
1

1

Client-Driven Pointer

Analysis

Samuel Z. Guyer

Calvin Lin

June 2003

T H E U N I V E R S I T Y O F

T E X A S
A T A U S T I N

2

Security vulnerabilities

 How does remote hacking work?
 Most are not direct attacks (e.g., cracking passwords)

 Idea: trick a program into unintended behavior

 Example:

 Vulnerability: executes any remote command
 What if this program runs as root?

 Clearly domain-specific: sockets, processes, etc.

 Requirement:

int sock;

char buffer[100];

sock = socket(AF_INET, SOCK_STREAM, 0);

read(sock, buffer, 100);

execl(buffer);

Data from an Internet socket should

not specify a program to execute

!

2

3

Detecting vulnerabilities

 What is needed to detect these vulnerabilities?

 Need to define the problem:

 Domain-specific

 Lie outside of the semantics of the C language

 Libraries control all critical system services

 Communication, file access, process control

 Analyze library routines to approximate vulnerability

 Need precise pointer analysis

 Precision can be prohibitively expensive

4

The Broadway Compiler

 Broadway – source-to-source C compiler

Domain-independent compiler mechanisms

 Annotations – lightweight specification language

Domain-specific analyses and transformations

Many libraries, one compiler

Application
Source code

Library
Annotations

Header files

Source code

Broadway

Analyzer

Optimizer

Error reports
Library-specific messages

Application+Library
Optimized source code

Compiler

3

5

Overview

 Defining error detection problems

 Adaptive pointer analysis

 Experimental results

 Future work

6

Annotations (I)

 Dependence and pointer information

 Describe pointer structures

 Indicate which objects are accessed and modified

procedure fopen(pathname, mode)

{

on_entry { pathname --> path_string

mode --> mode_string }

access { path_string, mode_string }

on_exit { return --> new file_stream }

}

4

7

Annotations (II)

 Library-specific properties

Dataflow lattices

property State : { Open, Closed}

initially Open

property Kind : { File,

Socket { Local, Remote } }

SocketFile

Local Remote
OpenClosed

^

^
^

^

8

Annotations (III)

 Effects of library routines

Dataflow transfer functions

procedure socket(domain, type, protocol)

{

analyze Kind {

if (domain == AF_UNIX) IOHandle <- Local

if (domain == AF_INET) IOHandle <- Remote

}

analyze State { IOHandle <- Open }

on_exit { return --> new IOHandle }

}

5

9

Annotations (IV)

 Reports and transformations

procedure execl(path, args)

{

on_entry { path --> path_string }

report if (Kind : path_string could-be Remote)

“Error at “ ++ $callsite ++ “: remote access”;

}

procedure slow_routine(first, second)

{

when (condition)

replace-with %{ quick_check($first);

fast_routine($first, $second); }%

}

10

Overview

 Defining error detection problems

 Adaptive pointer analysis

 Experimental results

 Future work

6

11

Pointer analysis

 Pointer analysis: not a stand-alone analysis

Supports other client analyses

 Today’s focus:

 Client analysis – analysis for detecting errors

 Pointer analysis algorithm – choose precision

Pointer

Analyzer

Client

Analysis
Memory

Model
OutputErrors

Error

Detector

CIFI Context & Flow Insensitive

CIFS Flow Sensitive CSFS Context & Flow Sensitive

CSFI Context Sensitive

12

The problem with pointer analysis

 Real-life scenario:

Check for security vulnerabilities in BlackHole mail filter

 Manually inspect reported errors

 One thing in common: a string processing routine

 Clone procedure = ad hoc context sensitivity

 Using CIFI, all 85 false positives go away

Can we automate this process?

