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Flow-Insensitive Pointer Analysis

Last time
— Interprocedural analysis
— Dimensions of precision (flow- and context-sensitivity)
— Flow-Sensitive Pointer Analysis

Today
— Flow-Insensitive Pointer Analysis
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Flow-Insensitive Pointer Analysis

The defining characteristics

— Ignore the control-flow graph, and assume that statements can execute in
any order

— Rather than producing a solution for each program point, produce a single
solution that is valid for the whole program

Flow-insensitive pointer analyses
— Andersen-style analysis: the slowest and most precise
— Steensgaard analysis:  the fastest and least precise
— All other flow-insensitive pointer analyses are hybrids of these two
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Andersen-Style Pointer Analysis [1994]
Basic idea

— View pointer assignments as constraints
— Use these constraints to propagate points-to information
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Andersen-Style Pointer Analysis [1994]

id £ - i
void foo() Derive set of constraints

= &f: on program variables
&c
= a;
if (C) { *e
}

Goal: compute the smallest points-to sets that
satisfy these constraints

March 9, 2015 Interprocedural Analysis

CS380 C Compilers



Calvin Lin

The University of Texas at Austin

CS380 C Compilers

Andersen-Style Pointer Analysis
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Constraint Graph

Notice that the constraint graph grows dynamically
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Andersen-Style Pointer Analysis

O-

Constraint Graph

Key Point
Performance depends on

1. number of edges added
2. propagation across edges

Notice that the constraint graph grows dynamically
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Inclusion-based Pointer Analysis

Essentially
— Computes the transitive closure of a dynamic graph

Naive algorithm doesn’t scale— O(n?)
— Too many edges added
— Quickly runs out of memory

Optimizations

— Cycle detection PLDI'07
— Location equivalence SAS'07
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Cycle Detection
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Cycle Detection

How do we detect cycles?

— They appear dynamically during the analysis
— Check for cycles too often — Too much overhead

— Check for cycles too infrequently — Lost opportunities
— Need to find a sweet spot

Two solutions [Hardekopf & Lin ‘07]
— Lazy Cycle Detection
— Hybrid Cycle Detection
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Lazy Cycle Detection

Fact
— Cycles cause identical points-to sets

Heuristic
— ldentical points-to sets indicate possible cycles

— Don’t look for a cycle unless we have evidence that one might exist
— Perform cycle detection when two nodes have identical points-to sets

Result

— Faster than all previous cycle detection schemes
— See paper for details
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Hybrid Cycle Detection— Offline Component

Constraint Graph *e — {a,b,d}
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Hybrid Cycle Detection— Online Component
-> *e — {a b,d}

/ *\Q
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Hybrid Cycle Detection— Online Component
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Finds cycles at earliest
possible opportunity

Never has to traverse
the constraint graph

March 9, 2015 Interprocedural Analysis

CS380 C Compilers



Calvin Lin
The University of Texas at Austin

Evaluation

Compare our work with previous state of the art
- First need to identify the state of the art

Rountev et al 2000 (OVS)
Heintze etal 2001 (HT)
Berndl et al 2003 (BLQ)
Pearce et al 2004 (PKH)

- For a fair comparison, we implement algorithms from scratch using the
same infrastructure

- Compare analysis time and memory consumption on 10 C benchmarks
with 100K — 2M LOC

March 9, 2015 Interprocedural Analysis

Evaluation

Higher represents
worse performance

Normalized
B Analysis Time
| Memory Consuumption

4x faster
7x less mem

Scales to 2M LOC

HT/OVS PKH/OVS BLQ/OVS
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Impact

Academic
— PLDI 2007 Best Paper Award
— Raised the bar for empirical evaluation

Industrial
— Implemented in gcc and LLVM compilers
— Implemented by Semantic Designs, Inc

— Some of their software engineering tools can now scale to over 12M
lines of C (previously stuck at 1M)
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Andersen-style Pointer Analysis — Procedure Calls

Program Constraints

foo (int* x) { x b

b4
return x;

a := foo(&b)

How do we handle procedure calls?

