
April 8, 2015 Exploiting Encapsulation toSimplify Analysis 1

Field Analysis

Last time

– Exploit encapsulation to improve memory system performance

This time

– Exploit encapsulation to simplify analysis

– Two uses of field analysis

– Escape analysis

– Object inlining

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 2

Motivation

Performance Problems with Modern High Level Languages

– Bounds and type checks for safety

– Virtual method calls to support object-oriented semantics

– Heap allocation to provide uniform view of objects

Solution

– Prove facts about array bounds and about types to tighten assumptions

e.g. To devirtualize a call, prove that the call has exactly one target class

– Such analysis typically requires interprocedural analysis

– Costly

– Sometimes impossible: dynamic class loading, unavailable source

code

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 3

Field Analysis

A Cheap Form of Interprocedural Analysis

– Exploits encapsulation to limit the scope of analysis

e.g. If an array is indexed by a private variable that is only set by one

method, then only that one method needs to be analyzed to determine the

index’s value

– Deduce properties about fields based on the properties of all accesses to

that field

Benefits

– Efficient (10% overhead in compilation time)

– Does not require access to the entire program

– Works well with dynamic class loading

– Can be applied to any language that supports encapsulation

– Java, C++, Modula-3, etc.

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 4

Field Analysis for Java

Today: A specific solution [Ghemawat, Randall, & Scales, PLDI’00]

– Implemented in the context of Compaq’s Swift optimizing Java compiler

– Swift translates bytecode to native Alpha code

– Swift performs a number of aggressive optimizations

– This implementation focuses on reference types

– Ignores scalar fields

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 5

Field Modifiers Dictate Scope of Analysis

Java field modifiers

Class Field Where can the field be modified?

public private containing class

public package containing package

public protected containing package and subclasses

non-public private containing class

non-public non-private containing package

public public entire program

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 6

Example

public class Plane {

private Point[] points;

public Plane() {

points = new Point[3];

}

public int GetAverageColor() {

return (points[0].GetColor() +

points[1].GetColor() +

points[2].GetColor())/3;

}

}

Since points is private

– Its properties can be determined by analyzing only the Plane class

– We can determine the exact type of points

– So we can inline the GetColor() method

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 7

Idea: Create an Enhanced Type System

Introduce special types

– A value is an object of exactly class T (and not a subclass of T)

– A value is an array of some constant size

– The value is known to be non-null

– . . .

Type analysis begins by determining types of

Method arguments

Loads of fields of objects

Loads of global variables

Non-null exact types assigned to newly allocated objects

Use type propagation to determine types of other nodes in the SSA graph

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 8

Basic Approach

1. Initialize

– Build SSA graph and gather type information

SSA provides flow-sensitivity

2. Incrementally update properties

– Consider all loads and stores and update properties associated with each

field

Load of a field:

Analyze all uses of the load

x = y.f;

. . .

x.z();

Store of a field:

Analyze the value stored into the field

and all other uses of the value

x = new T;

. . .

y.f = x; Type of y.f?

Type of x?

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 9

Examples of Useful Properties

exact_type(field)

– The field is always assigned a value of the specified type

always_init(field)

– The field is always initialized

only_init(field)

– The field is only modified by constructors

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 10

only_init(points)

is true

Example Analysis

public class Plane {

private Point[] points;

public Plane() {

points = new Point[3];

}

public void SetPoint(Point p, int i) {

points[i] = p;

}

public Point GetPoint(int i) {

return points[i];

}

}

points is private, so its

properties can be

determined by only

scanning the Plane class

exact_types(points)

indicates a non-null array

with base type Point and

a constant size of 3

always_init(points)

is true

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 11

Example Optimizations

exact_type(field)

 If the type is precisely known, we can convert a virtual method call to a

static method call

Precise type information can be used to statically evaluate type-inclusion

tests such as instanceof or array store checks

 If the type is an array of constant size, some bounds checks can be

eliminated and expressions that use the array length (eg. a.length())

can be statically evaluated

Precise type information supports a form of constant folding

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 12

Example Optimizations (cont)

public class Plane {

private Point[] points;

public Plane() {

points = new Point[3];

}

public void SetPoint(Point p, int i) {

points[i] = p;

}

public Point GetPoint(int i) {

return points[i];

}

}

Can eliminate null checks

on points

Can use the constant 3 in

bounds checks on points

Can eliminate the array

store check for points

What optimizations are

possible in this example?