Pointer

Analyzer
Memory

Model

Fast analysis;

85 possible

errors

Error

Detector

CIFICIFSCSFS

25X slower;

85 possible

errors

Out of memory;

No results

7

13

Our solution

 Problems
 Cost-benefit tradeoff – severe for pointer analysis

 Precision choices are too coarse

 Choice is made a priori by the compiler writer

 Solution: Mixed precision analysis
 Apply higher precision where it’s needed

 Use cheap analysis elsewhere

Key: Let the needs of client drive precision
Customized precision policy created during analysis

14

Client-Driven Pointer Analysis

 Algorithm: [Guyer & Lin ’03]

 Start with fast cheap analysis: FI and CI

 Monitor: how imprecision causes information loss

 Adapt: Reanalyze with a customized precision policy

Dependence

Graph
MonitorInformation

Loss

Pointer

Analyzer

Client

Analysis
Memory

Model

Error

Reports

CIFI

Adaptor

Custom

Policy

8

15

 Example:
Context-insensitivity

 Information merged at call
 Analyzer reports 2 possible errors

 Only 1 real error

Imprecision leads to false positives ^

^

no errorerror

maybe

Lattice

Insufficient precision

!

main

socketexecl

execl

read

stdin

?
?

16

Client-Driven Pointer Analysis

Dependence

Graph
MonitorInformation

Loss

Pointer

Analyzer

Client

Analysis
Memory

Model

Error

Reports

CIFI

Adaptor

Custom

Policy

Analysis Framework

9

17

Analysis framework

 Iterative dataflow analysis

 Pointer analysis: flow values are points-to sets

 Client analysis: flow values form typestate lattice

 Fine-grained precision policies

 Context sensitivity: per procedure

 CS: Clone or inline procedure invocation

 CI: Merge values from all call sites

 Flow sensitivity: per memory location

 FS: Build factored use-def chains

 FI: Merge all assignments into a single flow value

18

Client-Driven Pointer Analysis

Dependence

Graph
MonitorInformation

Loss

Pointer

Analyzer

Client

Analysis
Memory

Model

Error

Reports

CIFI

Adaptor

Custom

Policy

The Monitor and Adaptor

10

19

Algorithm components

 Monitor

 Runs alongside main analysis

 Records imprecision

 Adaptor

 Start at the locations of reported errors

 Trace back to the cause and diagnose

?

20

Sources of imprecision

Polluting assignments

Multiple

assignments

x =

x =

x

foo()

Multiple

procedure calls

foo()

foo()

= f(,)

Conditions

if(cond)

x = x =

ptr

Polluted target

ptr

Polluted pointer

(*ptr)
or

Pointer

dereference

11

21

Adaptor

 After analysis...
 Start at the “maybe error” variables

 Find all reachable nodes – collect the diagnoses

Often a small subset of all imprecision

?

Dependence

Graph
Precision policy

CS: foo

CS: bar

FS: x

FS: ptrCS:bar

CS:foo

FS:x
FS:ptr

22

In action...

 Monitor analysis

 Polluting assignments

 Diagnose and apply “fix”
 In this case: one procedure context-sensitive

 Reanalyze

main

socketexecl

execl

read

stdin

?
?

readread

!

12

23

Overview

 Defining error detection problems

 Adaptive pointer analysis

 Experimental results

 Future work

24

Programs

 18 open source C programs

 Unmodified source – all the issues of production code

 Many are system tools – run in privileged mode

 Representative examples:

Name Description Priv Lines of code Procedures CFG nodes

muh IRC proxy  5K (25K) 84 5,191

blackhole E-mail filter  12K (244K) 71 21,370

wu-ftpd FTP daemon  22K (66K) 205 23,107

named DNS server  26K (84K) 210 25,452

nn News reader  36K (116K) 494 46,336

13

25

Error detection problems

 Remote access vulnerabillity:

 File access:

 Format string vulnerability (FSV):

 Remote FSV:

 FTP behavior:

Data from an Internet socket should

not specify a program to execute

Files must be open when accessed

Format string may not contain

untrusted data

Check if FSV is remotely exploitable

Can this program be tricked into

reading and transmitting arbitrary files

26

Methodology

 18 open source C programs

 5 typestate error checkers

 Compare client-driven with fixed-precision

 Goals:

 First, reduce number of errors reported

Conservative analysis – fewer is better

 Second, reduce analysis time

14

27

Increasing number of CFG nodes

Results

10X

0 0 0 0 0 0 07 29 6 85 28 2 31 4 5 93 41

0
0 0

0

0

0
0

7 18
6

85

15

1

26 4

5 89
41

0
7 18

6
15

1

26 4

5

88

41

CS-FI

CI-FS

CI-FI

CS-FS

Client-Driven
Remote access vulnerability

1000X

1

100X

N
o

rm
a
li
z
e
d

 a
n

a
ly

s
is

 t
im

e

0

0 0

0

7

29

28

310

0 0

7 15
26

? ? ? ? ? ? ? ? ? ? ??

