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PRE Example

B1:  a := b + c B2:  b := b + 1

B3:  a := b + c

B1 B2 B3

transparent

locally_available

locally_anticipated
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available_out

partially_available_in

partially_available_out

anticipated_out

anticipated_in

ppout

ppin

insert

delete
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{b+c} {b+c}

{b+c}
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{b+1}

{b+c} {b+c}

{b+c} {b+c}{b+1}

{b+c} {b+c}

{b+c}

{b+c}

{b+c}
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Introduction to Alias Analysis

Last time

– Partial Redundancy Elimination

Today

– Alias analysis



CS380 C Compilers 2

March 2, 2015 Introduction to Alias Analysis 3

Alias Analysis (aka Pointer Analysis)

Goal: Statically identify aliases

– Can memory references m and n access the same state at program point p?

– What program state can memory reference m access?

Why is alias analysis important?

– Many analyses need to know what storage is read and written

e.g., available expressions (CSE)

*p = a + b;

y = a + b;

Otherwise, we must be very conservative

If *p aliases a or b, the second 

expression is not redundant (CSE fails)
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Is x constant here?

– Yes, only one value of x reaches this last 
statement

Constant Propagation Revisited

{

int x, y, a;

int *p;

p = &a;

x = 5;

y = x + 1;

}
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The Importance of Pointer Analysis

{

int x, y, a;

int *p;

p = &a;

x = 5;

*p = 23;

y = x + 1;

}

Is x constant here?

– If p does not point to x, then x = 5

– If p definitely points to x, then x = 23

– If p might point to x, then we have two 
reaching definitions that reach this last 
statement, so x is not constant
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Trivial Pointer Analysis

{

int x, y, a;

int *p;

p = &a;

x = 5;

*p = 23;

y = x + 1;

}

Is x constant here?

– With our trivial analysis, we assume that p
may point to x, so x is not constant

No analysis

– Assume that nothing must alias

– Assume that everything may alias everything 

else

– Yuck!

– Enhance this with type information?
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A Slightly Better Approach (for C)

{

int x, y, a;

int *p;

p = &a;

x = 5;

*p = 23;

y = x + 1;

}

Is x constant here?

– With Address Taken, *p and a may 
alias, but neither aliases with x

Address Taken

– Assume that nothing must alias

– Assume that all pointer 

dereferences may alias each other

– Assume that variables whose 

addresses are taken (and globals) 

alias all pointer dereferences
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Address Taken (cont)

{

int x, y, a;

int *p, *q;

q = &x;

p = &a;

x = 5;

*p = 23;

y = x + 1;

}

Is x constant here?

– With Address Taken, we now assume 
that *p, *q, a, and x all may alias
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A Better Points-To Analysis

Goal

– At each program point, compute set of (px) pairs if p points to x

Properties

– Use data-flow analysis

– May information (will look at must information next)
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Domain: 2var  var

Direction: forward

Flow functions

– s:  p = &x;

out[s] = {(px)}   (in[s] – {(py) y})

– s:  p = q;

out[s] = {(pt) | (qt)  in[s]}   (in[s] – {(py) y})

Meet function: 

What if we have pointers to pointers?

– e.g., int **q; p = *q;

May Points-To Analysis

q

x1

x2

x3



p

y1

y2

p q

x1

x2

x3

p = q
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Additional flow functions

– s:  p = *q;

out[s] = {(pt) | (qr)  in[s] & (rt)  in[s]}  

(in[s] – {(px) x})

– s:  *q = p;

out[s] = {(rt) | (qr)  in[s] & (pt)  in[s]} 

(in[s] – {(rx) x | (qr)  inmust[s]}) 

t1 qr1

r2t2

t3

May Points-To Analysis (Pointers to Pointers)

p = *q p

*q = p

t1

t2

pq

r1

r2

v1

t1

t2

pq

r1

r2

v1
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Dealing with Dynamically Allocated Memory

Issue

– Each allocation creates a new piece of storage
e.g.,   p = new T

Proposal?

– Generate (at compile-time) a new name to represent each new allocation

– newvar: Creates a new variable

Flow function

– s:  p = new T;
out[s] = {(pnewvar)}   (in[s] – {(px) x})

Problem

– Domain is unbounded!

