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Security vulnerabilities

 How does remote hacking work?
 Most are not direct attacks (e.g., cracking passwords)

 Idea: trick a program into unintended behavior

 Example:

 Vulnerability: executes any remote command
 What if this program runs as root?

 Clearly domain-specific: sockets, processes, etc.

 Requirement:

int sock;

char buffer[100];

sock = socket(AF_INET, SOCK_STREAM, 0);

read(sock, buffer, 100);

execl(buffer);

Data from an Internet socket should 

not specify a program to execute

!
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Detecting vulnerabilities

 What is needed to detect these vulnerabilities?

 Need to define the problem:

 Domain-specific 

 Lie outside of the semantics of the C language

 Libraries control all critical system services

 Communication, file access, process control

 Analyze library routines to approximate vulnerability

 Need precise pointer analysis

 Precision can be prohibitively expensive
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The Broadway Compiler

 Broadway – source-to-source C compiler

Domain-independent compiler mechanisms

 Annotations – lightweight specification language

Domain-specific analyses and transformations

Many libraries, one compiler

Application
Source code

Library
Annotations

Header files

Source code

Broadway

Analyzer

Optimizer

Error reports
Library-specific messages

Application+Library
Optimized source code

Compiler
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Overview

 Defining error detection problems

 Adaptive pointer analysis

 Experimental results

 Future work
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Annotations (I)

 Dependence and pointer information

 Describe pointer structures

 Indicate which objects are accessed and modified

procedure fopen(pathname, mode)

{

on_entry { pathname --> path_string

mode --> mode_string }

access { path_string, mode_string }

on_exit { return --> new file_stream }

}
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Annotations (II)

 Library-specific properties

Dataflow lattices

property State : { Open, Closed}

initially Open

property Kind : { File,

Socket { Local, Remote } }

SocketFile

Local Remote
OpenClosed

^

^
^

^
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Annotations (III)

 Effects of library routines

Dataflow transfer functions

procedure socket(domain, type, protocol)

{

analyze Kind {

if (domain == AF_UNIX) IOHandle <- Local

if (domain == AF_INET) IOHandle <- Remote

}

analyze State { IOHandle <- Open }

on_exit { return --> new IOHandle }

}
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Annotations (IV)

 Reports and transformations

procedure execl(path, args)

{

on_entry { path --> path_string }

report if (Kind : path_string could-be Remote)

“Error at “ ++ $callsite ++ “: remote access”;

}

procedure slow_routine(first, second)

{

when (condition)

replace-with %{ quick_check($first);

fast_routine($first, $second); }%

}
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Overview

 Defining error detection problems

 Adaptive pointer analysis

 Experimental results

 Future work
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Pointer analysis

 Pointer analysis: not a stand-alone analysis

Supports other client analyses

 Today’s focus:

 Client analysis – analysis for detecting errors

 Pointer analysis algorithm – choose precision

Pointer 

Analyzer

Client 

Analysis
Memory 

Model
OutputErrors

Error 

Detector

CIFI Context & Flow Insensitive

CIFS Flow Sensitive CSFS Context & Flow Sensitive

CSFI Context Sensitive
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The problem with pointer analysis

 Real-life scenario:

Check for security vulnerabilities in BlackHole mail filter

 Manually inspect reported errors

 One thing in common: a string processing routine

 Clone procedure = ad hoc context sensitivity

 Using CIFI, all 85 false positives go away

Can we automate this process?

