
CS380 C Compilers 1

March 2, 2015 Introduction to Alias Analysis 1

PRE Example

B1: a := b + c B2: b := b + 1

B3: a := b + c

B1 B2 B3

transparent

locally_available

locally_anticipated

available_in

available_out

partially_available_in

partially_available_out

anticipated_out

anticipated_in

ppout

ppin

insert

delete

{b+c} {b+c}

{b+c} {b+c}

{b+c} {b+c}

{b+c} {b+c}

{b+c}

{b+c} {b+c}

{b+1}

{b+c} {b+c}

{b+c} {b+c}{b+1}

{b+c} {b+c}

{b+c}

{b+c}

{b+c}

March 2, 2015 Introduction to Alias Analysis 2

Introduction to Alias Analysis

Last time

– Partial Redundancy Elimination

Today

– Alias analysis

CS380 C Compilers 2

March 2, 2015 Introduction to Alias Analysis 3

Alias Analysis (aka Pointer Analysis)

Goal: Statically identify aliases

– Can memory references m and n access the same state at program point p?

– What program state can memory reference m access?

Why is alias analysis important?

– Many analyses need to know what storage is read and written

e.g., available expressions (CSE)

*p = a + b;

y = a + b;

Otherwise, we must be very conservative

If *p aliases a or b, the second

expression is not redundant (CSE fails)

March 2, 2015 Introduction to Alias Analysis 4

Is x constant here?

– Yes, only one value of x reaches this last
statement

Constant Propagation Revisited

{

int x, y, a;

int *p;

p = &a;

x = 5;

y = x + 1;

}

CS380 C Compilers 3

March 2, 2015 Introduction to Alias Analysis 5

The Importance of Pointer Analysis

{

int x, y, a;

int *p;

p = &a;

x = 5;

*p = 23;

y = x + 1;

}

Is x constant here?

– If p does not point to x, then x = 5

– If p definitely points to x, then x = 23

– If p might point to x, then we have two
reaching definitions that reach this last
statement, so x is not constant

March 2, 2015 Introduction to Alias Analysis 6

Trivial Pointer Analysis

{

int x, y, a;

int *p;

p = &a;

x = 5;

*p = 23;

y = x + 1;

}

Is x constant here?

– With our trivial analysis, we assume that p
may point to x, so x is not constant

No analysis

– Assume that nothing must alias

– Assume that everything may alias everything

else

– Yuck!

– Enhance this with type information?

CS380 C Compilers 4

March 2, 2015 Introduction to Alias Analysis 7

A Slightly Better Approach (for C)

{

int x, y, a;

int *p;

p = &a;

x = 5;

*p = 23;

y = x + 1;

}

Is x constant here?

– With Address Taken, *p and a may
alias, but neither aliases with x

Address Taken

– Assume that nothing must alias

– Assume that all pointer

dereferences may alias each other

– Assume that variables whose

addresses are taken (and globals)

alias all pointer dereferences

March 2, 2015 Introduction to Alias Analysis 8

Address Taken (cont)

{

int x, y, a;

int *p, *q;

q = &x;

p = &a;

x = 5;

*p = 23;

y = x + 1;

}

Is x constant here?

– With Address Taken, we now assume
that *p, *q, a, and x all may alias

CS380 C Compilers 5

March 2, 2015 Introduction to Alias Analysis 9

A Better Points-To Analysis

Goal

– At each program point, compute set of (px) pairs if p points to x

Properties

– Use data-flow analysis

– May information (will look at must information next)

March 2, 2015 Introduction to Alias Analysis 10

Domain: 2var  var

Direction: forward

Flow functions

– s: p = &x;

out[s] = {(px)}  (in[s] – {(py) y})

– s: p = q;

out[s] = {(pt) | (qt)  in[s]}  (in[s] – {(py) y})

Meet function:

What if we have pointers to pointers?

– e.g., int **q; p = *q;

May Points-To Analysis

q

x1

x2

x3



p

y1

y2

p q

x1

x2

x3

p = q

CS380 C Compilers 6

March 2, 2015 Introduction to Alias Analysis 11

Additional flow functions

– s: p = *q;

out[s] = {(pt) | (qr)  in[s] & (rt)  in[s]} 

(in[s] – {(px) x})

– s: *q = p;

out[s] = {(rt) | (qr)  in[s] & (pt)  in[s]} 

(in[s] – {(rx) x | (qr)  inmust[s]})

t1 qr1

r2t2

t3

May Points-To Analysis (Pointers to Pointers)

p = *q p

*q = p

t1

t2

pq

r1

r2

v1

t1

t2

pq

r1

r2

v1

March 2, 2015 Introduction to Alias Analysis 13

Dealing with Dynamically Allocated Memory

Issue

– Each allocation creates a new piece of storage
e.g., p = new T

Proposal?

– Generate (at compile-time) a new name to represent each new allocation

– newvar: Creates a new variable

Flow function

– s: p = new T;
out[s] = {(pnewvar)}  (in[s] – {(px) x})

Problem

– Domain is unbounded!