— Insert constraints for copying actual parameters to formal parameters
— Insert constraints for copying return values
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Steensgaard Pointer Analysis [1996]

Basic idea
— Further reduce precision by using equality constraints

— That is, information flows both ways, rather than from the right-hand side
to the left-hand side of the constraint

Tradeoffs
— Extremely imprecise
— A system of equality constraints can be solved in near-linear time

— Running time is O(n-a(n)), where a(n) is the inverse Ackermann’s
function.

~ a(2?) <4

Key idea
— The key to this algorithm is the Union-Find data structure.
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Steensgaard Pointer Analysis — Union-Find

The Union-Find data structure
— Maintains a set of disjoint sets and supports two operations:
— Find(x) : return the set containing x.
— Union(x,y) :  union the two sets containing x and y.

Set Representation

— Sets are represented by a distinguished element called the set
representative

— Each set is an inverted tree, with nodes pointing to their parents and the
set representative as the root
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Steensgaard Pointer Analysis — Union-Find

Union(a, b)

- Find(a)
- Find (b)
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Steensgaard Pointer Analysis — Union-Find

Union(a, c)

- Find(a)
- Find(c)

O—E—6 ©
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Steensgaard Pointer Analysis — Union-Find

Union(a, d)

- Find(a)
- Find (d)

O—CE—E—06
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Union-Find Optimizations

Two key optimizations

— Path compression

— Union-by-rank

— Together these optimizations yield near-linear time operations
Path compression

— Avoid redundant searches for the set representative

Union-by-rank

— When performing the Union operation, choose the set representative based
on the sizes of the two sets
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Steensgaard Pointer Analysis — Path Compression

Union(a, b)

- Find(a)
- Find (b)
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Steensgaard Pointer Analysis — Path Compression

Union(a, c)

- Find(a)
- Find(c)

O—E—0 ©
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Steensgaard Pointer Analysis — Path Compression

Union(a, d)

- Find(a)
- Find (d)

FOO—@
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Steensgaard Pointer Analysis — Union-by-Rank

Union(a, b)

- Find(a)
- Find (b)
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Steensgaard Pointer Analysis — Union-by-Rank

Union(a, c)

- Find (a)
- Find(c)

O—C—0 ©
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Steensgaard Pointer Analysis — Union-by-Rank

Union(a, d)

- Find(a)
- Find (d)

O—O0 @

What is the benefit of union-by-rank?
— It ensures that we update as few parent pointers as possible

— Consider the cost of selecting d as the new set representative in this last
union operation
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Steensgaard Pointer Analysis — Example 1

Program Constraints Points-to Relations
a := &b a = { br d }

c
a := &d e a
e

_a (2.9
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Steensgaard Pointer Analysis — the Algorithm

merge (x, y)
{
x = Find(x); y = Find(y)
if (x == y) then return;
Union(x,y) ;
merge (points-to (x) ,points-to(y)) ;

each constraint LHS = RHS
merge (LHS,RHS)
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Steensgaard Pointer Analysis — Example 2

Program
= &b

March 9, 2015

Constraints Points-to Relations
a={Db}

{d} e
e={al}
20
CD (9)

Cc =

Interprocedural Analysis

Steensgaard Pointer Analysis — Example 2

Program
:= &b
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Constraints _Points-to Relations
a={Db}

c = d

e = a
£ =

*e = c

}
}

Interprocedural Analysis
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Andersen vs. Steensgaard

int **a, *b, c, *d, e;

1: = &b;

2: &c;

3: &e;

4: = &d;
Andersen-style analysis

due to statement 4

Steensgaard analysis

due to statement 4
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The Big Picture

Precision vs. Performance

— Steensgaard’s analysis and Andersen’s analysis operate on abstractions of
the program text

— Instead of the CFG, they operate on sets
— These abstractions trade off precision for performance
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Concepts

Flow-insensitive pointer analysis

Andersen-style analysis
— Inclusion-based, subset-based

— Compute transitive closure of a dynamic graph

— Constraint graph
— Cycle elimination optimization

Steensgaard-style analysis
— Unification-based, equality-based
— Union-find data structure
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Next Time

Lecture
— Context-Sensitive Pointer Analysis
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