Pointer 

Analyzer
Memory 

Model

Fast analysis;

85 possible 

errors

Error 

Detector

CIFICIFSCSFS

25X slower;

85 possible 

errors

Out of memory;

No results
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Our solution

 Problems
 Cost-benefit tradeoff – severe for pointer analysis

 Precision choices are too coarse

 Choice is made a priori by the compiler writer

 Solution: Mixed precision analysis
 Apply higher precision where it’s needed

 Use cheap analysis elsewhere

Key: Let the needs of client drive precision
Customized precision policy created during analysis
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Client-Driven Pointer Analysis

 Algorithm:  [Guyer & Lin ’03]

 Start with fast cheap analysis: FI and CI

 Monitor: how imprecision causes information loss

 Adapt: Reanalyze with a customized precision policy

Dependence 

Graph
MonitorInformation 

Loss

Pointer 

Analyzer

Client 

Analysis
Memory 

Model

Error 

Reports

CIFI

Adaptor

Custom 

Policy
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 Example:
Context-insensitivity

 Information merged at call
 Analyzer reports 2 possible errors

 Only 1 real error

Imprecision leads to false positives ^

^

no errorerror

maybe

Lattice

Insufficient precision

!

main

socketexecl

execl

read

stdin

?
?
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Client-Driven Pointer Analysis

Dependence 

Graph
MonitorInformation 

Loss

Pointer 

Analyzer

Client 

Analysis
Memory 

Model

Error 

Reports

CIFI

Adaptor

Custom 

Policy

Analysis Framework
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Analysis framework

 Iterative dataflow analysis

 Pointer analysis: flow values are points-to sets

 Client analysis: flow values form typestate lattice

 Fine-grained precision policies

 Context sensitivity: per procedure

 CS: Clone or inline procedure invocation

 CI: Merge values from all call sites

 Flow sensitivity: per memory location

 FS: Build factored use-def chains

 FI: Merge all assignments into a single flow value
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Client-Driven Pointer Analysis

Dependence 

Graph
MonitorInformation 

Loss

Pointer 

Analyzer

Client 

Analysis
Memory 

Model

Error 

Reports

CIFI

Adaptor

Custom 

Policy

The Monitor and Adaptor
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Algorithm components

 Monitor

 Runs alongside main analysis

 Records imprecision

 Adaptor

 Start at the locations of reported errors

 Trace back to the cause and diagnose

?

20

Sources of imprecision

Polluting assignments

Multiple 

assignments

x = 

x = 

x  

foo(   )

Multiple 

procedure calls

foo(   )

foo(   )

= f(   ,   )

Conditions

if(cond)

x = x = 

ptr

Polluted target

ptr

Polluted pointer

(*ptr)
or

Pointer 

dereference
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Adaptor

 After analysis...
 Start at the “maybe error” variables

 Find all reachable nodes – collect the diagnoses

Often a small subset of all imprecision

?

Dependence

Graph
Precision policy

CS: foo

CS: bar

FS: x

FS: ptrCS:bar

CS:foo

FS:x
FS:ptr
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In action...

 Monitor analysis

 Polluting assignments

 Diagnose and apply “fix”
 In this case: one procedure context-sensitive

 Reanalyze

main

socketexecl

execl

read

stdin

?
?

readread

!
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Overview

 Defining error detection problems

 Adaptive pointer analysis

 Experimental results

 Future work
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Programs

 18 open source C programs

 Unmodified source – all the issues of production code

 Many are system tools – run in privileged mode

 Representative examples:

Name Description Priv Lines of code Procedures CFG nodes

muh IRC proxy  5K (25K) 84 5,191

blackhole E-mail filter  12K (244K) 71 21,370

wu-ftpd FTP daemon  22K (66K) 205 23,107

named DNS server  26K (84K) 210 25,452

nn News reader  36K (116K) 494 46,336
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Error detection problems

 Remote access vulnerabillity:

 File access: 

 Format string vulnerability (FSV):

 Remote FSV:

 FTP behavior:

Data from an Internet socket should 

not specify a program to execute

Files must be open when accessed

Format string may not contain 

untrusted data

Check if FSV is remotely exploitable

Can this program be tricked into 

reading and transmitting arbitrary files
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Methodology

 18 open source C programs

 5 typestate error checkers

 Compare client-driven with fixed-precision

 Goals:

 First, reduce number of errors reported

Conservative analysis – fewer is better

 Second, reduce analysis time
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Increasing number of CFG nodes

