Traditional Uses of Compilers

Last lecture
- Field analysis

Today
- Register allocation

Register Allocation

Problem
- Assume a load/store architecture
- Assign an unbounded number of symbolic registers to a fixed number of architectural registers (which might get renamed by the hardware to some number of physical registers)
- Simultaneously live data must be assigned to different architectural registers

Goal
- Minimize overhead of accessing data
 - Memory operations (loads & stores)
 - Register moves
Granularity of Allocation

What is allocated to registers?
- Variables
- Live ranges (*i.e.*, set of basic blocks in which a variable is live)
- Values (*i.e.*, definitions; same as variables with SSA & copy propagation)
- Webs (*i.e.*, du-chains with common uses)

```plaintext
s_1: x := 5
s_2: y := x
s_3: x := y + 1
s_4: ... x ...
```

```plaintext
s_6: ... x ...
```

Variables: 2 (x & y)
Live ranges: 2 ({b_1, b_2, b_3, b_4}, {b_1})
Values: 4 (s_1, s_2, s_3, s_5, φ(s_3, s_5))
Web: 3 (s_1 → s_2, s_4; s_2 → s_3; s_3, s_5 → s_6)

What are the tradeoffs?

Each allocation unit is given a symbolic register name (*e.g.*, s_1, s_2, etc.)

Scope of Register Allocation

- Expression
- Local
- Loop
- Global
- Interprocedural
Local Register Allocation for Loops

Idea
- Estimate the benefit of allocating variables in basic blocks or loops
- Allocate variables with greatest benefit to registers
- Estimates are a function of execution frequency (from profiles, heuristics)

Surprisingly effective!
- IBM 360/370 Fortran H compiler

Definitions
- \(\text{lcost} \): Cost (time) of load instruction
- \(\text{stcost} \): Cost of store instruction
- \(\text{mvcost} \): Cost of register-to-register transfer instruction
- \(\text{usesave} \): Savings (time) for each use of variable in a register vs. memory
- \(\text{defsave} \): Savings for each assignment of variable in a register vs. memory
- Static counts for variable \(v \): \(l_i, s_i, u_i, d_i \) (\(l_i \) and \(s_i \) are 0 or 1)

Benefit of allocating variable \(v \) **to a register in block** \(b_i \) **is**

\[
\text{netsave}(v,i) = u_i \cdot \text{usesave} + d_i \cdot \text{defsave} - l_i \cdot \text{lcost} - s_i \cdot \text{stcost}
\]

Benefit \(v, L \) **is**

\[
\text{Benefit}(v, L) = 10^{\text{depth}(L)} \sum_{i \in \text{blocks}(L)} \text{netsave}(v,i)
\]
Global Register Allocation by Graph Coloring

Idea

1. Construct *interference graph* $G=(N,E)$
 - Represents notion of “simultaneously live”
 - Nodes are units of allocation (e.g., variables, live ranges, webs)
 - \exists edge $(n_1,n_2) \in E$ if n_1 and n_2 are simultaneously live
 - Symmetric (not reflexive nor transitive)

2. Find *k-coloring* of G (for k registers)
 - Adjacent nodes can’t have same color

3. **Allocate** the same register to all allocation units of the same color
 - Adjacent nodes must be allocated to distinct registers

Interference Graph Exercise (Variables)

What does a interfere with?
What else does b interfere with?
What else does c interfere with?
What else does d interfere with?

How many colors do we need?
Consider webs (du-chains w/ common uses) instead of variables

Building the Interference Graph

Use results of live variable analysis

\[
\text{for each symbolic-register } s_i \text{ do} \\
\text{for each symbolic-register } s_j \ (j < i) \text{ do} \\
\text{for each } \text{def} \in \{\text{definitions of } s_i\} \text{ do} \\
\quad \text{if } (s_j \text{ is live at } \text{def}) \text{ then} \\
\quad \quad E \leftarrow E \cup (s_i, s_j)
\]
Allocating Registers Using the Interference Graph

K-coloring
- Color nodes using up to \(k \) colors
- Adjacent nodes must have different colors

Allocating to \(k \) registers \(\equiv \) finding a \(k \)-coloring of the interference graph
- Adjacent nodes must be allocated to distinct registers

But . . .
- Optimal graph coloring is NP-complete
 - Register allocation is NP-complete, too (must approximate)
- What if we can’t \(k \)-color a graph?

Spilling

If we can’t find a \(k \)-coloring of the interference graph
- Spill variables (nodes) to stack until the graph is colorable

How does spilling help?
- It reduces the live range of the spilled variable

Which variables should we spill?
- The least frequently accessed variables
- Break ties by choosing nodes with the most conflicts in the interference graph
- Yes, these are heuristics!
Weighted Interference Graph

Goal
- \(\text{Weight}(s) = \sum_{r \in \text{references of } s} f(r) \)
 - \(f(r) \) is execution frequency of \(r \)

Static approximation
- Use some reasonable scheme to rank variables
- One possibility
 - \(\text{Weight}(s) = 1 \)
 - Nodes after branch: \(\frac{1}{2} \) weight of branch
 - Nodes in loop: \(10 \times \) weight of nodes outside loop

Simple Greedy Algorithm for Register Allocation

```
for each \( n \in N \) do
  { select \( n \) in decreasing order of weight }
  if \( n \) can be colored then
    do it
    { reserve a register for \( n \) }
  else
    Remove \( n \) (and its edges) from graph
    { allocate \( n \) to stack (spill) }
```

Note
- Reserve 2-3 temp registers for manipulating data on stack

April 13, 2015

Register Allocation
Example

Weighted order:

\[
\begin{align*}
 a_1 \\
 b \\
 c \\
 d \\
 a_2
\end{align*}
\]

Attempt to 3-color this graph \((\text{Red}, \text{Green}, \text{Blue})\)

What if you use a different weighting?

