Calvin Lin
The University of Texas at Austin

Flow-Insensitive Pointer Analysis

Last time
— Interprocedural analysis
— Dimensions of precision (flow- and context-sensitivity)
— Flow-Sensitive Pointer Analysis

Today
— Flow-Insensitive Pointer Analysis

March 9, 2015 Interprocedural Analysis

Flow-Insensitive Pointer Analysis

The defining characteristics

— Ignore the control-flow graph, and assume that statements can execute in
any order

— Rather than producing a solution for each program point, produce a single
solution that is valid for the whole program

Flow-insensitive pointer analyses
— Andersen-style analysis: the slowest and most precise
— Steensgaard analysis: the fastest and least precise
— All other flow-insensitive pointer analyses are hybrids of these two

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin
The University of Texas at Austin

Andersen-Style Pointer Analysis [1994]
Basic idea

— View pointer assignments as constraints
— Use these constraints to propagate points-to information

March 9, 2015 Interprocedural Analysis

Andersen-Style Pointer Analysis [1994]

id £ - i
void foo() Derive set of constraints

= &f: on program variables
&c
= a;
if (C) { *e
}

Goal: compute the smallest points-to sets that
satisfy these constraints

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin

The University of Texas at Austin

CS380 C Compilers

Andersen-Style Pointer Analysis
Q-

o A

Constraint Graph

Notice that the constraint graph grows dynamically
March 9, 2015 Interprocedural Analysis

Andersen-Style Pointer Analysis

O-

Constraint Graph

Key Point
Performance depends on

1. number of edges added
2. propagation across edges

Notice that the constraint graph grows dynamically
March 9, 2015 Interprocedural Analysis

Calvin Lin
The University of Texas at Austin

Inclusion-based Pointer Analysis

Essentially
— Computes the transitive closure of a dynamic graph

Naive algorithm doesn’t scale— O(n?)
— Too many edges added
— Quickly runs out of memory

Optimizations

— Cycle detection PLDI'07
— Location equivalence SAS'07

March 9, 2015 Interprocedural Analysis

Cycle Detection

© /@ e
= \Q

ﬂ\e Ea
£

v
- Faehndrlch etal 1998

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin
The University of Texas at Austin

Cycle Detection

How do we detect cycles?

— They appear dynamically during the analysis
— Check for cycles too often — Too much overhead

— Check for cycles too infrequently — Lost opportunities
— Need to find a sweet spot

Two solutions [Hardekopf & Lin ‘07]
— Lazy Cycle Detection
— Hybrid Cycle Detection

March 9, 2015 Interprocedural Analysis

Lazy Cycle Detection

Fact
— Cycles cause identical points-to sets

Heuristic
— ldentical points-to sets indicate possible cycles

— Don’t look for a cycle unless we have evidence that one might exist
— Perform cycle detection when two nodes have identical points-to sets

Result

— Faster than all previous cycle detection schemes
— See paper for details

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin
The University of Texas at Austin

pria e Detectio
few cycles many cycles
chea Before the Hybrid Cycle
P Analysis Detection
. During the
expensive Analysis
gdea: Pre-proce e CO a grap an o e
0, PDOIE 0, dKE e 0 e CO PDOIIE Ol€ € e
O cOompone
ompo DET0
ompo 0 0

Hybrid Cycle Detection— Offline Component

Constraint Graph *e — {a,b,d}

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin
The University of Texas at Austin

Hybrid Cycle Detection— Online Component
-> *e — {a b,d}

/ *\Q

March 9, 2015 Interprocedural Analysis

Hybrid Cycle Detection— Online Component

= ne
e 277

Finds cycles at earliest
possible opportunity

Never has to traverse
the constraint graph

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin
The University of Texas at Austin

Evaluation

Compare our work with previous state of the art
- First need to identify the state of the art

Rountev et al 2000 (OVS)
Heintze etal 2001 (HT)
Berndl et al 2003 (BLQ)
Pearce et al 2004 (PKH)

- For a fair comparison, we implement algorithms from scratch using the
same infrastructure

- Compare analysis time and memory consumption on 10 C benchmarks
with 100K — 2M LOC

March 9, 2015 Interprocedural Analysis

Evaluation

Higher represents
worse performance

Normalized
B Analysis Time
| Memory Consuumption

4x faster
7x less mem

Scales to 2M LOC

HT/OVS PKH/OVS BLQ/OVS

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin
The University of Texas at Austin

Impact

Academic
— PLDI 2007 Best Paper Award
— Raised the bar for empirical evaluation

Industrial
— Implemented in gcc and LLVM compilers
— Implemented by Semantic Designs, Inc

— Some of their software engineering tools can now scale to over 12M
lines of C (previously stuck at 1M)

March 9, 2015 Interprocedural Analysis

Andersen-style Pointer Analysis — Procedure Calls

Program Constraints

foo (int* x) { x b

b4
return x;

a := foo(&b)

How do we handle procedure calls?