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 13

Example Optimizations (cont)

These properties can enhance other optimizations

x = y.f;

x.foo();

z = y.f;

x = y.f;

x.foo();

z = x;

CSE is possible if x.foo does not modify y.f.

We know that y.f is only modified by a constructor if
only_init(f) = true

CSE?

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 14

Outline

Last time

– Exploit encapsulation to improve memory system performance

This time

– Exploit encapsulation to simplify analysis

– Two uses of field analysis

– Escape analysis

– Object inlining

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 15

Escape Analysis

Idea

– Does an object escape the method in which it is allocated?

– E.g., return, assign to global/heap, pass to another method

f() {

Point p = new Point();

Stack s = new Stack(100);

s.push(p); /* p escapes */

. . .

return p; /* p escapes */

}

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 16

Escape Analysis

Uses

– Objects that do not escape can be allocated on the stack

f() {

Point p = new Point();

return; /* Allocate p on the stack */

}

– Why is this desirable?

– Less overhead than heap allocation

– Less work for garbage collector

– Usually has better cache behavior

– Synchronization elimination

– Escape from a thread: Can another thread access the object?

– If an object cannot escape a thread, it need not be synchronized

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 17

Escape Analysis (cont)

Heavyweight escape analysis

– Many proposed variations [Aldrich’99, Blanchet’99, Bogda’99, Choi’99, Whaley’99]

– Typically expensive interprocedural data-flow analysis

– Large flow values

– Connection Graphs represent “points-to” relationship among objects

Simple escape analysis

– Simplifying assumption: Any object that is assigned into the heap or

returned from a method escapes that method

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 18

Evaluation of Simple Escape Analysis

Pros

– Extremely simple

– Inexpensive (analysis time is linear in code size)

Cons

– Inaccurate

– Assignment to heap does not necessarily imply escape

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 19

Limitations of Simple Escape Analysis

Consider the following code

class Pair {

private Object first;

private Object second;

}

Pair p = new Pair();

Integer x = new Integer(5);

p.first = x;

Questions

– Is x assigned to the heap?

– Does x escape?

– Only if p escapes, since x is only assigned to an encapsulated field of p

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 20

Escape Analysis with Field Analysis

Idea

– Identify encapsulated fields

– If an object does not escape, then the contents of its encapsulated fields

do not escape

– Escape from a thread can be handled similarly by focusing on thread

creation routines

Conditions for identifying encapsulated fields

(1) The value of the field does not escape through a method that accesses

the field, and

(2) Any value assigned to the field has not already escaped

– This is trivially true for newly-allocated objects

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 21

Field Properties for Escape Analysis

Field Property: may_leak(field)

– Indicates whether the object in the field might escape the containing

object

Field Property: source_type(field)

– Describes the kind of values assigned to the field:

– new only assigned newly allocated objects

– new/null . . . or null

– new/null/param . . . or method parameters

– other

A field, f, is encapsulated when

– may_leak(f) = false Condition (1)

– source_type(f) = new/null Condition (2)

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 22

Limitations of Simple Escape Analysis (reprise)

Consider the following code

class Pair {

private Object first;

private Object second;

}

Pair p = new Pair();

Integer x = new Integer(5);

p.first = x;

Questions

– Is x assigned to the heap? Yes

– Does x escape?

– Only if p escapes, since x is only assigned to an encapsulated field of p

– Check may_leak(p), source_type(p)

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 23

Outline

Last time

– Exploit encapsulation to improve memory system performance

This time

– Exploit encapsulation to simplify analysis

– Two uses of field analysis

– Escape analysis

– Object inlining

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 24

Idea

– Allocate storage for an object inside its containing object

Example

class Point {

int x,y;

...

}

class Ray {

Point start;

Point end;

...

}

header header

header

x

y

Ray Point

Direct allocation

start

end

x

y

Point

Object Inlining

header

x (start)

y (start)

x (end)

y (end)

Inlined allocation

Ray

Benefits?

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 25

Object Inlining (cont)

Benefits

– Allows inlined objects to be accessed directly

(i.e., without following pointers)

– Reduces the size of objects

– Reduces allocation/garbage-collection overheads

– May improve data cache performance

(Inlined objects are likely to be accessed together)

Bottom line

– Object inlining produces code closer to hand-tuned C

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 26

Object Representation and Inlining

Objects contain headers

– Type of object

– Method table

– Synchronization state

Question: Does the header need to be preserved for inlined objects?