Problems with this approach?

Example

Attempt to 2-color this graph \((\text{Red}, \text{Green})\)

Weighted order:

\[
\begin{align*}
 a \\
 b \\
 c
\end{align*}
\]
Improvement #1: Simplification Phase

Idea
- Nodes with $< k$ neighbors are guaranteed colorable

Remove them from the graph first
- Reduces the degree of the remaining nodes

Must spill only when all remaining nodes have degree $\geq k$

Algorithm [Chaitin82]

\[
\text{while interference graph not empty do}
\]
\[
\hspace{1cm} \text{while } \exists \text{ a node } n \text{ with } < k \text{ neighbors do}
\]
\[
\hspace{2cm} \text{simplify}
\]
\[
\hspace{2cm} \text{Push } n \text{ on a stack}
\]
\[
\hspace{2cm} \text{Remove } n \text{ from the graph}
\]
\[
\hspace{1cm} \text{if } \text{any nodes remain in the graph then}
\]
\[
\hspace{2cm} \text{spill}
\]
\[
\hspace{2cm} \{ \text{ blocked with } \geq k \text{ edges } \}
\]
\[
\hspace{2cm} \{ \text{ lowest spill-cost or } \}
\]
\[
\hspace{2cm} \{ \text{ highest degree } \}
\]
\[
\hspace{1cm} \text{Add } n \text{ to spill set}
\]
\[
\hspace{1cm} \text{Remove } n \text{ from the graph}
\]
\[
\text{if spill set not empty then}
\]
\[
\hspace{2cm} \text{color}
\]
\[
\hspace{2cm} \{ \text{ store after def; load before use } \}
\]
\[
\hspace{2cm} \text{Reconstruct interference graph & start over}
\]
\[
\text{while stack not empty do}
\]
\[
\hspace{2cm} \{ \text{ color } \}
\]
\[
\hspace{2cm} \text{Pop node } n \text{ from stack}
\]
\[
\hspace{2cm} \text{Allocate } n \text{ to a register}
\]
More on Spilling

Chaitin’s algorithm restarts the whole process on spill
- Necessary, because spill code (loads/stores) uses registers
- Okay, because restarts usually only happen a couple times

Alternative
- Reserve 2-3 registers for spilling
- Don’t need to start over
- But have fewer registers to work with

Example

Attempt to 3-color this graph (, ,)

How are the nodes ordered here?
Example

Attempt to 2-color this graph (

\[
\begin{array}{c}
\text{Spill Set:} \\
e \\
a_1 \\
a_2 \\
b \\
\text{Stack:} \\
d \\
c
\end{array}
\]

\[
\begin{array}{c}
\text{Weighted order:} \\
e \\
a_1 \\
a_2 \\
b \\
c \\
d
\end{array}
\]

Many nodes remain uncolored even though we could clearly do better

The Problem: Worst Case Assumptions

Is the following graph 2-colorable?

Clearly 2-colorable

- But Chaitin’s algorithm leads to an immediate block and spill.
- The algorithm assumes the worst case, namely, that all neighbors will be assigned a different color.
Improvement #2: Optimistic Spilling

Idea

- Some neighbors might get the same color
- So nodes with \(k \) neighbors might be colorable
- Blocking does not imply that spilling is necessary
 - Push blocked nodes on stack (rather than place in spill set)
 - Check colorability upon popping the stack, when more information is available

Algorithm [Briggs et al. 89]

while interference graph not empty do
 while \(\exists \) a node \(n \) with \(<\ k \) neighbors do
 Remove \(n \) from the graph
 Push \(n \) on a stack
 if any nodes remain in the graph then
 Pick a node \(n \) to block
 Push \(n \) on stack
 Remove \(n \) from the graph
 \}
while stack not empty do
 Pop node \(n \) from stack
 if \(n \) is colorable then
 Allocate \(n \) to a register
 else
 Insert spill code for \(n \)
 \{ Store after def; load before use \}
 \}
Reconstruct interference graph & start over

Defer decision

Example

Attempt to 2-color this graph (\(\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c}
\end{array} \))

Stack:
- d
- c
- b*
- a2*
- a1*
- e*

* blocked node

Weighted order:
- e
- a1
- a2
- b
- c
- d

spill

4 nodes were blocked
Only 1 node was spilled

Improvement #3: Live Range Splitting [Chow & Hennessy 84]

Idea
- Start with variables as our allocation unit
- When a variable can’t be allocated, split it into multiple subranges for separate allocation
- Selective spilling: put some subranges in registers, some in memory
- Insert memory operations at boundaries

Why is this a good idea?
Improvement #4: Rematerialization

Idea
- Selectively re-compute values rather than loading from memory
- “Reverse CSE”

Easy case
- Value that can be computed in single instruction, and
- All operands are available

Examples
- Constants
- Addresses of global variables
- Addresses of local variables (on stack)

Coalescing

Move instructions
- Code generation can produce unnecessary move instructions
 - `mov t1, t2`
- If we can assign $t1$ and $t2$ to the same register, we can eliminate the move

Idea
- If $t1$ and $t2$ are not connected in the interference graph, **coalesce** them into a single variable

Problem?
- Coalescing can increase the number of edges and make a graph uncolorable
- Limit coalescing to avoid uncolorable graphs

![Coalescing Diagram](image-url)
Next Time

Lecture
- More register allocation
 - Allocation across procedure calls