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Abstract
Testing multithreaded programs is a hard problem, because
it is challenging to expose those rare interleavings that can
trigger a concurrency bug. We propose a new thread inter-
leaving coverage-driven testing tool called Maple that seeks
to expose untested thread interleavings as much as possible.
It memoizes tested interleavings and actively seeks to ex-
pose untested interleavings for a given test input to increase
interleaving coverage.

We discuss several solutions to realize the above goal.
First, we discuss a coverage metric based on a set of in-
terleaving idioms. Second, we discuss an online technique
to predict untested interleavings that can potentially be ex-
posed for a given test input. Finally, the predicted untested
interleavings are exposed by actively controlling the thread
schedule while executing for the test input. We discuss our
experiences in using the tool to expose several known and
unknown bugs in real-world applications such as Apache
and MySQL.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging

General Terms Design, Reliability

Keywords Testing, Debugging, Concurrency, Coverage,
Idioms

1. Introduction
Testing a shared-memory multi-thread program and expos-
ing concurrency bugs is a hard problem. For most concur-
rency bugs, the thread interleavings that can expose them
manifest only rarely during an unperturbed execution. Even
if a programmer manages to construct a test input that can
trigger a concurrency bug, it is often difficult to expose
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the infrequently occuring buggy thread interleaving, because
there can be many correct interleavings for that input.

One common practice for exposing concurrency bugs is
stress-testing, where a parallel program is subjected to ex-
treme scenarios during a test run. This method is clearly
inadequate, because naively executing a program again and
again over an input tends to unnecessarily test similar thread
interleavings and has less likelihood of exposing a rare
buggy interleaving. An alternative to stress testing is system-
atic testing [13], where the thread scheduler systematically
explores all legal thread interleavings for a given test input.
Though the number of thread schedules could be reduced
by using partial-order reduction [10, 12] and by bounding
the number of context-switches [32], this approach does not
scale well for long running programs.

Another recent development is active testing [36, 38, 50].
Active testing tools use approximate bug detectors such as
static data-race detectors [7, 43] to predict buggy thread in-
terleavings. Using a test input, an active scheduler would try
to excercise a suspected buggy thread interleaving in a real
execution and produce a failed test run to validate that the
suspected bug is a true positive. Active testing tools target
specific bug types such as data-races [38] or atomicity viola-
tions [17, 23, 35, 36, 40], and therefore are not generic. For
a given test input, after actively testing for all the predicted
buggy thread interleavings, a programmer may not be able to
determine whether she should continue testing other thread
interleavings for the same input or proceed to test a different
input.

In this paper, we propose a tool called Maple that em-
ploys a coverage-driven approach for testing multithreaded
programs. An interleaving coverage-driven approach has the
potential to find different types of concurrency bugs, and
also provide a metric for the programmers to understand the
quality of their tests. While previous studies have attempted
to define coverage metrics for mulithreaded programs based
on synchronization operations [2] and inter-thread memory
dependencies [22, 24, 39], synergistic testing tools that can
help programmers achieve higher coverage for those metrics
have been lacking.



Figure 1. Overview of the framework.

The first contribution of this paper is the set of interleav-
ing idioms which we use to define coverage for mulithreaded
programs. An interleaving idiom is a pattern of inter-thread
dependencies through shared-memory accesses. An instance
of an interleaving idiom is called an iRoot which is repre-
sented using a set of static memory instructions. The goal of
Maple is to expose as many new iRoots as possible during
testing.

We define our set of interleaving idioms based on two
hypothesis. One is the well-known small scope hypothe-
sis [18, 29] and the other is what we refer to as the value-
independence hypothesis. Small scope hypothesis [18, 29]
states that most concurrency bugs can be exposed using a
small number of preemptions. CHESS [32] exploits this ob-
servation to bound the number of preemptions to reduce the
test space. We apply the same principle to bound the number
of inter-thread memory dependencies in our interleaving pat-
terns to two. Our empirical analysis of several concurrency
bugs in real applications show that a majority of them can be
triggered if at most two inter-thread memory dependencies
are exposed in an execution.

Our value-independence hypothesis is that a majority
of concurrency bugs gets triggered if the errorneous inter-
thread memory dependencies are exposed, irrespective of
the data values of the shared variables involved in the de-
pendencies. We leverage this hypothesis to test for an iRoot
only once, and avoid testing the same thread interleaving
(iRoot) again and again across different test input. Thus, the
number of thread interleavings to test would progressively
reduce as we test for more inputs.

