodes that require -functions for v

February 11, 2015 Static Single Assignment Form 33

Algorithm for Inserting -Functions

for each variable v

WorkList 

EverOnWorkList 

AlreadyHasPhiFunc 

for each node n containing an assignment to v

WorkList  WorkList  {n}

EverOnWorkList WorkList

while WorkList 

Remove some node n from WorkList

for each d  DF(n)

if d AlreadyHasPhiFunc

Insert a -function for v at d

AlreadyHasPhiFunc AlreadyHasPhiFunc  {d}

if d  EverOnWorkList

WorkList  WorkList  {d}

EverOnWorkList  EverOnWorkList  {d}

Put all defs of v on the worklist

Insert at most one  function per node

Process each node at most once



17

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 11, 2015 Static Single Assignment Form 34

Next Time

Lecture

– Will start at 2:15pm

– Data-flow analysis and SSA

Reading

– Csmith paper due Sunday February 15th at 5:00pm