– Iterative data-flow analysis may not converge
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Dynamically Allocated Memory (cont)

Simple solution

– Create a summary “variable” (node) for each allocation statement

– Domain: 2(Var  Stmt)  (Var  Stmt) rather than 2Var  Var

– Monotonic flow function

s:  p = new T;

out[s] = {(pstmts)}   (in[s] – {(px) x})

– Less precise (but finite)

Alternatives

– Summary node for entire heap

– Summary node for each type

– K-limited summary

– Maintain distinct nodes up to k links removed from root variables

– This dimension is often referred to as “heap naming”
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Must Points-To Analysis

Meet function:  

Analogous flow functions

– s:  p = &x;
outmust[s] = {(px)}   (inmust[s] – {(px) x})

– s:  p = q;
outmust[s] = {(pt) | (qt)  inmust[s]}   (inmust[s] – {(px) x)})

– s:  p = *q;
outmust[s] = {(pt) | (qr)  inmust[s] & (rt)  inmust[s]}  

(inmust [s] – {(px) x)})

– s:  *p = q;
outmust[s] = {(rt) | (pr)  inmust[s] & (qt)  inmust [s]} 

(inmust[s] – {(r*) | (pr)  inmust[s]}) 

Compute this along with may analysis

– Why?
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Often need both

– Consider liveness analysis

s: *p = *q+4;

May (possible) alias information

– Indicates what might be true

e.g.,

if (c) p = &i;

Must (definite) alias information

– Indicates what is definitely true

e.g.,

p = &i;
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*p and i must alias

Definiteness of Alias Information

*p and i may alias

(1) *p must alias v def[s] = kill[s] = {v} 

(2) *q may alias  v use[s] = gen[s] = {v}

Suppose out[s] = {v}

Recall: in[s] = use[s]  (out[s] – def[s])

{

int x, y, a;

int *p, *q;

q = &x;

p = &a;

x = 5;

*p = 23;

y = x + 1;

}
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{(qx), (pa)}

{(qx), (pa)}

{(qx), (pa)}

Using Points-To Information

Then run constant propagation

– Since *p and x do not alias, x is 
constant in this last statement

The point

– Pointer analysis is an enabling analysis

To support constant propagation,

first run points-to analysis

{(qx)}

{(qx), (pa)}
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Integrated Pointer Analysis

Example: reaching definitions

– Compute at each point in the program a set of (v,s) pairs, indicating that 

statement s may define variable v

Flow functions

– s:  *p = x;

outreach[s] = {(z,s) | (pz)  inmay-pt[s]}  

(inreach[s] – {(y,t) t | (py)  inmust-pt[s]} 

– s:  x = *p;

outreach[s] = {(x,s}   (inreach[s] – {(x,t) t} 

– . . .
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Function Calls

{

int x, y, a;

int *p;

p = &a;

x = 5;

foo(&x);

y = x + 1;

}

Does the function call modify x?

– With our intra-procedural analysis, we 
don’t know

– Make worst case assumptions

– Assume that any reachable pointer 
may be changed

– Pointers can be “reached” via 

globals and parameters

– May pass through objects in 

the heap

– More Wednesday

foo (int *p)

{

return p;

}
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Let’s Take a Step Back

We’ve been talking about pointers

– Are there other ways for memory locations to alias one another?

How else can we represent alias information?
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How Do Aliases Arise?

Pointers (e.g., in C)

int *p, i;

p = &i;

*p and i alias

Parameter passing by reference (e.g., in Pascal)

procedure proc1(var a:integer; var b:integer);

. . .

proc1(x,x);

proc1(x,glob);

a and b alias in body of proc1

b and glob alias in body of proc1

Array indexing (e.g., in C)

int i,j, a[128];

i = j;
a[i] and a[j] alias
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What Can Alias?

Stack storage and globals

void fun(int p1) {

int i, j, temp;

...

}

Heap allocated objects

n = new Node;

n->data = x;

n->next = new Node;

...

do i, j, or temp alias?

do n and n->next alias?

March 2, 2015 Introduction to Alias Analysis 23

What Can Alias? (cont)

Arrays

for (i=1; i<=n; i++) {

b[c[i]] = a[i]; 

}

do b[c[i1]] and

b[c[i2]] alias for any two 

interations i1 and i2?

Can c[i1] and c[i2] alias?

Java

cc 7 1 4 2 3 1 9 0

Fortran
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Representations of Aliasing

Points-to pairs [Emami94]

– Pairs where the first member points to the second

e.g., (a -> b), (b -> c)

Alias pairs

– Pairs that refer to the same memory

e.g., (*a,b), (*b,c), (**a,c)

– Completely general

– May be less concise than points-to pairs

Equivalence sets

– All memory references in the same set are aliases 

– e.g., {*a,b}, {*b,c,**a}

[Shapiro & Horwitz 97]

int **a, *b, c, *d;

1: a = &b;

2: b = &c;
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How hard is this problem?

Undecidable

– Landi 1992

– Ramalingan 1994

All solutions are conservative approximations

Is this problem solved?

– Numerous papers in this area

– Haven’t we solved this problem yet? [Hind 2001]
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Concepts

What is aliasing and how does it arise?

Properties of alias analyses

– Definiteness: may or must

– Representation: alias pairs, points-to sets

Function calls degrade alias information

– Context-sensitive interprocedural analysis
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Next Time

Lecture

– Interprocedural analysis


