
April 19, 2015 Instruction Scheduling 1

Instruction Scheduling

Last time

– Register allocation

Today

– Instruction scheduling

– The problem: Pipelined computer architecture

– A solution: List scheduling

– Improvements on this solution

April 19, 2015 Instruction Scheduling 2

Background: Pipelining Basics

Idea

– Begin executing an instruction before completing the previous one

Without Pipelining

Instr0

Instr1

Instr2

Instr3

Instr4

time

in
stru

ctio
n

s

With Pipelining

Instr0

Instr1

Instr2

Instr3

Instr4

time

in
stru

ctio
n

s

April 19, 2015 Instruction Scheduling 3

Idealized Instruction Data-Path

Instructions go through several stages of execution

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Instruction

Fetch


Instruction

Decode &

Register Fetch

 Execute 
Memory

Access


Register

Write-back

IF  ID/RF  EX  MEM  WB

time

in
stru

ctio
n
s

IF ID EX MM WB

IF ID EX MM WB

IF ID EX MM WB

IF ID EX MM WB

IF ID EX MM WB

IF ID EX MM WB

April 19, 2015 Instruction Scheduling 4

Pipelining Details

Observations

– Individual instructions are no faster (but throughput is higher)

– Potential speedup determined by number of stages (more or less)

– Filling and draining pipe limits speedup

– Rate through pipe is limited by slowest stage

– Less work per stage implies faster clock

Modern Processors

– Long pipelines: 5 (Pentium), 14 (Pentium Pro), 22 (Pentium 4), 31
(Prescott), 14 (Core i7), 8 ARM 11

– Issue width: 2 (Pentium), 4 (UltraSPARC) or more (dead Compaq EV8)

– Dynamically schedule instructions (from limited instruction window)
or statically schedule (e.g., IA-64)

– Speculate

– Outcome of branches

– Value of loads (research)

April 19, 2015 Instruction Scheduling 5

What Limits Performance?

Data hazards

– Instruction depends on result of prior instruction that is still in the pipe

Structural hazards

– Hardware cannot support certain instruction sequences because of limited

hardware resources

Control hazards

– Control flow depends on the result of branch instruction that is still in the

pipe

An obvious solution

– Stall (insert bubbles into pipeline)

April 19, 2015 Instruction Scheduling 6

Stalls (Data Hazards)

Code

add $r1,$r2,$r3 // $r1 is the destination

mul $r4,$r1,$r1 // $r4 is the destination

IF ID

IF ID EX MM WB

EX MM WB

time

in
stru

ctio
n

s

Pipeline picture

April 19, 2015 Instruction Scheduling 7

Stalls (Structural Hazards)

Code

mul $r1,$r2,$r3 // Suppose multiplies take two cycles

mul $r4,$r5,$r6

IF ID

IF

EX

ID

WB

EX MM WB

MM

time

in
stru

ctio
n

s

Pipeline Picture

April 19, 2015 Instruction Scheduling 8

Stalls (Control Hazards)

Code

bz $r1, label // if $r1==0, branch to label

add $r2,$r3,$r4

IF

EX MM WB

ID EX

time

in
stru

ctio
n

s

Pipeline Picture

MM

IF ID

WB

April 19, 2015 Instruction Scheduling 9

Hardware Solutions

Data hazards

– Data forwarding (doesn’t completely solve problem)

– Runtime speculation (doesn’t always work)

Structural hazards

– Hardware replication (expensive)

– More pipelining (doesn’t always work)

Control hazards

– Runtime speculation (branch prediction)

Dynamic scheduling

– Can address all of these issues

– Very successful

April 19, 2015 Instruction Scheduling 10

Context: The MIPS R2000

MIPS Computer Systems

– “First” commercial RISC processor (R2000 in 1984)

– Began trend of requiring nontrivial instruction scheduling by the compiler

What does MIPS mean?

 Microprocessor without Interlocked Pipeline Stages

April 19, 2015 Instruction Scheduling 11

Instruction Scheduling for Pipelined Architectures

Goal

– An efficient algorithm for reordering instructions to minimize pipeline

stalls

Constraints

– Data dependences (for correctness)

– Hazards (can only have performance implications)

Simplifications

– Do scheduling after instruction selection and register allocation

– Only consider data hazards

April 19, 2015 Instruction Scheduling 12

Recall Data Dependences

Data dependence

– A data dependence is an ordering constraint on 2 statements

– When reordering statements, all data dependences must be observed to

preserve program correctness

True (or flow) dependences

– Write to variable x followed by a read of x (read after write or RAW)

Anti-dependences

– Read of variable x followed by a write (WAR)

Output dependences

– Write to variable x followed by

another write to x (WAW)

false

dependences

x = 5;

print (x);

print (x);

x = 5;

x = 6;

x = 5;

April 19, 2015 Instruction Scheduling 13

List Scheduling [Gibbons & Muchnick ’86]

Scope

– Basic blocks

Assumptions

– Pipeline interlocks are provided (i.e., algorithm need not introduce no-ops)

– Pointers can refer to any memory address (i.e., no alias analysis)

– Hazards take a single cycle (stall); here let’s assume there are two...