A critical challenge is in exposing untested iRoots for
a given test input. To this end, we built the Maple testing
infrastructure comprised of an online profiler and an active
scheduler shown in Figure 1.

Maple’s online profiler examines an execution for a test
input, and predicts the set of candidate iRoots that are fea-
sible for that input but have not yet been exposed in any
prior test runs. Predicted untested iRoots are given as input
to Maple’s active scheduler. The active scheduler takes the
test input and orchestrates the thread interleaving to realize

the predicted iRoot in an actual execution using a set of novel
heuristics. If the iRoot gets successfully exposed, then it is
memoized by storing it in a database of iRoots tested for the
program. We also consider the possibility that certain iRoots
may never be feasible for any input. We progressively learn
these iRoots and store them in a separate database. These
iRoots are given a lower priority when there is only limited
time available for testing.

When the active scheduler for an iRoot triggers a concur-
rency bug causing the program produces an incorrect result,
Maple generates a bug report that contains the iRoot. Our
active scheduler orchestrates thread schedules on a unipro-
cessor, and therefore recording the order of thread sched-
ule along with other non-deterministic system input, if any,
could allow a programmer to reproduce the failed execution
exposed by Maple.

We envision two usage models for Maple. One usage
scenario is when a programmer has a test input and wants to
test her program with it. In this scenario, Maple will help the
programmer actively expose thread interleavings that were
not tested in the past. Also, a programmer can determine how
long to test for an input, because Maple’s predictor would
produce a finite number of iRoots for testing.

Another usage scenario is when a programmer acciden-
tally exposed a bug for some input, but is unable to repro-
duce the failed execution. A programmer could use Maple
with the bug triggering input to quickly expose the buggy
interleaving. We helped a developer at Intel in a similar sit-
uation to expose an unknown bug using Maple.

We built a dynamic analysis framework using PIN [28]
for analyzing concurrent programs. Using this framework,
we built several concurrency testing tools including Maple,
a systematic testing tool called CHESS [32] and tools such
as PCT [3] that rely on randomized thread schedulers, which
we compare in our experiments.

We perform several experiments using open-source appli-
cations (Apache, MySQL, Memcached, etc.). Though Maple
does not provide hard guarantees similar to CHESS [29] and
PCT [3], it is effective in achieving higher iRoot coverage
faster than those tools in practice. We also show that Maple
is effective in exposing 13 documented bugs faster than
these prior methods, which provides evidence that achieving
higher coverage for our metric based on interleaving idioms
is effective in exposing concurrency bugs. We also discuss
our experiences in using Maple to find 3 unknown bugs in
aget, glibc, and CNC.

Our dynamic analysis framework for concurrent pro-
grams and all the testing tools we developed are made avail-
able to the public under the Apache 2.0 license. They can be
downloaded from (https://github.com/jieyu/maple).



2. Coverage-Driven Testing Based on
Interleaving Idioms

In this section we discuss a coverage-driven testing method-
ology for multithreaded programs. For sequential programs,
metrics such as program statement coverage are commonly
used to understand the effectiveness of a test suite and de-
termine if additional testing is required. For multithreaded
programs, however, a practically useful thread interleaving
coverage metric has been lacking.

We define coverage for multithreaded programs based on
a set of thread interleaving idioms. Sections 3 and 4 discuss
our Maple tool that can help programmers achieve higher
coverage for these interleaving idioms.

2.1 Interleaving Idioms
An interleaving idiom is a pattern of inter-thread dependen-
cies and the associated memory operations. An inter-thread
memory dependency (denoted using ⇒) is an immediate
(read-write or write-write) dependency between two mem-
ory accesses in two threads. A memory access could be ei-
ther to a data or a synchronization variable. A dynamic in-
stance of an idiom in a program’s execution is called as an
interleaving root (iRoot). A memory access in an iRoot is
represented using the static address of the memory instruc-
tion. Coverage of a test suite for a program is simply cal-
culated as the number of iRoots exposed in any of the test
run.

Interleaving idioms should be generic enough that, by ex-
posing their iRoots, most concurrency bugs could be trig-
gered. At the same time, the coverage domain (number of
iRoots that needs to be tested) should be small enough that,
the probability of exposing an unknown concurrency bug is
high when an untested iRoot is exposed. To meet these com-
peting demands, we make an assumption that most concur-
rency bugs can be exposed using simple thread interleaving
patterns. This assumption is inspired by the small scope hy-
pothesis [18, 29].

