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CPU and GPU Comparison

Longhorn supercomputer at TACC

Xeon E5540 Quadro FX 5800
Cores 4 (superscalar) 240 (simple)
Active threads 2 per core 32 per core
Frequency 2.53 GHz 1.3 GHz
Peak performance* 81 GFlop/s 933 GFlop/s
Peak bandwidth 25.6 GB/s 102 GB/s
Maximum power 80 W 189 W
Price (Dec. 2010) S800 52800
Main memory size 24 GB 4 GB

An Efficient GPU Implementation of the Irregular Barnes Hut N-Body Algorithm 3



GPU Advantages over CPU

= Peak performance
11.5x more single-precision operations per second

= Main memory bandwidth -
4x more bytes transferred per second m i |

= Cost-, energy-, and size-efficiency
3.3x more performance per dollar
4.9x more performance per watt

Longhorn system at TACC

6.5x more performance per area
(Based on peak values of Longhorn hardware)
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GPU Disadvantages over CPUs

Programming and tuning are more difficult

More error prone and time intensive @
Harder to get close to peak performance
Program needs to map well to hardware

Hardware requirements for high performance
Large amount of data parallelism
High degree of regularity (code and data accesses)
Little data transfer between CPU and GPU
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Mapping Code to GPUs

Only some regular codes are easy to port
Matrix based, regular access patterns, many ops/word

Dense matrix operations (level 2 and 3 BLAS)

¥y

Stencil codes (PDE solvers)

UUUUUU

Many important scientific programs are irregular

Build, traverse, and update dynamic data structures
“m 5 (trees, graphs, linked lists, priority queues, etc.)

E.g., n-body simulation, data mining, SAT solving,
social networks, discrete-event simulation, meshing
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Project Goal

Want to find general ways to efficiently run
irregular codes on GPUs

Allows much broader range of applications

to leverage the benefits of GPU execution \g,

Approach

Now: manually implement and optimize important
irregular applications on GPUs to gain experience

Later: examine these and other case studies to extract
common implementation and optimization strategies
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Example: N-Body Simulation

Irregular Barnes Hut algorithm

Repeatedly builds unbalanced tree and
performs complex traversals on it

Our implementation
Designed for GPUs (not just port of CPU code)
First GPU implementation of entire BH algorithm
Results

1 GPU is faster than 16 CPUs (128 cores) on this code
GPU has better architecture for this irregular algorithm
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Outline

= Barnes Hut algorithm
= CUDA implementation
= Experimental results

= Conclusions
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N-Body Simulation

= Time evolution of physical system N ke i

= System consists of bodies
= “n”is the number of bodies

= Bodies interact via pair-wise forces
= Many systems can be modeled in this way

= Star/galaxy clusters (gravitational force)
= Particles (electric force, magnetic force) YRR
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Barnes Hut Idea

= Precise force calculation
Requires O(n?) operations (O(n?) body pairs)

= Barnes and Hut (1986)
Algorithm to approximately compute forces

Bodies’ initial position & velocity are also approximate
Requires only O(n log n) operations
ldea is to “combine” far away bodies
Error should be small because force ~ 1/dist?
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Barnes Hut Algorithm

Set bodies’ initial position and velocity

Iterate over time steps
Compute bounding box around bodies
Subdivide space until at most one body per cell

Record this spatial hierarchy in an octree
Compute mass and center of mass of each cell

Compute force on bodies by traversing octree

Stop traversal path when encountering a leaf (body) or an
internal node (cell) that is far enough away

Update each body’s position and velocity
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Build Tree (Level 2)

Subdivide space until at most one body per cell
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Build Tree (Level 3)

Subdivide space until at most one body per cell
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Build Tree (Level 4)

00 00 00

Subdivide space until at most one body per cell
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Build Tree (Level 5)

Subdivide space until at most one body per cell
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Compute Cells” Center of Mass

00 00 0000

For each internal cell, compute sum of mass and weighted average
of position of all bodies in subtree; example shows two cells only
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Compute Forces

/\ *
00 00 00

Compute force, for example, acting upon green body
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Compute Force (short distance)

Y N N

Scan tree depth first from left to right; green portion already completed
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Compute Force (down one level)
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Red center of mass is too close, need to go down one level

An Efficient GPU Implementation of the Irregular Barnes Hut N-Body Algorithm

21



Compute Force (long distance)

/\ ® *
00 00 00
*
* *

Yellow center of mass is far enough away
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Compute Force (skip subtree)

