
Calvin Lin

The University of Texas at Austin

CS380 C Compilers 1

March 4, 2015 Interprocedural Analysis 1

Interprocedural Analysis

Last time

– Introduction to alias analysis

Today

– Interprocedural analysis

March 4, 2015 Interprocedural Analysis 2

Motivation

Procedural abstraction

– Cornerstone of programming

– Introduces barriers to analysis

Example

void f(int x)

{

if (x)

foo();

else

bar();

}

. . .

f(0);

f(1);

Example

x = 5;

foo(p);

y = x+1;

What is the calling

context of f()?

Does foo()

modify x?

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 2

March 4, 2015 Interprocedural Analysis 3

Function Calls and Pointers

Recall

– Function calls can affect our points-to sets

e.g., p1 = &x;

p2 = &p1;

...

foo();

Be conservative

– Lose a lot of information

{(p1x), (p2p1)}

???

March 4, 2015 Interprocedural Analysis 4

Interprocedural Analysis

Goal

– Avoid making conservative assumptions about the effects of procedures

and the state at call sites

Terminology

int a, e; // Globals

void foo(int &b, &c) // Formal parameters

{

b = c;

}

main()

{

int d; // Local variables

foo(a, d); // Actual parameters

}

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 3

March 4, 2015 Interprocedural Analysis 5

Interprocedural Analysis vs. Interprocedural Optimization

Interprocedural analysis

– Gather information across multiple procedures

(typically across the entire program)

– Use this information to improve intra-procedural analyses and

optimization (e.g., CSE)

Interprocedural optimizations

– Optimizations that involve multiple procedures

e.g., Inlining, procedure cloning, interprocedural register allocation

– Optimizations that use interprocedural analysis

March 4, 2015 Interprocedural Analysis 6

Dimensions of Interprocedural Analysis

Flow-sensitive vs. flow-insensitive

Context-sensitive vs. context-insensitive

Path-sensitive vs. path-insensitive

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 4

March 4, 2015 Interprocedural Analysis 7

Flow Sensitivity

Flow-sensitive analysis

– Computes one answer for every program point

– Requires iterative data-flow analysis or similar technique

Flow-insensitive analysis

– Ignores control flow

– Computes one answer for every procedure

– Faster but less accurate than flow-sensitive analysis

March 4, 2015 Interprocedural Analysis 8

Flow Sensitivity Example

Is x constant?

void f(int x)

{

x = 4;

. . .

x = 5;

}

Flow-sensitive analysis

– Computes an answer at every program

point:

– x is 4 after the first assignment

– x is 5 after the second assignment

Flow-insensitive analysis

– Computes one answer for the entire

procedure:

– x is not constant

Where have we seen examples of flow-insensitive analysis?

– Address Taken pointer analysis

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 5

March 4, 2015 Interprocedural Analysis 9

Context Sensitivity

Context-sensitive analysis

– Re-analyzes callee for each caller

– Also known as polyvariant analysis

Context-insensitive analysis

– Perform one analysis independent of callers

– Also known as monovariant analysis

March 4, 2015 Interprocedural Analysis 10

Context Sensitivity Example

Is x constant? Context-sensitive analysis

– Computes an answer for every callsite:

– x is 4 in the first call

– x is 5 in the second call

Context-insensitive analysis

– Computes one answer for all callsites:

– x is not constant

– Suffers from unrealizable paths:

– Can mistakenly conclude that

id(4) can return 5 because we

merge (smear) information from all

callsites

a = id(4); b = id(5);

id(x) { return x; }

4 5

a = id(4); b = id(5);

id(x) { return x; }

4,5 4,5

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 6

March 4, 2015 Interprocedural Analysis 11

Path Sensitivity

Path-sensitive analysis

– Computes one answer for every execution path

– Subsumes flow-sensitivity and context-sensitivity

– Extremely expensive

Path-insensitive

– Not path-sensitive

March 4, 2015 Interprocedural Analysis 12

Path Sensitivity Example

Is x constant? Path-sensitive analysis

– Computes an answer for every path:

– x is 4 at the end of the left path

– x is 5 at the end of the right path

Path-insensitive analysis

– Computes one answer for all paths:

– x is not constant

if (x==0)

x = 4; x = 5;

print(x)
4 5

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 7

March 4, 2015 Interprocedural Analysis 13

Dimensions of Interprocedural Analysis (cont)

Flow-insensitive context-insensitive (FICI)

int** foo(int **p, **q)
{

int **x;

x = p;
. . .
x = q;
return x;

}

int main()
{

int **a, *b, *d, *f,
c, e;

a = foo(&b, &f);
*a = &c;
a = foo(&d, &g);
*a = &e;

}

p {b, d}

q {f, g}

x {b, d, f, g}

a {b, d, f, g}

b {c, e}

d {c, e}

f {c, e}

g {c, e}

March 4, 2015 Interprocedural Analysis 14

Dimensions of Interprocedural Analysis (cont)