Results
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Why it works

 Notice:

 Different clients have different precision requirements

 Amount of extra precision is small

Name

Total 

procs

# context-sensitive procedures 

Remote

Access

File

Access

FSV RFSV FTP

muh 84 6

apache 313 8 2 2 10

blackhole 71 2 5

wu-ftpd 205 4 4 17

named 210 1 2 1 4

cfengine 421 4 1 3 31

nn 494 2 1 1 30
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Why it works (cont)

 Notice:

 Different clients have different precision requirements

 Amount of extra precision is small

Name

# flow-sensitive variables

Remote

Access

File

Access

FSV RFSV FTP

muh 0.1 0.07 0.31

apache 0.89 0.18 0.91 1.07 0.83

blackhole 0.24 0.04 0.32

wu-ftpd 0.63 0.09 0.51 0.53 0.23

named 0.14 0.01 0.23 0.20 0.42

cfengine 0.43 0.04 0.46 0.48 0.03

nn 1.82 0.17 1.99 2.03 0.97

30

Time
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Conclusions

 Client-driven pointer analysis

 Precision should match the client and program

Not all pointers are equal

 Need fine-grained precision policies

Key: knowing where to add more and what kind

 Blueprint for scalable analysis

Use more expensive analysis on small parts of programs

32

Future work

 Improve scalability
 Sendmail takes 2 hours to analyze in CI-FI mode

 Use even faster pointer analysis: unification-based 
algorithm

 Preliminary results: Can analyze sendmail in 1 minute

 Improve accuracy
 Add path-sensitivity

 Array accesses
 Array dependence testing

 Heap models
 Shape analysis

CI-FI
CI-FS CS-FI

CS-FS

Unification-based

Path-

sensitive. . .
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Related work

 Pointer analysis and typestate error checking

 Iterative flow analysis   [Plevyak & Chien ‘94]

 Demand-driven pointer analysis  [Heintze & Tardieu ’01]

 Combined pointer analysis   [Zhang, Ryder, Landi ’98]

 Effects of pointer analysis precision   [Hind ’01 & others]

 More precision is more costly

 Does it help? Is it worth the cost?

Efficient and Extensible 

Security Enforcement Using 

Dynamic Data Flow Analysis

Walter Chang

Brandon Streiff

Calvin Lin

The University of Texas at Austin
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Security Today

Buggy programs deployed on critical 

servers

Legacy code in unsafe languages

Rapidly-evolving threats and attackers

 Inadequate developer training and 

resources to fix problems

You know the drill - it’s why we’re here 

today

What We’d Like

Potentially 

Unsafe Program
Safe ProgramMagic Box
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Haven’t We Seen This Before?

Many prior solutions

Attack-specific: StackGuard, FormatGuard

Monitors: SFI, IRMs, PQL

Taint: TaintCheck, Dytan, LIFT, GIFT, etc

Language: JiF, Cyclone

 All suffer from at least one of these problems

Handles only a specific attack

Requires significant developer intervention

High runtime overhead

Our Solution

Compiler-based solution

Handles a broad class of problems

Easily adapted to meet new threats

Minimal runtime overhead

Minimal developer effort

We address all three problems of 

deployability, generality, and efficiency

How do we do this?
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Our Solution

Potentially 

Unsafe Program
Safe Program

Static 

Analysis

Security

Policy

Compiler

Runtime

Library

Deployability

 Compiler-based solution; simply recompile your 
program against your chosen policy
 Implemented as source-to-source translator

Platform and OS independent

Links with very small runtime helper library

Works on unmodified C source code

 Does not require
Language changes

Rewrite or redesign of program

Manual inspection and correction of errors

Special hardware or OS support
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Generality

Policy is not hardcoded but is defined in 
specification files
Fully general to typestate problems

Uses Broadway Annotation Language [Guy03]

