Calvin Lin
The University of Texas at Austin

Interprocedural Analysis

Last time
— Introduction to alias analysis

Today
— Interprocedural analysis

March 4, 2015 Interprocedural Analysis

Motivation

Procedural abstraction
— Cornerstone of programming
— Introduces barriers to analysis

Example Example

x =5; void f(int x)
foo (p) ; —_— Does foo ()

Bl modify x? .
y = x+1; if (x)

foo();
else
bar () ;
}
context of £()? £(0) ;

£(1);

March 4, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin
The University of Texas at Austin

Function Calls and Pointers

Recall

— Function calls can affect our points-to sets
e.g., pl &x;

p2 &pl;
[{p1>x), (p2-p1)}

£00 () ;

?27?
Be conservative
— Lose a lot of information

March 4, 2015 Interprocedural Analysis

Interprocedural Analysis

Goal

— Avoid making conservative assumptions about the effects of procedures
and the state at call sites

Terminology
int a, e; // Globals
void foo(int &b, &c) // Formal parameters

d; // Local variables
foo(a, d); // Actual parameters

}

March 4, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin
The University of Texas at Austin

Interprocedural Analysis vs. Interprocedural Optimization

Interprocedural analysis

— Gather information across multiple procedures
(typically across the entire program)

— Use this information to improve intra-procedural analyses and
optimization (e.g., CSE)

Interprocedural optimizations

— Optimizations that involve multiple procedures
e.g., Inlining, procedure cloning, interprocedural register allocation

— Optimizations that use interprocedural analysis

March 4, 2015 Interprocedural Analysis

Dimensions of Interprocedural Analysis

Flow-sensitive vs. flow-insensitive
Context-sensitive vs. context-insensitive

Path-sensitive vs. path-insensitive

March 4, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin
The University of Texas at Austin

Flow Sensitivity

Flow-sensitive analysis
— Computes one answer for every program point
— Requires iterative data-flow analysis or similar technique

Flow-insensitive analysis
— Ignores control flow
— Computes one answer for every procedure
— Faster but less accurate than flow-sensitive analysis

March 4, 2015 Interprocedural Analysis

Flow Sensitivity Example

Is x constant? Flow-sensitive analysis
void f(int x) — Computes an answer at every program
point:
4; — x is 4 after the first assignment
— x is 5 after the second assignment

5;

Flow-insensitive analysis

— Computes one answer for the entire
procedure:

— x is not constant

Where have we seen examples of flow-insensitive analysis?
— Address Taken pointer analysis

March 4, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin
The University of Texas at Austin

Context Sensitivity

Context-sensitive analysis
— Re-analyzes callee for each caller
— Also known as polyvariant analysis

Context-insensitive analysis
— Perform one analysis independent of callers
— Also known as monovariant analysis

March 4, 2015 Interprocedural Analysis

Context Sensitivity Example

Is x constant? Context-sensitive analysis

) — Computes an answer for every callsite:
a = id(4); . . .
) — x is 4 in the first call

2 ..
O 72 — xis 5 in the second call
id(x) { return x; }

Context-insensitive analysis
— Computes one answer for all callsites:
— x IS not constant
— Suffers from unrealizable paths:

= id(4);
\ W, / — Can mistakenly conclude that
4O\, 7405 id(4) canreturn 5 because we
id(x) { return x; } merge (smear) information from all
callsites

March 4, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin
The University of Texas at Austin

Path Sensitivity

Path-sensitive analysis
— Computes one answer for every execution path
— Subsumes flow-sensitivity and context-sensitivity
— Extremely expensive

Path-insensitive
— Not path-sensitive

March 4, 2015 Interprocedural Analysis

Path Sensitivity Example

Is x constant? Path-sensitive analysis

if (x==0) — Computes an answer for every path:
/ \\ — x is 4 at the end of the left path
— x is 5 at the end of the right path
x = 4; x =5;
\ / Path-insensitive analysis
4 5 — Computes one answer for all paths:

print (x) — x is not constant

March 4, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin
The University of Texas at Austin

Dimensions of Interprocedural Analysis (cont)

Flow-insensitive context-insensitive (FICI)

int** foo(int **p, **q)
{

int **x;
X = p;

X = q;
return x;

}
int main ()

int **a, *b, *d, *f,
c, e;

foo (&b, &f);
&c;
foo(&d, &g);
&e;
}
March 4, 2015

a—>
b-—
d— {c,e}
f—> {c, e}
g— {c e}

Interprocedural Analysis

Dimensions of Interprocedural Analysis (cont)

Flow-sensitive context-insensitive (FSCI)

int** foo(int **p, **q)
{

int **x;
X = p;
X = q;
return x;