Flow-sensitive context-insensitive (FSCI)

int** foo(int **p, **q)
{

int **x;

x = p;
. . .
x = q;
return x;

}

int main()
{

int **a, *b, *d, *f,
c, e;

a = foo(&b, &f);
*a = &c;
a = foo(&d, &g);
*a = &e;

}

p {b, d}

q {f, g}

x1 {b, d}

x2 {f, g}

a1 {f, g}

a2 {f, g}

f1 {c}

g1 {c}

f2 {c, e}

g2 {c, e}

p {b, d}

q {f, g}

x {b, d, f, g}

a {b, d, f, g}

b {c, e}

d {c, e}

f {c, e}

g {c, e}

FICI FSCI

Weak update

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 8

March 4, 2015 Interprocedural Analysis 15

Interprocedural Analysis: Supergraphs

Compose the CFGs for all procedures via the call graph

– Connect call nodes to entry nodes of callees

– Connect return nodes of callees back to calls

– Called control-flow supergraph

Pros

– Simple

– Intraprocedural analysis algorithms work unchanged

– Reasonably effective

x=3

foo(x) y=x+1

. . .

return

foo()

foo(1)

March 4, 2015 Interprocedural Analysis 16

Monday’s Example Revisited

{

int x, y, a;

int *p;

p = &a;

x = 5;

foo(&x);

y = x + 1;

}

Is x constant?

– With a supergraph, run our same IDFA
algorithm

– Determine that x = 5

foo (int *p)

{

return p;

}

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 9

March 4, 2015 Interprocedural Analysis 17

Supergraphs (cont)

Compose the CFGs for all procedures via the call graph

– Connect call nodes to entry nodes of callees

– Connect return nodes of callees back to calls

– Called control-flow supergraph

Cons

– Accuracy?

– Performance?

– No separate compilation

Smears information from different contexts.

IDFA is O(n4), graphs can be huge

IDFA converges in d+2 iterations, where d is the

Number of nested loops [Kam & Ullman ’76].

x=3

foo(x) y=x+1

. . .

return

foo()

Graphs will have many cycles (one per callsite)

foo(1)

March 4, 2015 Interprocedural Analysis 18

Invocation Graph [Emami94]

– Use an invocation graph, which distinguishes all calling chains

– Re-analyze callee for each distinct calling paths

void foo(int b)

{ hoo(b); }

void goo(int c)

{ hoo(c); }

main()

{

int x, y;

foo(x);

goo(y);

}

Brute Force: Full Context-Sensitive Interprocedural Analysis

main

foo goo

hoo hoo

Pros

– Precise

Cons

– Exponentially expensive

– Recursion is tricky

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 10

March 4, 2015 Interprocedural Analysis 19

Middle Ground: Use Call Graph and Compute Summaries

1 procedure f()

2 begin

3 call g()

4 call g()

5 call h()

6 end

7 procedure g()

8 begin

9 call h()

10 call i()

11 end

12 procedure h()

13 begin

14 end

15 procedure i()

16 procedure j()

17 begin

18 end

19 begin

20 call g()

21 call j()

22 end

10

f

g h

i j

3,4 5

9

20

21Definition

– If program P consists of n procedures: p1, . . ., pn

– Static call graph of P is GP = (N,S,E,r)

– N = {p1, . . ., pn}

– S = {call-site labels}

– E  N  N  S

– r  N is start node

Goal

– Represent procedure

call relationships

March 4, 2015 Interprocedural Analysis 20

Interprocedural Analysis: Summaries

Compute summary information for each procedure

– Summarize effect of called procedure for callers

– Summarize effect of callers for called procedure

Store summaries in database

– Use later when optimizing procedures

Pros

– Concise

– Can be fast to compute and use

– Separate compilation practical

Cons

– Imprecise if there’s only have one summary per procedure

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 11

March 4, 2015 Interprocedural Analysis 21

Track information that flows into a procedure

– Sometimes known as propagation problems

e.g., What formals are constant?

e.g., Which formals are aliased to globals?

– Useful for optimizing the body of a procedure

Track information that flows out of a procedure

– Sometimes known as side effect problems

e.g., Which globals are def’d/used by a procedure?

e.g., Which locals are def’d/used by a procedure?

e.g., Which actual parameters are def’d by a procedure?

– Useful for optimizing the code that calls a procedure

Two Types of Information

proc (x,y)

{

. . .

}

March 4, 2015 Interprocedural Analysis 22

Examples

Propagation Summaries

– May-Alias: The set of formals that may be aliased to globals and to each

other

– Must-Alias: The set of formals that are definitely aliased to globals and

to each other

– Constant: The set of formals that have constant value

Side-effect Summaries

– Mod: The set of variables possibly modified (defined) by a call to

a procedure

– Ref: The set of variables possibly read by a call to a procedure

– Kill: The set of variables that are definitely killed by a procedure

(e.g., in the liveness sense)

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 12

March 4, 2015 Interprocedural Analysis 23

Computing Interprocedural Summaries

Top-down

– Summarize information about the caller (May-Alias, Must-Alias)

– Use this information inside the procedure body

int a;

void foo(int &b, &c){

. . .