We study a set of canonical idioms that can be constructed
for one or two inter-thread dependencies (which implies
there can be only one or two shared-variables) involving no
more than two threads. Figure 2 enumerates the canonical set
of idioms for two inter-thread dependencies and two threads.
There are six idioms in total. We refer to idiom1 as a sim-
ple idiom, and the rest as compound idioms. For compound
idioms, to reduce the coverage domain without significantly
compromising the ability to expose a concurrency bug, we
include two additional constraints. First, the number of in-
structions executed between two events in the same thread
should be less than a threshold. We refer to this threshold as
the vulnerability window (vw). Second, in an idiom, if atom-
icity of two memory accesses in a thread T to a variable V is
violated by accesses in another thread, we disallow accesses
to V between those two accesses in the thread T . For exam-
ple, in idiom3 we do not allow any access to the variable X
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Figure 2. The canonical idioms for two inter-thread depen-
dencies and two threads.

T1 T2 

: 

foo(…) 
{ 
  c:=1 
  a:=1 
   
  a:=2 
} 

bar(…) 
{ 
  
  if(c) 
    assert(a!=1) 
  
} 

: 

: 
Idiom 

 
 

Sufficient Conditions: 

 
 

Initial: a = 0, c = 0 

: 
: 

Figure 3. An idiom1 concurrency bug.

between the two memory accesses AX and DX , but there
could be accesses to X between BX and CX .

Six idioms in Figure 2 can represent interleavings re-
quired to expose a majority of concurrency bugs: atomicity
violations, including both single variable (idiom1, idiom2,
idiom3) and multi-variable (idiom4, idiom5); typical dead-
lock bugs (idiom5), and generic order related concurrency
bugs (idiom1, idiom6). These interleaving patterns are more
general than the anomalous patterns used in prior studies to
find specific classes of concurrency bugs [36, 38, 40].

2.2 Relation Between iRoots and Concurrency Bugs
The iRoot of a concurrency bug provides the minimum set
of inter-thread dependencies and the associated memory or
synchronization accesses, which if satisfied, can trigger that
bug in an execution. Of course, higher order iRoots may
also expose the same concurrency bug, but for the purpose
of classifying concurrency bugs, we consider the iRoot that
provides the minimum set of interleaving conditions.

Figure 3 shows an example of a concurrency bug. The
idiom of the bug is shown in the dashed box. A and B rep-
resent static instructions in the program and X represents a
memory location. The arrows denote inter-thread dependen-
cies. The bug is triggered whenever the inter-thread depen-
dency I2 ⇒ I5 is satisfied in an execution. Therefore, this
is an idiom1 bug and its iRoot is I2 ⇒ I5. Note that there
exists an inter-thread dependency I1 ⇒ I4 that must also
be satisfied before the iRoot I2 ⇒ I5 can be exposed. This
dependency affects the control flow of the thread T 2 and de-
termines whether I5 is executed or not. We refer to such con-
ditions which must be satisfied in order to satisfy the idiom



Thread-1 Thread-2 

int generate_table(..){ 
  lock(&LOCK_open); 
  // delete table entries 
  unlock(&LOCK_open); 
 
 
 
 
 
 
 
  lock(&LOCK_log); 
  // write log 
  unlock(&LOCK_log); 
} 

int mysql_insert(..){ 
   
 
 
  lock($LOCK_open); 
  // insert to table 
  unlock($LOCK_open); 
  ...                              
  lock(&LOCK_log); 
  // write log 
  unlock(&LOCK_log); 
 
 
 
} 

Idiom-4 

 
 

 
 

 
 

 
 

Figure 4. A real idiom4 concurrency bug from MySQL.

Idiom1 Idiom2 Idiom3 Idiom4 Idiom5 Idiom6 Other
7 3 1 4 1 0 1

Table 1. Empirical study on 17 documented bugs.

conditions as pre-conditions. Also notice that I5 ⇒ I3 needs
to be exposed before the bug can be triggered. However, this
condition need not be part of the bug’s iRoot (I2 ⇒ I5),
because it is always implied by the bug’s iRoot interleaving
conditions.

Figure 4 shows a real concurrency bug in MySQL and its
idiom. In this example, two critical sections in Thread-1 are
expected to execute atomically, but the programmer did not
enforce that constraint explicitly. The bug will be exposed
when the critical sections in Thread-1 are intercepted with
the critical section in Thread-2. The iRoot for this bug is
of type idiom4 consisting of the two inter-thread dependen-
cies between the lock and unlock operations. This example
conveys an important observation that even if a concurrency
bug is fairly complex involving many different variables and
inter-thread dependencies, the iRoot of that bug (minimum
set of interleaving conditions that need to be satisfied to trig-
ger that bug) could be quite simple. Thus, by testing iRoots
for a small set of idioms, we can hope to expose a significant
fraction of concurrency bugs.