Oo)ﬂ 00 /ok 7
* *

Therefore, entire subtree rooted in the yellow cell can be skipped
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Pseudocode

bodySet =
foreach timestep do {
bounding box = new Bounding Box() ;
Body b in bodySet {
bounding box.include (b) ;
}
octree = new Octree (bounding box) ;
Body b in bodySet {
octree.Insert (b);
}
celllList = octree.CellsByLevel();
Cell c in cellList {
c.Summarize() ;
}
Body b in bodySet {
b.ComputeForce (octree) ;

}
Body b in bodySet {
b.Advance() ;

}
}
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Complexity and Parallelism

bodySet =
foreach timestep do { // O(n log n) + ordered sequential
bounding box = new Bounding Box() ;
Body b in bodySet { // O0(n) parallel reduction
bounding box.include (b) ;
}
octree = new Octree (bounding box) ;
Body b in bodySet { // O(n log n) top-down tree building
octree.Insert (b);
}
celllList = octree.CellsByLevel();
Cell ¢ in cellList { // O0(n) + ordered bottom-up traversal
c.Summarize() ;

}
Body b in bodySet { // O(n log n) fully parallel
b.ComputeForce (octree) ;

}
Body b in bodySet { // 0(n) fully parallel
b.Advance() ;

}
}
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Outline
" Introduction
"= Barnes Hut algorithm
= CUDA implementation

* Experimental results
= Conclusions
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Efficient GPU Code

= Coalesced main memory accesses
= Little thread divergence

= Enough threads per block
= Not too many registers per thread
= Not too much shared memory usage

= Enough (independent) blocks
= Little synchronization between blocks

= Little CPU/GPU data transfer
= Efficient use of shared memory
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Main BH Implementation Challenges

= Based on irregular tree-based data structure
Load imbalance
Little coalescing

= Complex recursive traversals
Recursion not allowed
Lots of thread divergence

= Memory-bound pointer-chasing operations
Not enough computation to hide latency
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Six GPU Kernels

Read initial data and transfer to GPU

for each timestep do {
Compute bounding box around bodies
Build hierarchical decomposition, i.e., octree
Summarize body information in internal octree nodes
Approximately sort bodies by spatial location (optional)
Compute forces acting on each body with help of octree
Update body positions and velocities

}

Transfer result from GPU and output
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Global Optimizations

= Make code iterative (recursion not supported)
= Keep data on GPU between kernel calls

= Use array elements instead of heap nodes
= One aligned array per field for coalesced accesses

objects in array

..:>_
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objects on heap fields in arrays
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Global Optimizations (cont.)

Maximized thread count (rounded to warp size)
Maximized resident block count (all SMs used)
Pass kernel parameters through constant memory
Use special allocation order
Alias arrays (56 B/node)
Use index arithmetic
Persistent blocks & threads

Unroll Ioops over children lbo]bi[b2]b3balbs[b6]b7blbolba] ... [cs[calea[ez]ei]<o]

bodies (fixed) cell allocation direction

CEEEEEEE————
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main memory

threads

shared memory

threads

shared memory

threads

shared memory

threads

shared memory

threads

shared memory

barrier

—

barrier

=

barrier

x

barrier

Equal sized chunks

= Fully coalesced

= Fully cached

= No bank conflicts

= Minimal divergence

= Built-in min and max
= 2 red/mem, 6 red/bar
= 1 atomic inc per block
= 512 threads per SM
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Kernel 2: Build Octree

= QOptimizations
Load-balance bodies Top-down tree building
Cache root in registers
Only lock leaf “pointers”
Light-weight lock release

No re-traverse after lock
acquire failure

Throttle lock polling
288*2 threads per SM
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Kernel 2: Build Octree (cont.)

// initialize
cell = find insertion point(body); // nothing locked, cell cached
child = get insertion index(cell, body) ;
if (child != locked) { // skip atomic if already locked
if (child == atomicCAS (&cell[child], child, lock)) {
if (child == null) { // fast path (frequent)
cell([child] = body; // insert body (releases lock)
} else { // slow path (infrequent)
new cell = ...; // atomically get next unused cell
// insert the existing and new body into new cell
_ _threadfence(); // make new cell subtree visible
cell[child] = new cell; // insert subtree (releases lock)

}

success = true; // flag showing insertion succeeded

}

__syncthreads(); // wait for other warps
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Architectural Advantage

= Thread throttling

Avoids likely useless work, in particular expensive
memory polling operations to acquire a lock

Speeds up threads that successfully acquired a lock
because more mem bandwidth is available to them

= Hardware support
Thread divergence enforces throttling within warp

Fast HW barriers make warp throttling possible
(CPU barriers are implemented in SW via memory)
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Kernel 3: Summarize Subtrees

= Optimizations
Bottom-up tree traversal Load-balance cells
No parent “pointers”
Scan avoids deadlock
Partially coalesced

Use mass as flag + fence
No locks, no atomics

Cache unready “children”
Automatic throttling

allocation direction

S —— Piggyback on traversal
8 B O e EY RV RN EA EY Y Count bodies in subtrees
scan direction Move nulls to back

256 threads per SM
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Kernel 3: Summarize Subtrees (cont.)