}

foo(a,a);

Bottom-up

– Summarize the effects of a call (Mod, Ref, Kill)

– Use this information around procedure calls

x = 7;

foo(x);

y = x + 3;

March 4, 2015 Interprocedural Analysis 24

Context-Sensitivity of Summaries

None (zero levels of the call path)

– Forward propagation: Meet (or smear) information from all callers to

particular callee

– Side-effects: Use side-effect information for callee at all callsites

Callsite (one level of the call path)

– Forward propagation: Label data-flow information with callsite

– Side-effects: Affects alias analysis, which in turn affects side-effects

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 13

March 4, 2015 Interprocedural Analysis 25

Context-Sensitivity of Summaries (cont)

k levels of call path (k-limiting)

– Forward propagation: Label data-flow information with k levels of the

call path

– Side-effects: Affects alias analysis, which in turn affects side-effects

main

foo goo

hoo hoo k-levels of the call chain

yoo yoo

March 4, 2015 Interprocedural Analysis 26

Interprocedural Constant Propagation (ICP)

– Information flows from caller to callee and back

int a,b,c,d;

void foo(e){

a = b + c;

d = e + 2;

}

foo(3);

Interprocedural Alias Analysis

– Forward propagation: aliasing due to reference parameters

– Side-effects: points-to relationships due to multi-level pointers

Bi-Directional Interprocedural Summaries

The calling context tells us that the formal e is

bound to the constant 3, which enables constant

propagation within foo()

After calling foo() we know that the constant

5 (3+2) propagates to the global d

e

d

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 14

March 4, 2015 Interprocedural Analysis 27

Alternative to Interprocedural Analysis: Inlining

Idea

– Replace call with procedure body

Pros

– Reduces call overhead

– Exposes calling context to procedure body

– Exposes side effects of procedure to caller

– Simple!

Cons

– Code bloat (decreases the efficacy of caches, branch predictor, etc)

– Can’t always statically determine callee (e.g., in OO languages)

– Library source is usually unavailable

– Can’t always inline (recursion)

March 4, 2015 Interprocedural Analysis 28

Inlining Policies

The hard question

– How do we decide which calls to inline?

Many possible heuristics

– Only inline small functions

– Let the programmer decide using an inline directive

– Use a code expansion budget [Ayers, et al ’97]

– Use profiling or instrumentation to identify hot paths—inline along the

hot paths [Chang, et al ’92]

– JIT compilers do this

– Use inlining trials for object oriented languages [Dean & Chambers ’94]

– Keep a database of functions, their parameter types, and the benefit of

inlining

– Keeps track of indirect benefit of inlining

– Effective in an incrementally compiled language

Oblivious to callsite

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 15

March 4, 2015 Interprocedural Analysis 29

Alternative to Interprocedural Analysis: Cloning

Procedure Cloning/Specialization

– Create a customized version of procedure for particular call sites

– Compromise between inlining and interprocedural optimization

Pros

– Less code bloat than inlining

– Recursion is not an issue (as compared to inlining)

– Better caller/callee optimization potential (versus interprocedural analysis)

Cons

– Still some code bloat (versus interprocedural analysis)

– May have to do interprocedural analysis anyway

– e.g. Interprocedural constant propagation can guide cloning

March 4, 2015 Interprocedural Analysis 30

Evaluation

Most compilers avoid interprocedural analysis

– It’s expensive and complex

– Not beneficial for most classical optimizations

– Separate compilation + interprocedural analysis requires recompilation

analysis [Burke and Torczon’93]

– Can’t analyze library code

When is it useful?

– Pointer analysis

– Constant propagation

– Object oriented class analysis

– Security and error checking

– Program understanding and re-factoring

– Code compaction

– Parallelization

Modern uses of compilers

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 16

March 4, 2015 Interprocedural Analysis 31

Other Trends

Cost of procedures is growing

– More of them and they’re smaller (OO languages)

– Modern machines demand precise information (memory aliasing)

Cost of inlining is growing

– Code bloat degrades efficacy of many modern structures

– Procedures are being used more extensively

Programs are becoming larger

Cost of interprocedural analysis is shrinking

– Faster machines

– Better methods

March 4, 2015 Interprocedural Analysis 32

Concepts

Call graphs, invocation graphs

Analysis versus optimization

Characteristic of interprocedural analysis

– Flow sensitivity, context sensitivity, path sensitivity

– Smearing

Approaches

– Context sensitive, supergraph, summaries

– Bottom-up, top-down, bi-directional, iterative

Propagation versus side-effect problems

Alternatives to interprocedural analysis

– Inlining

– Procedure cloning

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 17

March 4, 2015 Interprocedural Analysis 33

Next Time

Lecture

– Flow-insensitive analysis

– Look at pointer analysis as an important special case