28

Why it works

 Notice:

 Different clients have different precision requirements

 Amount of extra precision is small

Name

Total

procs

context-sensitive procedures

Remote

Access

File

Access

FSV RFSV FTP

muh 84 6

apache 313 8 2 2 10

blackhole 71 2 5

wu-ftpd 205 4 4 17

named 210 1 2 1 4

cfengine 421 4 1 3 31

nn 494 2 1 1 30

15

29

Why it works (cont)

 Notice:

 Different clients have different precision requirements

 Amount of extra precision is small

Name

flow-sensitive variables

Remote

Access

File

Access

FSV RFSV FTP

muh 0.1 0.07 0.31

apache 0.89 0.18 0.91 1.07 0.83

blackhole 0.24 0.04 0.32

wu-ftpd 0.63 0.09 0.51 0.53 0.23

named 0.14 0.01 0.23 0.20 0.42

cfengine 0.43 0.04 0.46 0.48 0.03

nn 1.82 0.17 1.99 2.03 0.97

30

Time

16

31

Conclusions

 Client-driven pointer analysis

 Precision should match the client and program

Not all pointers are equal

 Need fine-grained precision policies

Key: knowing where to add more and what kind

 Blueprint for scalable analysis

Use more expensive analysis on small parts of programs

32

Future work

 Improve scalability
 Sendmail takes 2 hours to analyze in CI-FI mode

 Use even faster pointer analysis: unification-based
algorithm

 Preliminary results: Can analyze sendmail in 1 minute

 Improve accuracy
 Add path-sensitivity

 Array accesses
 Array dependence testing

 Heap models
 Shape analysis

CI-FI
CI-FS CS-FI

CS-FS

Unification-based

Path-

sensitive. . .

17

33

Related work

 Pointer analysis and typestate error checking

 Iterative flow analysis [Plevyak & Chien ‘94]

 Demand-driven pointer analysis [Heintze & Tardieu ’01]

 Combined pointer analysis [Zhang, Ryder, Landi ’98]

 Effects of pointer analysis precision [Hind ’01 & others]

 More precision is more costly

 Does it help? Is it worth the cost?

Efficient and Extensible

Security Enforcement Using

Dynamic Data Flow Analysis

Walter Chang

Brandon Streiff

Calvin Lin

The University of Texas at Austin

18

Security Today

Buggy programs deployed on critical

servers

Legacy code in unsafe languages

Rapidly-evolving threats and attackers

 Inadequate developer training and

resources to fix problems

You know the drill - it’s why we’re here

today

What We’d Like

Potentially

Unsafe Program
Safe ProgramMagic Box

19

Haven’t We Seen This Before?

Many prior solutions

Attack-specific: StackGuard, FormatGuard

Monitors: SFI, IRMs, PQL

Taint: TaintCheck, Dytan, LIFT, GIFT, etc

Language: JiF, Cyclone

 All suffer from at least one of these problems

Handles only a specific attack

Requires significant developer intervention

High runtime overhead

Our Solution

Compiler-based solution

Handles a broad class of problems

Easily adapted to meet new threats

Minimal runtime overhead

Minimal developer effort

We address all three problems of

deployability, generality, and efficiency

How do we do this?

