
1

Calvin Lin

The University of Texas at Austin

CS380C Compilers

Csmith Paper

February 18, 2015 SSA and DFA 1

February 18, 2015 SSA and DFA 2

Transformation from SSA Form

Alternative

Perform dead code elimination (to prune f-functions)

Replace f-functions with copies in predecessors

Rely on register allocation coalescing to remove unnecessary copies

x0 =

x1 =

= x0

= x1

Complications

What if versions get out of order?

(simultaneously live ranges)

Proposal

– Restore original variable names (i.e., drop subscripts)

– Delete all f-functions

2

Calvin Lin

The University of Texas at Austin

CS380C Compilers

Revisiting Data-flow Analyses in SSA Form

How do our various data-flow analyses change, if at all?

– Liveness

– Available expressions

– Common sub-expression elimination

– Reaching definitions

February 18, 2015 SSA and DFA 3

LLVM

Partial SSA form

– Top-level variables are in SSA from

– Address-taken variables are not

Why does LLVM do this?

– Pointers are difficult in SSA form

February 18, 2015 SSA and DFA 4

? := f(?)4

*p:= ...2 *p:= ...3

3

Calvin Lin

The University of Texas at Austin

CS380C Compilers

SSA in LLVM

SSA form

– Everything that starts with % or @ is in SSA

– Once initialized, they become immutable

– Every definition has to dominate all of its uses

– “Virtual register” or “top-level variable”

– Use fresh names %1, %2 rather than subscripts to rename variables

February 18, 2015 SSA and DFA 5

int f(int a)

{

a = a * 2;

a = a + 1;

return a;

}

define i32 @f(i32 %a) {

%1 = mul nsw i32 %a, 2

%2 = add nsw i32 %a, 1

ret i32 %2

}

LLVM (cont)

f-function in LLVM

– Both the incoming value and the incoming block have to be specified

Example

February 18, 2015 SSA and DFA 6

; <label>: bb4

%3 = phi i32 [%1, %bb2], [%2, %bb3]

...%3...

; <label>: bb2

%1 = …

; <label>: bb3

%2 = …

; <label>: bb1

…

4

Calvin Lin

The University of Texas at Austin

CS380C Compilers

LLVM (cont)

Mutable variables

– Partial SSA

– Values that reside in memory are “address-taken variables”

– These variables are mutable

Memory operations

– Alloca for stack allocation

– Load & store for memory read/write

February 18, 2015 SSA and DFA 7

LLVM (cont)

Example

February 18, 2015 SSA and DFA 8

int f()

{

int a = 5;

int b = a - 3;

b = 42;

return b;

}

define i32 @f() {

%a = alloca i32

%b = alloca i32

store i32 5, %i32* %a

%1 = load i32* %a

%2 = sub nsw i32 %1, 3

store i32 %2, %i32* %b

store i32 42 i32* %b

%3 = load i32* %b

ret i32 %3

}

In the IR, what do variable a and b in the source language get

translated to?

5

Calvin Lin

The University of Texas at Austin

CS380C Compilers

LLVM (cont)

In C/C++, every variable is mutable

– By default, clang will generate one memory allocation for every single C

variable

– But this is wasteful!

Mem2reg to the rescue

– LLVM has a highly-tuned optimization pass called “mem2reg”

– promotes allocas into virtual registers

– inserts f-node as appropriate

– This pass is essentially a dominance-frontier finder already written for you

February 18, 2015 SSA and DFA 9

LLVM (cont)

Mem2reg example

February 18, 2015 SSA and DFA 10

define i32 @f() {

%a = alloca i32

%b = alloca i32

store i32 5, %i32* %a

%1 = load i32* %a

%2 = sub nsw i32 %1, 3

store i32 %2, %i32* %b

store i32 42 i32* %b

%3 = load i32* %b

ret i32 %3

}

define i32 @f() {

%1 = sub nsw i32 5, 3

ret i32 42

}

Before After

6

Calvin Lin

The University of Texas at Austin

CS380C Compilers

LLVM (cont)

Summary

– In LLVM, values can be stored in virtual registers or memory

– Virtual register values are required to be in SSA form

– Memory values can be mutable

– Use –mem2reg to eliminate unnecessary allocations

February 18, 2015 SSA and DFA 11

February 18, 2015 SSA and DFA 12

Concepts

Data dependences

– Three kinds of data dependences

– du-chains

Alternate representations

SSA form

Conversion to SSA form

– f-function placement

– Dominance frontiers

– Variable renaming

– Dominance trees

Conversion from SSA form

LLVM and partial SSA form

7

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 18, 2015 SSA and DFA 13

Next Time

Lecture

– Reuse optimizations

Reading

– Wegman and Zadeck paper due Tuesday February 24th at 5:00pm