– Load immediately followed by ALU op produces interlock

– Store immediately followed by load produces interlock

Main data structure: dependence DAG

– Nodes represent instructions

– Edges (s1,s2) represent dependences between instructions

– Instruction s1 must execute before s2

– Sometimes called data dependence graph or data-flow graph

April 19, 2015 Instruction Scheduling 14

Dependence Graph Example

1 addi $r2,1,$r1

2 addi $sp,12,$sp

3 st a, $r0

4 ld $r3,-4($sp)

5 ld $r4,-8($sp)

6 addi $sp,8,$sp

7 st 0($sp),$r2

8 ld $r5,a

9 addi $r4,1,$r4

Sample code

Hazards in current schedule

 (3,4), (5,6), (7,8), (8,9)

7

96

854

321

Dependence graph

Any topological sort is okay, but we want best one

dst src src

April 19, 2015 Instruction Scheduling 15

Scheduling Heuristics

Goal

– Avoid stalls

What are some good heuristics?

– Does an instruction interlock with any immediate successors in the

dependence graph?

– How many immediate successors does an instruction have?

– Is an instruction on the critical path?

April 19, 2015 Instruction Scheduling 16

Scheduling Heuristics (cont)

Idea: schedule an instruction earlier when...

– It does not interlock with the previously scheduled instruction

(avoid stalls)

– It interlocks with its successors in the dependence graph

(may enable successors to be scheduled without stall)

– It has many successors in the graph

(may enable successors to be scheduled with greater flexibility)

– It is on the critical path

(the goal is to minimize time, after all)

April 19, 2015 Instruction Scheduling 17

Scheduling Algorithm

Build dependence graph G

Candidates  set of all roots (nodes with no in-edges) in G

while Candidates 

Select instruction s from Candidates {Using heuristics—in order}

Schedule s

Candidates  Candidates  s

Candidates  Candidates  “exposed” nodes

{Add to Candidates those nodes whose

predecessors have all been scheduled}

April 19, 2015 Instruction Scheduling 18

Scheduling Example

Dependence Graph

3 st a, $r0

2 addi $sp,12,$sp

5 ld $r4,-8($sp)

4 ld $r3,-4($sp)

8 ld $r5,a

1 addi $r2,1,$r1

6 addi $sp,8,$sp

7 st 0($sp),$r2

9 addi $r4,1,$r4

Scheduled Code

Hazards in new schedule

 (8,1)

7

96

854

321

Candidates

1 addi $r2,1,$r1

2 addi $sp,12,$sp

addi

addi addi

addi

st

st

ldld ld

April 19, 2015 Instruction Scheduling 19

3 st a, $r0

2 addi $sp,12,$sp

5 ld $r4,-8($sp)

4 ld $r3,-4($sp)

8 ld $r5,a

1 addi $r2,1,$r1

6 addi $sp,8,$sp

7 st 0($sp),$r2

9 addi $r4,1,$r4

Hazards in new schedule

 (8,1)

Scheduling Example (cont)

1 addi $r2,1,$r1

2 addi $sp,12,$sp

3 st a, $r0

4 ld $r3,-4($sp)

5 ld $r4,-8($sp)

6 addi $sp,8,$sp

7 st 0($sp),$r2

8 ld $r5,a

9 addi $r4,1,$r4

Original code

Hazards in original schedule

 (3,4), (5,6), (7,8), (8,9)

April 19, 2015 Instruction Scheduling 20

Complexity

Quadratic in the number of instructions

– Building dependence graph is O(n2)

– May need to inspect each instruction at each scheduling step: O(n2)

– In practice: closer to linear

April 19, 2015 Instruction Scheduling 21

Improving Instruction Scheduling

Techniques

– Scheduling loads

– Register renaming

– Loop unrolling

– Software pipelining

– Predication and speculation

Deal with data hazards

Deal with control hazards

April 19, 2015 Instruction Scheduling 22

Scheduling Loads

Reality

– Loads can take many cycles (slow caches, cache misses)

– Many cycles may be wasted

Most modern architectures provide non-blocking (delayed) loads

– Loads never stall

– Instead, the use of a register stalls if the value is not yet available

– Scheduler should try to place loads well before the use of target register

April 19, 2015 Instruction Scheduling 23

Hiding latency

– Place independent instructions behind loads

– How many instructions should we insert?