20

Our Solution

Potentially

Unsafe Program
Safe Program

Static

Analysis

Security

Policy

Compiler

Runtime

Library

Deployability

 Compiler-based solution; simply recompile your
program against your chosen policy
 Implemented as source-to-source translator

Platform and OS independent

Links with very small runtime helper library

Works on unmodified C source code

 Does not require
Language changes

Rewrite or redesign of program

Manual inspection and correction of errors

Special hardware or OS support

21

Generality

Policy is not hardcoded but is defined in
specification files
Fully general to typestate problems

Uses Broadway Annotation Language [Guy03]

Policy is not program-specific
Write once, use many

No special knowledge about program needed to
write policy

No special knowledge about policy needed to
apply to program

Policies

 Based on typestate analysis [Strom86]

 Intuition

Every object has a tag (or tags) associated

Tags are propagated and updated as program executes

Security checks use tag values

 Supports wide range of policies

Taint tracking

Privacy and information disclosure

Labeled security

Let’s see what this looks like in action…

22

Compiler-Based Dynamic Data Flow

int sock;

char buffer[100];

sock = socket(AF_INET, SOCK_STREAM, 0);

read(sock, buffer, 100);

printf(buffer);

Program contains format string vulnerability

Data read from an internet socket is used as a

format string

Compiler-Based Dynamic Data Flow

int sock;

char buffer[100];

int vs, vb; // Declare tags

sock = socket(AF_INET, SOCK_STREAM, 0);

vs = Tainted; // Set tags

read(sock, buffer, 100);

vb = vs;

if (vb != Tainted) // Check tags

{

printf(buffer);

}

By adding code that tracks the state of data,

we can prevent this attack (and many others!)

23

Policy Specification

Uses Broadway Annotation Language
[Guy03]

Specifies
Property (the tag values)

Propagation rules

Security checks (the policy itself)

Annotations are for library functions
Requires no application-specific annotations

Reusable across applications

Example - Taint and Format String

Property: Taint

Values: Tainted, Untainted

Relation: Tainted and Untainted combine to

Tainted

property Taint : { Tainted { Untainted } }

24

Example - Taint and Format String

 Input functions taint their inputs
procedure getchar() {

analyze { Taint : return <- Tainted }

}

Library functions propagate taint
procedure strcpy(dst, src) {

on_entry { dst -> dst_string

src -> src_string }

analyze {Taint: dst_string <- src_string }

}

Example - Taint and Format String

Policy: printf should not take a tainted

string for a format string
procedure printf(fmt, args) {

on_entry { fmt -> fmt_string }

error if(Taint: fmt_string could-be Tainted)

“Error, tainted format string”

}

Note that other taint-based policies can

reuse previous definitions

25

Example - File Disclosure

 Want to prevent remote users from downloading arbitrary
files (FTP-like behavior)

 Two properties

Trustedness: Trusted, Untrusted

Origin: File, Network, StdIn, etc

 Rules

Trustedness is similar to taint

 Input functions mark data with origin

 Policy

Prevent transmission of File data from files opened with
Untrusted filenames to Untrusted sockets

Cannot be precisely modeled with taint alone

Efficiency

General data/information flow systems have

been proposed, eg GIFT [Lam06]

 System must instrument every read and write

and track every object

Some optimizations possible [Qin06]

System-specific hacks are used [Xu06]

 Leads to high overhead

TaintCheck: 35X [Newsome05]

GIFT: +82% CPU time [Lam06]

LIFT: 7.9X for compute-bound programs [Qin06]

26

Improving Efficiency

Systems are inefficient because
They track too many irrelevant statements

They track too many irrelevant objects

Only a small proportion of the program is
involved in any given vulnerability
[Newsome05]

Goal: Eliminate instrumentation on
statements and objects that cannot affect
result of security checks

Eliminating Instrumentation

 Perform a static analysis to identify possible
policy violations
Uses client-driven pointer analysis and error checker

[Guy03]

Similar to static error checkers

 Determine which statements can affect results of
security check at possible violation
Data flow slicing: a new flow-value-based dependence

analysis

 Instrument only these statements
No other statements require instrumentation because

they cannot affect enforcement checks

27

Data Flow Slicing

Given: an object o at a location l

 The data flow slice is the set of S statements
and O objects via transitive closure as follows
 l is in S and o is in O