Policy is not program-specific
Write once, use many

No special knowledge about program needed to 
write policy

No special knowledge about policy needed to 
apply to program

Policies

 Based on typestate analysis [Strom86]

 Intuition

Every object has a tag (or tags) associated

Tags are propagated and updated as program executes

Security checks use tag values

 Supports wide range of policies

Taint tracking

Privacy and information disclosure

Labeled security

Let’s see what this looks like in action…
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Compiler-Based Dynamic Data Flow

int sock;

char buffer[100];

sock = socket(AF_INET, SOCK_STREAM, 0);

read(sock, buffer, 100);

printf(buffer);

Program contains format string vulnerability

Data read from an internet socket is used as a 

format string

Compiler-Based Dynamic Data Flow

int sock;

char buffer[100];

int vs, vb; // Declare tags

sock = socket(AF_INET, SOCK_STREAM, 0);

vs = Tainted; // Set tags

read(sock, buffer, 100);

vb = vs;

if (vb != Tainted) // Check tags

{

printf(buffer);

}

By adding code that tracks the state of data, 

we can prevent this attack (and many others!)
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Policy Specification

Uses Broadway Annotation Language 
[Guy03]

Specifies
Property (the tag values)

Propagation rules

Security checks (the policy itself)

Annotations are for library functions
Requires no application-specific annotations

Reusable across applications

Example - Taint and Format String

Property: Taint

Values: Tainted, Untainted

Relation: Tainted and Untainted combine to 

Tainted

property Taint : { Tainted { Untainted } }
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Example - Taint and Format String

 Input functions taint their inputs
procedure getchar() {

analyze { Taint : return <- Tainted }

}

Library functions propagate taint
procedure strcpy(dst, src) {

on_entry { dst -> dst_string

src -> src_string }

analyze {Taint: dst_string <- src_string }

}

Example - Taint and Format String

Policy: printf should not take a tainted 

string for a format string
procedure printf(fmt, args) {

on_entry { fmt -> fmt_string }

error if(Taint: fmt_string could-be Tainted)

“Error, tainted format string”

}

Note that other taint-based policies can 

reuse previous definitions
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Example - File Disclosure

 Want to prevent remote users from downloading arbitrary 
files (FTP-like behavior)

 Two properties

Trustedness: Trusted, Untrusted

Origin: File, Network, StdIn, etc

 Rules

Trustedness is similar to taint

 Input functions mark data with origin

 Policy

Prevent transmission of File data from files opened with 
Untrusted filenames to Untrusted sockets

Cannot be precisely modeled with taint alone

Efficiency

General data/information flow systems have 

been proposed, eg GIFT [Lam06]

 System must instrument every read and write 

and track every object

Some optimizations possible [Qin06]

System-specific hacks are used [Xu06]

 Leads to high overhead

TaintCheck: 35X [Newsome05]

GIFT: +82% CPU time [Lam06]

LIFT: 7.9X for compute-bound programs [Qin06]
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Improving Efficiency

Systems are inefficient because
They track too many irrelevant statements

They track too many irrelevant objects

Only a small proportion of the program is 
involved in any given vulnerability 
[Newsome05]

Goal: Eliminate instrumentation on 
statements and objects that cannot affect 
result of security checks

Eliminating Instrumentation

 Perform a static analysis to identify possible 
policy violations
Uses client-driven pointer analysis and error checker 

[Guy03]

Similar to static error checkers

 Determine which statements can affect results of 
security check at possible violation
Data flow slicing: a new flow-value-based dependence 

analysis

 Instrument only these statements
No other statements require instrumentation because 

they cannot affect enforcement checks
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Data Flow Slicing

Given: an object o at a location l

 The data flow slice is the set of S statements 
and O objects via transitive closure as follows
 l is in S and o is in O