– Depends on latency

– Difference between cache miss and cache hits are growing

– If we underestimate latency: Stall waiting for the load

– If we overestimate latency: Hold register longer than necessary

Wasted parallelism

0 1 2 3 4 5 6 7 8

Scheduling Loads (cont)

time

add r3
load r2

load r1

0 1 2 3 4 5 6 7 8

load r2

time

load r1

add r3

April 19, 2015 Instruction Scheduling 24

Balanced Scheduling [Kerns and Eggers’92]

Idea

– Impossible to know the latencies statically

– Instead of estimating latency, balance the ILP (instruction-level

parallelism) across all loads

– Schedule for characteristics of the code instead of for characteristics of the

machine

Balancing load

– Compute load level parallelism

independent instructions

of loads that can use this parallelism
LLP = 1 +

April 19, 2015 Instruction Scheduling 25

Balanced Scheduling Example

Example

8

3

8

3

8

3

8

balanced
scheduling

list
scheduling

w=5 w=1

L0

X0

X1

X2

X3

L1

X4

L0

X0

X1

L1

X2

X3

X4

Pessimistic

L0

L1

X0

X1

X2

X3

X4

Optimistic

LLP for L0 = 1+4/2 = 3

LLP for L1 = 1+2/1 = 3

L0

L1

X0

X1

X2

X3

X4

April 19, 2015 Instruction Scheduling 26

Register Renaming

Idea

– Reduce false data dependences by reducing register reuse

– Give the instruction scheduler greater freedom

Example

add $r1, $r2, 1

st $r1, [$fp+52]

mul $r1, $r3, 2

st $r1, [$fp+40]

add $r1, $r2, 1

st $r1, [$fp+52]

mul $r11, $r3, 2

st $r11, [$fp+40]

add $r1, $r2, 1

mul $r11, $r3, 2

st $r1, [$fp+52]

st $r11, [$fp+40]

April 19, 2015 Instruction Scheduling 27

Loop Unrolling

Idea

– Replicate body of loop and iterate fewer times

– Reduces loop overhead (test and branch)

– Creates larger loop body  more scheduling freedom

Example

L: ldf [r1], f0

fadds f0, f1, f2

stf f2, [r1]

sub r1, 4, r1

cmp r1, 0

bg L

nop
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ldf

stf

sub
cmp

bg

nop

ldf

fadds

Cycles per iteration: 12

Loop

overhead

April 19, 2015 Instruction Scheduling 28

Loop Unrolling Example

Sample loop

L: ldf [r1], f0

fadds f0, f1, f2

ldf [r1-4], f10

fadds f10, f1, f12

stf f2, [r1]

stf f12, [r1-4]

sub r1, 8, r1

cmp r1, 0

bg L

nop 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cycles per iteration: 14/2 = 7

(71% speedup!)

ldf

stf

sub

cmp
bg
nop

ldf

fadds
ldf

fadds

stf

The larger window lets us hide the latency of the fadds instruction

Loop

overhead

April 19, 2015 Instruction Scheduling 29

Phase Ordering Problem

Register allocation

– Tries to reuse registers

– Artificially constrains instruction schedule

Just schedule instructions first?

– Scheduling can dramatically increase register pressure

Classic phase ordering problem

– Tradeoff between memory and parallelism

Approaches

– Consider allocation & scheduling together

– Run allocation & scheduling multiple times

(schedule, allocate, schedule)

April 19, 2015 Instruction Scheduling 30

Concepts

Instruction scheduling

– Reorder instructions to efficiently use machine resources

– List scheduling

Improving instruction scheduling

– Balanced scheduling

– Consider characteristics of the program

– Register renaming

– Loop unrolling

Phase ordering problem

April 19, 2015 Instruction Scheduling 31

Next Time

Lecture

– More instruction scheduling

April 19, 2015 Instruction Scheduling 32

Scheduling Example

Dependence Graph

3 st a, $r0

2 addi $sp,12,$sp

4 ld $r3,-4($sp)

5 ld $r4,-8($sp)

8 ld $r5,a

1 addi $r2,1,$r1

6 addi $sp,8,$sp

7 st 0($sp),$r2

9 addi $r4,1,$r4

Scheduled Code

Hazards in New Schedule

 (8,1)