– Iterative data-flow analysis may not converge

CS380 C Compilers 7

March 2, 2015 Introduction to Alias Analysis 14

Dynamically Allocated Memory (cont)

Simple solution

– Create a summary “variable” (node) for each allocation statement

– Domain: 2(Var  Stmt)  (Var  Stmt) rather than 2Var  Var

– Monotonic flow function

s: p = new T;

out[s] = {(pstmts)}  (in[s] – {(px) x})

– Less precise (but finite)

Alternatives

– Summary node for entire heap

– Summary node for each type

– K-limited summary

– Maintain distinct nodes up to k links removed from root variables

– This dimension is often referred to as “heap naming”

March 2, 2015 Introduction to Alias Analysis 15

Must Points-To Analysis

Meet function: 

Analogous flow functions

– s: p = &x;
outmust[s] = {(px)}  (inmust[s] – {(px) x})

– s: p = q;
outmust[s] = {(pt) | (qt)  inmust[s]}  (inmust[s] – {(px) x)})

– s: p = *q;
outmust[s] = {(pt) | (qr)  inmust[s] & (rt)  inmust[s]} 

(inmust [s] – {(px) x)})

– s: *p = q;
outmust[s] = {(rt) | (pr)  inmust[s] & (qt)  inmust [s]} 

(inmust[s] – {(r*) | (pr)  inmust[s]})

Compute this along with may analysis

– Why?

CS380 C Compilers 8

Often need both

– Consider liveness analysis

s: *p = *q+4;

May (possible) alias information

– Indicates what might be true

e.g.,

if (c) p = &i;

Must (definite) alias information

– Indicates what is definitely true

e.g.,

p = &i;

March 2, 2015 Introduction to Alias Analysis 16

*p and i must alias

Definiteness of Alias Information

*p and i may alias

(1) *p must alias v def[s] = kill[s] = {v}

(2) *q may alias v use[s] = gen[s] = {v}

Suppose out[s] = {v}

Recall: in[s] = use[s]  (out[s] – def[s])

{

int x, y, a;

int *p, *q;

q = &x;

p = &a;

x = 5;

*p = 23;

y = x + 1;

}

March 2, 2015 Introduction to Alias Analysis 17

{(qx), (pa)}

{(qx), (pa)}

{(qx), (pa)}

Using Points-To Information

Then run constant propagation

– Since *p and x do not alias, x is
constant in this last statement

The point

– Pointer analysis is an enabling analysis

To support constant propagation,

first run points-to analysis

{(qx)}

{(qx), (pa)}

CS380 C Compilers 9

March 2, 2015 Introduction to Alias Analysis 18

Integrated Pointer Analysis

Example: reaching definitions

– Compute at each point in the program a set of (v,s) pairs, indicating that

statement s may define variable v

Flow functions

– s: *p = x;

outreach[s] = {(z,s) | (pz)  inmay-pt[s]} 

(inreach[s] – {(y,t) t | (py)  inmust-pt[s]}

– s: x = *p;

outreach[s] = {(x,s}  (inreach[s] – {(x,t) t}

– . . .

March 2, 2015 Introduction to Alias Analysis 19

Function Calls

{

int x, y, a;

int *p;

p = &a;

x = 5;

foo(&x);

y = x + 1;

}

Does the function call modify x?

– With our intra-procedural analysis, we
don’t know

– Make worst case assumptions

– Assume that any reachable pointer
may be changed

– Pointers can be “reached” via

globals and parameters

– May pass through objects in

the heap

– More Wednesday

foo (int *p)

{

return p;

}

CS380 C Compilers 10

March 2, 2015 Introduction to Alias Analysis 20

Let’s Take a Step Back

We’ve been talking about pointers

– Are there other ways for memory locations to alias one another?

How else can we represent alias information?

March 2, 2015 Introduction to Alias Analysis 21

How Do Aliases Arise?

Pointers (e.g., in C)

int *p, i;

p = &i;

*p and i alias

Parameter passing by reference (e.g., in Pascal)

procedure proc1(var a:integer; var b:integer);

. . .

proc1(x,x);

proc1(x,glob);

a and b alias in body of proc1

b and glob alias in body of proc1

Array indexing (e.g., in C)

int i,j, a[128];

i = j;
a[i] and a[j] alias

CS380 C Compilers 11

March 2, 2015 Introduction to Alias Analysis 22

What Can Alias?

Stack storage and globals

void fun(int p1) {

int i, j, temp;

...

}

Heap allocated objects

n = new Node;

n->data = x;

n->next = new Node;

...

do i, j, or temp alias?

do n and n->next alias?

March 2, 2015 Introduction to Alias Analysis 23

What Can Alias? (cont)

Arrays

for (i=1; i<=n; i++) {

b[c[i]] = a[i];

}

do b[c[i1]] and

b[c[i2]] alias for any two

interations i1 and i2?

Can c[i1] and c[i2] alias?

Java

cc 7 1 4 2 3 1 9 0

Fortran

CS380 C Compilers 12

March 2, 2015 Introduction to Alias Analysis 24

Representations of Aliasing

Points-to pairs [Emami94]

– Pairs where the first member points to the second

e.g., (a -> b), (b -> c)

Alias pairs

– Pairs that refer to the same memory

e.g., (*a,b), (*b,c), (**a,c)

– Completely general

– May be less concise than points-to pairs

Equivalence sets

– All memory references in the same set are aliases

– e.g., {*a,b}, {*b,c,**a}

[Shapiro & Horwitz 97]

int **a, *b, c, *d;

1: a = &b;

2: b = &c;

March 2, 2015 Introduction to Alias Analysis 25

How hard is this problem?

Undecidable

– Landi 1992

– Ramalingan 1994

All solutions are conservative approximations

Is this problem solved?

– Numerous papers in this area

– Haven’t we solved this problem yet? [Hind 2001]

CS380 C Compilers 13

March 2, 2015 Introduction to Alias Analysis 26

Concepts

What is aliasing and how does it arise?

Properties of alias analyses

– Definiteness: may or must

– Representation: alias pairs, points-to sets

Function calls degrade alias information

– Context-sensitive interprocedural analysis

March 2, 2015 Introduction to Alias Analysis 27

Next Time

Lecture

– Interprocedural analysis