 If s’ defines some v in O, then s’ is in S

 If o’ is used by some s’ in S, then o’ is in O

 Intuitively
S is the set of all statements that can affect the flow 

value of o at l

O is the set of all objects that can affect the flow value of 
o at l

Computing the Data Flow Slice

 Flow values can only change when the 
underlying object is used or defined

 Compute interprocedural use-def chains on 
program objects

 Trace backwards from possible violations
The location of the violation is s

The objects involved are those whose flow values are 
checked at s

 Use results from static data flow analysis to 
determine if flow value may change at each 
statement in the trace
Data flow slice is always a subset of data dependencies
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Keys to Success

Data Flow Analysis is flexible

Dynamic DFA can enforce policies

Static DFA can approximate dynamic behavior

Scalable and precise static analysis

Interprocedural, whole-program - more precise 

than any taint/info flow system

Scalable pointer analysis [Guy03]

Uses data flow analysis to deliver precise results 

customized to each analysis and application

Experimental Evaluation

 Server Programs
5 open-source server programs

Sample policy: format string attacks

Verify prevention of attacks

Measure runtime overhead and code expansion

 Compute-bound Programs
4 SPECint programs with injected vulnerabilities

Measure runtime overhead and code expansion

 Complex Policies
Sample policy: file information disclosure

3 open-source server programs

Same metrics
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Attack Detection

Program Version Exploit Detected

pfingerd 0.7.8 NISR16122002B Yes

muh 2.05c CAN-2000-0857 Yes

wu-ftpd 2.6.0 CVE-2000-0573 Yes

bind 4.9.4 CVE-2001-0013 Yes

Sample policy: format string attack prevention

All known attacks detected

Overhead - Server Programs

Program Original DDFA Overhead

pfinger 3.07s 3.19s 3.78%

muh 11.23ms 11.23ms 0%

wu-ftp 2.745MB/s 2.742MB/s 0.10%

bind 3.58ms 3.57ms -0.38%

apache 6.048MB/s 6.062MB/s -0.24%

Average Increase 0.65%

Compare with 6%-36X for previous systems
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Overhead - Compute-Bound 

Programs

Program Overhead

gzip 51.35%

vpr 0.44%

mcf -0.32%

crafty 0.25%

Average Increase 12.93%

Results are for injected errors, true overhead is 0%

Compare with 80%-36X for previous systems

Code Expansion - Server Programs

Program Original DDFA Overhead

pfinger 49,655 49,655 0.0%

muh 59,880 60,488 1.0%

wu-ftp 205,487 207,997 1.2%

bind 215,669 219,765 1.9%

apache 552,114 554,514 0.4%

Average Increase 0.9%

Precise static analysis minimizes additional code
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File Disclosure Prevention

Program Code Expansion Response time

pfingerd 0% 0%

muh 2.67% 2.13%

bind 0.10% -1.38%

Average 0.92% 0.25%

More complex policies do not necessarily lead to 

higher overhead

Static analysis ensures overhead is only what is 

required for the program and policy

Recap

Our system delivers on three key concerns for 
software security solutions
Deployability - no language, OS, or hardware changes 

required, no additional developer effort

Generality - supports a wide variety of policies with easy 
user extensibility

Efficiency - order-of-magnitude improvement over 
previous best.  Minimal overhead - less than 1% for 
common uses

 Key is combination of static and dynamic 
analysis
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Related Work

 Taint Tracking

Binary [New05] [Cos05] [Qin06] [Cla07]

Compiler [Wal00] [Ngu05] [Xu06] [Lam06]

Hardware [Cra04] [Suh04] [Dal07]

 Static Analysis

Numerous [Sha01] [Ash02] [Eva02] [Guy03] etc…

Monitors and Integrity

Execution Monitors [Sch00] [Mar05] etc

Control Flow Integrity/Shepherding [Kir02] [Aba05] etc

Data Flow Integrity [Cas06]

Future Work

Software engineering possibilities

Can retrofit security functionality onto legacy 

applications

Allows separation of concerns

Whole-system integration

Leverage OS features (capabilities, process 

coloring, etc)

Provide whole-system data flow instead of 

single-application
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Thanks!