7

96

854

321

Candidates

7 st 0($sp),$r2

1 addi $r2,1,$r1

2 addi $sp,12,$sp

3 st a, $r0

8 ld $r5,a

4 ld $r3,-4($sp)

5 ld $r4,-8($sp)

6 addi $sp,8,$sp

9 addi $r4,1,$r4

April 19, 2015 Instruction Scheduling 33

Scheduling Example

Dependence Graph

3 st a, $r0

2 addi $sp,12,$sp

4 ld $r3,-4($sp)

5 ld $r4,-8($sp)

8 ld $r5,a

6 addi $sp,8,$sp

1 addi $r2,1,$r1

7 st 0($sp),$r2

9 addi $r4,1,$r42

Scheduled Code

Hazards in New Schedule

 (8,1)

7

96

854

321

Candidates

7 st 0($sp),$r2

1 addi $r2,1,$r1

2 addi $sp,12,$sp

3 st ,

8 ld $r5,a

9 addi $r4,1,$r4

April 19, 2015 Instruction Scheduling 34

Scheduling Example

Dependence Graph

3 st a, $r0

2 addi $sp,12,$sp

4 ld $r3,-4($sp)

5 ld $r4,-8($sp)

1 addi $r2,1,$r1

6 addi $sp,8,$sp

8 ld $r5,a

7 st 0($sp),$r2

9 addi $r4,1,$r42

Scheduled Code

Hazards in New Schedule

 (8,1)

7

96

854

321

Candidates

1 addi $r2,1,$r1

2 addi $sp,12,$sp

April 19, 2015 Instruction Scheduling 35

Scheduling Example

Dependence Graph

3 st a, $r0

2 addi $sp,12,$sp

4 ld $r3,-4($sp)

5 ld $r4,-8($sp)

6 addi $sp,8,$sp

1 addi $r2,1,$r1

7 st 0($sp),$r2

8 ld $r5,a

9 addi $r4,1,$r4

Scheduled Code

Hazards in New Schedule

 (5,6), (7,8)

7

96

854

321

Candidates

1 addi $r2,1,$r1

2 addi $sp,12,$sp

3 st a, $r0

April 19, 2015 Instruction Scheduling 36

Software Pipelining

Basic Idea

– Ideally, we could completely unroll loops and have complete freedom in

scheduling across iteration boundaries

– Software pipelining is a systematic approach to scheduling across iteration

boundaries without doing loop unrolling

– Use control-flow profiles to identify most frequent path through a loop

– If the most frequent path has hazards, try to move some of the long latency

instructions to previous iterations of the loop

– Three parts of a software pipeline

– Kernel: Steady state execution of the pipeline

– Prologue: Code to fill the pipeline

– Epilogue: Code to empty the pipeline

April 19, 2015 Instruction Scheduling 37

Software Pipelining Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sample loop (reprise)

L: ldf [r1], f0

fadds f0, f1, f2

stf f2, [r1]

sub r1, 4, r1

cmp r1, 0

bg L

nop

ldf

stf
sub

cmp
bg

nop
ldf

fadds

Cycles per iteration: 12

April 19, 2015 Instruction Scheduling 38

Software Pipelining Example (cont)

ldf [r1], f0

fadds f0, f1, f2

stf f2, [r1]

sub r1, 4, r1

ldf [r1], f0

fadds f0, f1, f2

stf f2, [r1]

sub r1, 4, r1

ldf [r1], f0

fadds f0, f1, f2

stf f2, [r1]

sub r1, 4, r1

ldf [r1], f0

fadds f0, f1, f2

stf f2, [r1]

sub r1, 4, r1

stf f2, [r1]

fadds f0, f1, f2

ldf [r1-8], f0

sub r1, 4, r1

stf f2, [r1]

fadds f0, f1, f2

ldf [r1-8], f0

sub r1, 4, r1

stf f2, [r1]

fadds f0, f1, f2

ldf [r1-8], f0

sub r1, 4, r1

April 19, 2015 Instruction Scheduling 39

Software Pipelining Example (cont)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

stf

ldf
cmp

Sample loop

bg
sub

stf

ldf [r1], f0

fadds f0, f1, f2

ldf [r1-4], f0

L: stf f2, [r1]

fadds f0, f1, f2

ldf [r1-8], f0

cmp r1, 8

bg L

sub r1, 4, r1

stf f2, [r1]

sub r1, 4, r1

fadds f0, f1, f2

stf f2, [r1]

Cycles per iteration: 7 (71% speedup!)

fadds