— Insert constraints for copying actual parameters to formal parameters
— Insert constraints for copying return values

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin
The University of Texas at Austin

Steensgaard Pointer Analysis [1996]

Basic idea
— Further reduce precision by using equality constraints

— That is, information flows both ways, rather than from the right-hand side
to the left-hand side of the constraint

Tradeoffs
— Extremely imprecise
— A system of equality constraints can be solved in near-linear time

— Running time is O(n-a(n)), where a(n) is the inverse Ackermann’s
function.

~ a(2?) <4

Key idea
— The key to this algorithm is the Union-Find data structure.

March 9, 2015 Interprocedural Analysis

Steensgaard Pointer Analysis — Union-Find

The Union-Find data structure
— Maintains a set of disjoint sets and supports two operations:
— Find(x) : return the set containing x.
— Union(x,y) : union the two sets containing x and y.

Set Representation

— Sets are represented by a distinguished element called the set
representative

— Each set is an inverted tree, with nodes pointing to their parents and the
set representative as the root

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

10

Calvin Lin
The University of Texas at Austin

Steensgaard Pointer Analysis — Union-Find

Union(a, b)

- Find(a)
- Find (b)

March 9, 2015 Interprocedural Analysis

Steensgaard Pointer Analysis — Union-Find

Union(a, c)

- Find(a)
- Find(c)

O—E—6 ©

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

11

Calvin Lin
The University of Texas at Austin

Steensgaard Pointer Analysis — Union-Find

Union(a, d)

- Find(a)
- Find (d)

O—CE—E—06

March 9, 2015 Interprocedural Analysis

Union-Find Optimizations

Two key optimizations

— Path compression

— Union-by-rank

— Together these optimizations yield near-linear time operations
Path compression

— Avoid redundant searches for the set representative

Union-by-rank

— When performing the Union operation, choose the set representative based
on the sizes of the two sets

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

12

Calvin Lin
The University of Texas at Austin

Steensgaard Pointer Analysis — Path Compression

Union(a, b)

- Find(a)
- Find (b)

March 9, 2015 Interprocedural Analysis

Steensgaard Pointer Analysis — Path Compression

Union(a, c)

- Find(a)
- Find(c)

O—E—0 ©

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

13

Calvin Lin
The University of Texas at Austin

Steensgaard Pointer Analysis — Path Compression

Union(a, d)

- Find(a)
- Find (d)

FOO—@

March 9, 2015 Interprocedural Analysis

Steensgaard Pointer Analysis — Union-by-Rank

Union(a, b)

- Find(a)
- Find (b)

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

14

Calvin Lin
The University of Texas at Austin

Steensgaard Pointer Analysis — Union-by-Rank

Union(a, c)

- Find (a)
- Find(c)

O—C—0 ©

March 9, 2015 Interprocedural Analysis

Steensgaard Pointer Analysis — Union-by-Rank

Union(a, d)

- Find(a)
- Find (d)

O—O0 @

What is the benefit of union-by-rank?
— It ensures that we update as few parent pointers as possible

— Consider the cost of selecting d as the new set representative in this last
union operation

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

15

Calvin Lin
The University of Texas at Austin

Steensgaard Pointer Analysis — Example 1

Program Constraints Points-to Relations
a := &b a = { br d }

c
a := &d e a
e

_a (2.9

March 9, 2015 Interprocedural Analysis

Steensgaard Pointer Analysis — the Algorithm

merge (x, y)
{
x = Find(x); y = Find(y)
if (x == y) then return;
Union(x,y) ;
merge (points-to (x) ,points-to(y)) ;

each constraint LHS = RHS
merge (LHS,RHS)

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

Calvin Lin

The University of Texas at Austin

Steensgaard Pointer Analysis — Example 2

Program
= &b

March 9, 2015

Constraints Points-to Relations
a={Db}

{d} e
e={al}
20
CD (9)

Cc =

Interprocedural Analysis

Steensgaard Pointer Analysis — Example 2

Program
:= &b

March 9, 2015

CS380 C Compilers

Constraints _Points-to Relations
a={Db}

c = d

e = a
£ =

*e = c

}
}

Interprocedural Analysis

17

Calvin Lin
The University of Texas at Austin

Andersen vs. Steensgaard

int **a, *b, c, *d, e;

1: = &b;

2: &c;

3: &e;

4: = &d;
Andersen-style analysis

due to statement 4

Steensgaard analysis

due to statement 4

March 9, 2015 Interprocedural Analysis

The Big Picture

Precision vs. Performance

— Steensgaard’s analysis and Andersen’s analysis operate on abstractions of
the program text

— Instead of the CFG, they operate on sets
— These abstractions trade off precision for performance

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

18

Calvin Lin
The University of Texas at Austin

Concepts

Flow-insensitive pointer analysis

Andersen-style analysis
— Inclusion-based, subset-based

— Compute transitive closure of a dynamic graph

— Constraint graph
— Cycle elimination optimization

Steensgaard-style analysis
— Unification-based, equality-based
— Union-find data structure

March 9, 2015 Interprocedural Analysis

Next Time

Lecture
— Context-Sensitive Pointer Analysis

March 9, 2015 Interprocedural Analysis

CS380 C Compilers

19