}

int main()
{
int **a, *b, *d, *f,
S, OF

a = foo(&b, &f);
*a = &c;

a_=—faq(&d, &9);
&S

March 4, 2015

CS380 C Compilers

FICI FSCI
p— {b,d} p—
q— {f g} q—
x— {b,d f,g} x —>

X, >

a—> {bd f g} a —
b— {c e} a,—>
d— {c,e} £, -
f—> {c, e} g, —

g— {c,e} £, -
Weak update < gz
2

Interprocedural Analysis

Calvin Lin
The University of Texas at Austin

Interprocedural Analysis: Supergraphs

Compose the CFGs for all procedures via the call graph
— Connect call nodes to nodes of callees
— Connect return nodes of callees back to calls foo ()

— Called control-flow supergraph

Pros
— Simple
— Intraprocedural analysis algorithms work unchanged
— Reasonably effective

March 4, 2015 Interprocedural Analysis

Monday’s Example Revisited

foo (int *p)
{

return p;

P = &a;
x =5; Is x constant?

foo (&x) ; — With a supergraph, run our same IDFA
y=x+1; <4m algorithm
— Determine that x =5

March 4, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin
The University of Texas at Austin

Supergraphs (cont)

Compose the CFGs for all procedures via the call graph
— Connect call nodes to nodes of callees
— Connect return nodes of callees back to calls foo ()

— Called control-flow supergraph

Cons
— Accuracy? Smears information from different contexts.

— Performance? IDFA is O(n%), graphs can be huge

— No separate compilation IDFA converges in d+2 iterations, where d is the
Number of nested loops [Kam & Ullman ’76].
Graphs will have many cycles (one per callsite)

March 4, 2015 Interprocedural Analysis

Brute Force: Full Context-Sensitive Interprocedural Analysis

Invocation Graph [Emami94]
— Use an invocation graph, which distinguishes all calling chains
— Re-analyze callee for each distinct calling paths

void foo(int b) .
main Pros
{ hoo(b); }

/ \ — Precise
void goo (int c)

T TaeslEe T foo goo Cons
l — Exponentially expensive

main () — Recursion is tricky

{
int x, y;
foo (x) ;
goo (y) ;

}

March 4, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin
The University of Texas at Austin

Middle Ground: Use Call Graph and Compute Summaries

1 procedure f()
2 begin Goal
3 22t) — Represent procedure
. el Il relationships
5 call h() ca p
6 end

7 procedure g()

8 begin

9 call h()

10 call i()

11 end L
12 procedure h() Definition

ii’ begin — If program P consists of n procedures: py, . . ., p,
en

15 procedure i () — Static call graph of P is G, = (N,S,E,r)

16 procedure j ~N= .

17 begin {ps, " Pu

18 end — S = {call-site labels}

19 begin _EcNxNxS

20 call g() =

21 call j() —r e N is start node

22 end
March 4, 2015 Interprocedural Analysis

Interprocedural Analysis: Summaries

Compute summary information for each procedure
— Summarize effect of called procedure for callers
— Summarize effect of callers for called procedure

Store summaries in database
— Use later when optimizing procedures

Pros
— Concise
— Can be fast to compute and use
— Separate compilation practical

Cons

— Imprecise if there’s only have one summary per procedure

March 4, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin
The University of Texas at Austin

Two Types of Information

Track information that flows into a procedure

— Sometimes known as propagation problems
e.g., What formals are constant?
e.g., Which formals are aliased to globals?

— Useful for optimizing the body of a procedure proc (x,y)

Track information that flows out of a procedure

— Sometimes known as side effect problems
e.g., Which globals are def’d/used by a procedure?
e.g., Which locals are def’d/used by a procedure?
e.g., Which actual parameters are def’d by a procedure?

— Useful for optimizing the code that calls a procedure

March 4, 2015 Interprocedural Analysis

Examples

Propagation Summaries
— May-Alias: The set of formals that may be aliased to globals and to each
other
— Must-Alias: The set of formals that are definitely aliased to globals and
to each other
— Constant: The set of formals that have constant value

Side-effect Summaries
— Mod: The set of variables possibly modified (defined) by a call to
a procedure
— Ref: The set of variables possibly read by a call to a procedure

— Kill: The set of variables that are definitely killed by a procedure
(e.g., in the liveness sense)

March 4, 2015 Interprocedural Analysis

CS380 C Compilers

11

Calvin Lin
The University of Texas at Austin

Computing Interprocedural Summaries

Top-down
— Summarize information about the caller (May-Alias, Must-Alias)

— Use this information inside the procedure body
int a;
void foo (int &b, &c) {

}

foo(a,a);

Bottom-up
— Summarize the effects of a call (Mod, Ref, Kill)

— Use this information around procedure calls
x =17;
foo (x) ;

y = x + 3;

March 4, 2015 Interprocedural Analysis

Context-Sensitivity of Summaries

None (zero levels of the call path)

— Forward propagation: Meet (or smear) information from all callers to
particular callee