 If s’ defines some v in O, then s’ is in S

 If o’ is used by some s’ in S, then o’ is in O

 Intuitively
S is the set of all statements that can affect the flow

value of o at l

O is the set of all objects that can affect the flow value of
o at l

Computing the Data Flow Slice

 Flow values can only change when the
underlying object is used or defined

 Compute interprocedural use-def chains on
program objects

 Trace backwards from possible violations
The location of the violation is s

The objects involved are those whose flow values are
checked at s

 Use results from static data flow analysis to
determine if flow value may change at each
statement in the trace
Data flow slice is always a subset of data dependencies

28

Keys to Success

Data Flow Analysis is flexible

Dynamic DFA can enforce policies

Static DFA can approximate dynamic behavior

Scalable and precise static analysis

Interprocedural, whole-program - more precise

than any taint/info flow system

Scalable pointer analysis [Guy03]

Uses data flow analysis to deliver precise results

customized to each analysis and application

Experimental Evaluation

 Server Programs
5 open-source server programs

Sample policy: format string attacks

Verify prevention of attacks

Measure runtime overhead and code expansion

 Compute-bound Programs
4 SPECint programs with injected vulnerabilities

Measure runtime overhead and code expansion

 Complex Policies
Sample policy: file information disclosure

3 open-source server programs

Same metrics

29

Attack Detection

Program Version Exploit Detected

pfingerd 0.7.8 NISR16122002B Yes

muh 2.05c CAN-2000-0857 Yes

wu-ftpd 2.6.0 CVE-2000-0573 Yes

bind 4.9.4 CVE-2001-0013 Yes

Sample policy: format string attack prevention

All known attacks detected

Overhead - Server Programs

Program Original DDFA Overhead

pfinger 3.07s 3.19s 3.78%

muh 11.23ms 11.23ms 0%

wu-ftp 2.745MB/s 2.742MB/s 0.10%

bind 3.58ms 3.57ms -0.38%

apache 6.048MB/s 6.062MB/s -0.24%

Average Increase 0.65%

Compare with 6%-36X for previous systems

30

Overhead - Compute-Bound

Programs

Program Overhead

gzip 51.35%

vpr 0.44%

mcf -0.32%

crafty 0.25%

Average Increase 12.93%

Results are for injected errors, true overhead is 0%

Compare with 80%-36X for previous systems

Code Expansion - Server Programs

Program Original DDFA Overhead

pfinger 49,655 49,655 0.0%

muh 59,880 60,488 1.0%

wu-ftp 205,487 207,997 1.2%

bind 215,669 219,765 1.9%

apache 552,114 554,514 0.4%

Average Increase 0.9%

Precise static analysis minimizes additional code

31

File Disclosure Prevention

Program Code Expansion Response time

pfingerd 0% 0%

muh 2.67% 2.13%

bind 0.10% -1.38%

Average 0.92% 0.25%

More complex policies do not necessarily lead to

higher overhead

Static analysis ensures overhead is only what is

required for the program and policy

Recap

Our system delivers on three key concerns for
software security solutions
Deployability - no language, OS, or hardware changes

required, no additional developer effort

Generality - supports a wide variety of policies with easy
user extensibility

Efficiency - order-of-magnitude improvement over
previous best. Minimal overhead - less than 1% for
common uses

 Key is combination of static and dynamic
analysis

32

Related Work

 Taint Tracking

Binary [New05] [Cos05] [Qin06] [Cla07]

Compiler [Wal00] [Ngu05] [Xu06] [Lam06]

Hardware [Cra04] [Suh04] [Dal07]

 Static Analysis

Numerous [Sha01] [Ash02] [Eva02] [Guy03] etc…

Monitors and Integrity

Execution Monitors [Sch00] [Mar05] etc

Control Flow Integrity/Shepherding [Kir02] [Aba05] etc

Data Flow Integrity [Cas06]

Future Work

Software engineering possibilities

Can retrofit security functionality onto legacy

applications

Allows separation of concerns

Whole-system integration

Leverage OS features (capabilities, process

coloring, etc)

Provide whole-system data flow instead of

single-application

33

Thanks!