Answer: No, if the following hold:

There are no virtual method invocations, no synchronization, and no type

inclusion checks on the object (i.e., we don’t need it), and

The object does not escape (i.e, no one else will need it)

Question: Can a compiler do this type of inlining in C++?

Answer: No

Otherwise, uses_header(field) = true

Needed for type checking, virtual

method calls, synchronization

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 27

Object Representation and Inlining (cont)

Ray

start

end

Point

x

y

Point

x

y

Ray
Ray hrd

x (start)

y (start)

x (end)

y (end)

Ray
Ray hdr

Point hdr

x (start)

y (start)

Point hdr

x (end)

y (end)

Inlining

With Headers

Inlining

Without Headers

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 28

Object Inlining and Garbage Collection

Question: What if an inlined object escapes and its enclosing object does not?

Answer:

– Problem: the garbage collector might reclaim the enclosing object, which

would also implicitly reclaim the inlined object

Two approaches

– Do not inline objects that may escape

– Tag inlined objects (in their header) and make sure that the garbage

collector does not collect the enclosing object if the inlined object is live

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 29

Object Inlining with Field Analysis

Recall Field Property: source_type(field)

– Indicates the kind of values assigned to the field:

– new only assigned newly allocated objects

– new/null . . . or null

– new/null/param . . . or method parameters

– other

For inlining we are interested in the first case

– We need to know the exact type of an object before we can inline it

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 30

Object Inlining with Field Analysis (cont)

Do we need headers?

– Use the following properties to determine whether the header for inlined

objects must be preserved

Field Property: uses_header(field)

– Indicates whether the header for the object in the field might ever be used

Field Property: may_leak(field)

– Indicates whether the object in the field might escape the containing

object

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 31

Exploiting Field Analysis Properties

A field f can be inlined with a header when

– always_init(f) = true,

– only_init(f) = true,

– source_type(f) = new, and

– exact_type(f) = static_type(f)

The final condition is a simplification

– It makes object layout easier for the JVM

– One layout for all inlined objects of the same static type

The field is always initialized exactly

once by a newly allocated object

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 32

Exploiting Field Analysis (cont)

A field f can be inlined without a header when

– It is can be inlined with a header,

– uses_header(f) = false, and

– may_leak(f) = false

Can also inline arrays when

– The array satisfies the above constraints, and

– The array has a constant size

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 33

Object Inlining Transformation

Transforming references to inlined objects

pt = myRay.start; pt = myRay + offset(myRay, start);

Initializations

pt = new Point; No allocation needed

myRay.start = pt; Possibly initialize header of myRay.start

pt = myRay + offset(myRay, start);

Inlined Object

myRay
Ray hdr

Point hdr

x (start)

y (start)

Point hdr

x (end)

y (end)

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 34

Limitations of Field Analysis

Native methods

– Cannot analyze native methods

– Conservative assumption: Assume the native methods read and write all

fields that they can access

Weak consistency

– Some optimizations are not legal under weak consistency models on

multiprocessors

– Race conditions may allow a thread to see a null value even if the

always_init(field) is true

Reflection

– Field properties can be modified through reflection (setAccessible())

– Disable field analysis on such fields

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 35

Impact on Performance

Run-time check elimination

– Many null-checks eliminated (0-50%)

– Some array bounds checks eliminated (0-60%)

– Not many cast checks eliminated (0-1%)

Virtual method calls

– Significantly reduced

Object inlining

– 0-11% performance improvement

Stack allocation

– Escape information does not significantly assist stack allocation (for the

benchmarks considered)

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 36

Impact on Performance (cont)

Synchronization removal

– 0-90% reduction in dynamic synchronization

– Either helps a lot or helps very little

Bottom line

– 0-27% performance improvement

– Average improvement of 7%

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 37

Concepts

Escape analysis

– Useful for optimizing the allocation of objects

– Useful for removing unnecessary synchronization

Object inlining

– Remove object overhead

– Improve data locality

Field analysis

– Exploit encapsulation to simplify analysis

– Many uses

– De-virtualization

– Remove runtime checks

– Perform escape analysis

– Perform object inlining

April 8, 2015 Exploiting Encapsulation toSimplify Analysis 38

Next Time

Lecture

– Traditional uses of compilers