// initialize
if (missing == 0) { // new cell, get child info
// initialize center of gravity
for (/*iterate over existing children*/) {
if (/*child is ready*/) {
// add its contribution to center of gravity
} else {
// cache child index
missing++;
} 1l
if (missing != 0) { // try to get missing child info
do {
if (/*last cached child is now ready*/) {
// remove from cache and add its contribution to center of gravity
missing--;
}
} while (/*missing changed*/ && (missing != 0)); // exit to avoid deadlock
}
if (missing == 0) { // got all info, update cell info
// store center of gravity
__threadfence(); // make sure center of gravity is visible
// store cumulative mass (indicates cell is ready)
success = true; // local flag indicating that computation for cell is done
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Kernel 4: Sort Bodies (optional)

= Optimizations
Top-down tree traversal (Similar to Kernel 3)
Load-balance cells
Scan avoids deadlock
Use data field as flag

No locks, no atomics

Use counts from Kernel 3

allocation direction AUtOmatIC thrOttllng
CETTTPTIETTT ... [slalaf2]3]4] 512 threads per SM

scan direction
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Kernel 4: Force Calculation

Top-down prefix traversal Optimizations (cont.)

Group similar work together

Uses sorting to minimize union
of prefixes in warp

Early out (nulls in back)

Traverse whole union to avoid
divergence (thread voting)

Lane O reads data for entire
warp, no sync needed

Lane O controls iteration stack

Optimizations for entire warp (fits in cache)
Load balanced Cache tree-level-based data
Use built-in rsqrt 384*2 threads per SM
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Architectural Advantages

= Coalesced memory accesses & lockstep execution
All threads in warp read same tree node at same time
Only one mem access per warp instead of 32 accesses

CPUs can only do this partially in highest shared cache
level (no sync guarantee, still incurs p*L3 latency)

= Warp-based execution
Enables data sharing in warps w/o synchronization

= RSQRT instruction

Quickly computes approximation of 1/sqrt(x)
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Kernel 5: Advance Bodies

= Optimizations
= Fully coalesced, no divergence
= Load balanced, 512 threads per SM

Straightforward streaming

main memory

threads

main memory
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Related Work

GPU-based n-body simulation
GPU only: O(n?) algorithm

Close to peak performance with blocking

CPU + GPU: tree construction and traversal on CPU,
force calculation (based on interaction lists) on GPU

Problem size not restricted to GPU memory size

Irregular GPU codes
Mostly sparse matrix computations
Parallel traversals of graphs built on CPU
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" Introduction
= Barnes Hut algorithm

= CUDA implementation
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= Experimental results

= Conclusions

runtime per timestep [s]

0.1

0.0

number of bodies
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Evaluation Methodology

Implementations
Parallel CUDA C versions of Barnes Hut & O(n?) algorithm
Parallel pthreads C version of BH algorithm (SPLASH-2)
Systems and compilers
Longhorn (TACC): Quadro FX 5800 GPU, 1.3 GHz, 30 SMs
Nautilus (NICS): Xeon X7550 CPU, 2 GHz, 8 cores per CPU
nvcc v3.0 (-O3 -arch=sm_13); iccv11.1 (-O3 -xW -pthread)
Inputs and metric

5k, 50k, 500k, and 5M star clusters (Plummer model)
Median runtime of three experiments, excluding 1/0
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Available Amorphous Data Parallelism

10,000,000
bounding box tree building summarization sorting °°
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kernel and round

= Lots of bodies (K 1, 2, 5, 6) and cells (K 3, 4) can be
processed in parallel (with only data dependencies)
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Nodes Touched per Activity (5M Input)

K1: pair reduction
K2: tree insertion
K3: bottom-up step
K4: top-down step
K5: prefix traversal
K6: integration step

Max tree depth £ 22
Cells have 3.1 children

neighborhood size
min avg max
kernel 1 1 2.0 2
kernel 2 2 13.2 22
kernel 3 2 4.1 9
kernel 4 2 4.1 9
kernel 5 818 4,117.0 6,315
kernel 6 1 1.0 1

Prefix < 6,315 nodes
(£ 0.1% of 7.4 million)