— Side-effects: Use side-effect information for callee at all callsites

Callsite (one level of the call path)
— Forward propagation: Label data-flow information with callsite
— Side-effects: Affects alias analysis, which in turn affects side-effects

March 4, 2015 Interprocedural Analysis

CS380 C Compilers

12

Calvin Lin
The University of Texas at Austin

Context-Sensitivity of Summaries (cont)

k levels of call path (k-limiting)

— Forward propagation: Label data-flow information with k levels of the
call path

— Side-effects: Affects alias analysis, which in turn affects side-effects

main

/N

foo goo

I

hoo hoo k-levels of the call chain

I

March 4, 2015 Interprocedural Analysis

Bi-Directional Interprocedural Summaries

Interprocedural Constant Propagation (ICP)
— Information flows from caller to callee and back

int a,b,c,d; The calling context tells us that the formal e is

void foo (e) {
a=>b+ c;
d=e + 2;

}

foo (3) ;

bound to the constant 3, which enables constant
propagation within £oo ()

After calling £oo () we know that the constant
5 (3+2) propagates to the global d

Interprocedural Alias Analysis
— Forward propagation: aliasing due to reference parameters
— Side-effects: points-to relationships due to multi-level pointers

March 4, 2015

CS380 C Compilers

Interprocedural Analysis

13

Calvin Lin
The University of Texas at Austin

Alternative to Interprocedural Analysis: Inlining

Idea
— Replace call with procedure body

Pros
— Reduces call overhead
— Exposes calling context to procedure body
— Exposes side effects of procedure to caller
— Simple!

Cons
— Code bloat (decreases the efficacy of caches, branch predictor, etc)
— Can’t always statically determine callee (e.g., in OO languages)
— Library source is usually unavailable

— Can’t always inline (recursion)

March 4, 2015 Interprocedural Analysis

Inlining Policies

The hard question
— How do we decide which calls to inline?

Many possible heuristics
— Only inline small functions o _
— Let the programmer decide using an inline directive ‘[" Oblivious to callsite
— Use a code expansion budget [Ayers, et al *97] 7

— Use profiling or instrumentation to identify hot paths—inline along the
hot paths [Chang, et al *92]

— JIT compilers do this
— Use inlining trials for object oriented languages [Dean & Chambers *94]
— Keep a database of functions, their parameter types, and the benefit of
inlining
— Keeps track of indirect benefit of inlining
— Effective in an incrementally compiled language
March 4, 2015 Interprocedural Analysis

CS380 C Compilers

14

Calvin Lin
The University of Texas at Austin

Alternative to Interprocedural Analysis: Cloning

Procedure Cloning/Specialization
— Create a customized version of procedure for particular call sites
— Compromise between inlining and interprocedural optimization

Pros
— Less code bloat than inlining
— Recursion is not an issue (as compared to inlining)
— Better caller/callee optimization potential (versus interprocedural analysis)

Cons
— Still some code bloat (versus interprocedural analysis)
— May have to do interprocedural analysis anyway
— e.g. Interprocedural constant propagation can guide cloning

March 4, 2015 Interprocedural Analysis

Evaluation

Most compilers avoid interprocedural analysis
— It’s expensive and complex
— Not beneficial for most classical optimizations
— Separate compilation + interprocedural analysis requires recompilation
analysis [Burke and Torczon’93]
— Can’t analyze library code

When is it useful?
— Pointer analysis
— Constant propagation
— Object oriented class analysis
— Security and error checking
— Program understanding and re-factoring
— Code compaction

— Parallelization :
March 4, 2015 Interprocedural Analysis

> Modern uses of compilers

)

CS380 C Compilers

15

Calvin Lin
The University of Texas at Austin

Other Trends

Cost of procedures is growing
— More of them and they’re smaller (OO languages)
— Modern machines demand precise information (memory aliasing)

Cost of inlining is growing
— Code bloat degrades efficacy of many modern structures
— Procedures are being used more extensively

Programs are becoming larger

Cost of interprocedural analysis is shrinking
— Faster machines
— Better methods

March 4, 2015 Interprocedural Analysis

Concepts

Call graphs, invocation graphs
Analysis versus optimization
Characteristic of interprocedural analysis
— Flow sensitivity, context sensitivity, path sensitivity
— Smearing
Approaches
— Context sensitive, supergraph, summaries
— Bottom-up, top-down, bi-directional, iterative
Propagation versus side-effect problems
Alternatives to interprocedural analysis
— Inlining
— Procedure cloning

March 4, 2015 Interprocedural Analysis

CS380 C Compilers

16

Calvin Lin
The University of Texas at Austin

Next Time

Lecture
— Flow-insensitive analysis
— Look at pointer analysis as an important special case

March 4, 2015 Interprocedural Analysis

CS380 C Compilers

17