BH algorithm & sorting
to min. union work well

An Efficient GPU Implementation of the Irregular Barnes Hut N-Body Algorithm 46



Runtime Comparison

= GPU vs. CPU (all inputs)

= GPU over 15x faster than
CPU on irregular BH code

= GPU faster than 16 CPUs

with 128 x86 cores
= BH vs. O(n?) algorithm
= O(n?) better for < 10k

= GPU BH inefficiency
= 5k input too small for

7,680 to 23,040 threads

100,000

10,000

1,000 -

runtime per timestep [ms]

100

10

-4 -1GPUBH
--@-- 1GPUNA2
1 CPU BH

| {=—6—2CPUsBH

—=-—4 CPUs BH
8 CPUs BH

—&— 16 CPUs BH

5,000 50,000 500,000
number of bodies

5,000,000

= Architectural advantage

= Low thread startup cost
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Kernel Performance for 5M Input

runtime [ms]

kernel 1 kernel 2 kernel 3 kernel4 kernel5 kernel6

CPU serial
GPU parallel
GPU percent
CPU/GPU

50.0 2,160.0 310.0 382,840.0

4,202.8
80.6%
91.1

990.0
4.1
0.1%
241.5

Heterogeneous solution not useful

PCle transfer @ 3.13 GB/s requires over 130ms

K2 is weak but also scales poorly on CPU (DS mismatch)

K3 is a little slow but too short to move to CPU

kernel 1 kernel 2 kernel 3 kernel 4 kernel 5 kernel 6

total

O(n"2) alg

Gflop/s 37.62
Gbytes/s 75.00
runtime [s] 0.0

75.79
2.91
5.2

304.90
0.95
1,639.9

76 Gflop/s on irregular code (memory bound)
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Kernel Scaling on 5M Input

kernel 1 kernel 2 kernel 3 kernel 4 kernel 5 kernel 6

o 9 warps 16 9 8 16 12 16
g T:‘; speedup 9.8 4.8 7.2 1.0 18.6 14.0
@ efficiency| 61.0% 53.4% 90.3% 6.3% 154.8% 87.5%
RN blocks 30 60 30 30 60 30
§ = speedup 14.8 1.2 2.9 1.7 154 6.0
< efficiency| 49.2% 2.0% 9.5% 5.6% 25.7% 19.9%

Warps & blocks capped by register & cache use
Warp scaling is good
K4 almost saturates memory bandwidth with 1 warp
K5 exhibits superlinear speedup due to OO0 execution

Block scaling is poor (memory bandwidth limited)
Lot of computations help (K5), coalescing helps (K1,K6)
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Optimization Benefit by Kernel

throttling warp-based thread sortingof sync'ed
of mem access votingin bodies for execution
kernel 2 inkernel5 kernel5 kernel5 inkernel5
5,000 1.062 0.914 3.276 1.845 3.91
50,000 1.073 0.829 1.900 4.214 52.83
500,000 1.016 1.088 1.817 6.254 568.68
5,000,000 1.004 1.123 1.688 9.056 5088.67

Warp throttling: helps while tree is small

1 access per warp: can help (5.7x on older GPUs)
Voting: much faster than cache-based reduction
Sorting: helps a lot, helps more for larger inputs

Divergence avoidance: absolutely paramount

CPU-style coding causes divergence and de-coalescing

An Efficient GPU Implementation of the Irregular Barnes Hut N-Body Algorithm
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Optimization Summary

Exploit hardware features

Fast synchronization & thread startup, special instructions,
coalescing, even lockstep execution and thread divergence

Minimize thread divergence

Group similar work together & force synchronicity

Minimize main memory accesses
Share data within warp and throttle polling accesses

Implement entire algorithm on GPU
Avoids data transfers & data structure inefficiencies
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Optimization Summary (cont.)

Use light-weight locking and synchronization

Minimize locks, reuse fields, and use fence + store ops
Combine traversals

Perform multiple operations during single traversal
Maximize parallelism and load balance

Parallelize every step within and across SMs

Maximize coalescing

Partial coalescing due to array-based implementation
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Conclusions

Irregularity does not necessarily prevent high-
performance on GPUs

Entire Barnes Hut algorithm implemented on GPU
Builds and traverses unbalanced octree

One GPU outperforms 16 high-end 8-core Xeons

Code directly for GPU, do not merely adjust CPU code
Requires different data and code structures
Benefits from different algorithmic modifications
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Future Work

Implement other important irregular codes on GPUs

Discover new implementation and optimization techniques

Extract and generalize common strategies

Enable entire classes of irregular programs to leverage the
performance and energy/cost-efficiency of GPU execution
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