2.2.1 Empirical Analysis
To verify our hypothesis that achieving high coverage for
our simple set of interleaving idioms could expose a signif-
icant fraction of concurrency bugs, we conducted an empir-
ical study using 17 real world concurrency bugs from vari-
ous programs including Apache, MySQL, and Memcached.
Table 1 presents the results. Except one, the remaining 16
concurrency bugs can be characterized using one of our in-
terleaving idioms. We could not represent one bug using any
of our idioms (Bug#10 in Table 2) because it was value de-
pendent. We did not find any concurrency bug that can be
classified as idiom6. Therefore, in this paper, we focus only
on exposing iRoots for the first five idioms.

2.3 Coverage-Driven Testing Using Memoization
One of the disadvantages of random testing [3, 6] and sys-
tematic testing tools that expose all legal thread interleavings
for a given test input [29] is that, they may expose the same

thread interleaving (iRoot) again and again across different
test inputs. In our coverage-driven testing method, we pro-
pose to memoize the thread interleavings (iRoots) exposed in
a test run, and use it to target future tests to expose untested
iRoots. In other words, if an iRoot has been already exposed
during an earlier execution for some test input, Maple will
not seek to expose the same iRoot again.

If a concurrency bug is dependent on values read or writ-
ten by memory accesses, then exposing an iRoot once may
not be enough. Extending interleaving idioms to include
value conditions may address this problem. However, this
would significantly enlarge the coverage domain and result
in the same thread interleaving being unnecessarily tested
multiple times for different values. We hypothesize that most
concurrency bugs are such that whenever their erroneous in-
terleavings are exposed they get triggered. We refer to this
hypothesis as the value-independence hypothesis. Section 6
provides empirical evidence that supports this hypothesis.
We also show that memoizing tested iRoots across different
test inputs can drastically reduce testing time without signif-
icantly compromising Maple’s ability in exposing concur-
rency bugs.

Maple seeks to achieve higher coverage by exposing as
many different iRoots as possible during testing. Unlike cov-
erage metrics such as basic block coverage, it is hard to esti-
mate the total number of iRoots for a given program. How-
ever, number of exposed iRoots can be used as coverage
metric for a saturation-based test adequacy [22, 39]. That
is, a programmer can decide to stop testing at a point when
additional tests are unlikely to expose new iRoots. We be-
lieve saturation-based testing approach is a practical solution
for problems such as concurrent testing where estimating the
coverage domain is intractable.

3. Online Profiling For Predicting iRoots
In this section, we discuss the design and implementation of
Maple’s online profiler. Given a program and a test input, the
profiler predicts a set of candidate iRoots that can be tested
for the given test input.

3.1 Notations and Terminology
As we discussed in Section 2.1, an iRoot for an idiom com-
prises of a set of inter-thread dependencies between mem-
ory accesses. A memory access could be either a data access
or a synchronization access. For synchronization accesses,
we only consider lock and unlock operations in this paper.
A lock or an unlock operation is treated as a single access
when we construct an iRoot, and all memory accesses exe-
cuted within lock and unlock functions are ignored.

Ti (where i = 1,2,3,...) uniquely identifies a thread. Ai
X

represents a dynamic memory access. The super script i
uniquely identifies a dynamic access, but we usually omit
it in our discussion to improve readability. If Ai

X is a data
access, A stands for the static address of the memory instruc-
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Figure 5. (a) Infeasible iRoots due to non-mutex happens-
before relations. (b) Infeasible iRoots due to mutual exclu-
sion.

tion and X refers to the memory location accessed. Two data
accesses are said to conflict if both access the same mem-
ory location and at least one of them is a write. If Ai

X is a
lock/unlock synchronization access, A stands for the address
of the instruction that invoked the lock/unlock operation and
X refers to the lock variable. Two synchronizations accesses
conflict if one of them is a lock and the other is an unlock
operation.

3.2 Naive Approach
We start with the simpler problem, which is predicting id-
iom1 iRoots for a given test input. One naive way to predict
idiom1 iRoots is as follows. First, run the program once and
obtain the set of accesses executed by each thread. Then,
for any access AX in thread Tc, if there exists a conflict-
ing access BX in another thread Tr, we predict two idiom1
iRoots: A ⇒ B and B ⇒ A. For synchronization accesses,
we predict A ⇒ B only if A is an unlock operation and B
is a lock operation. Obviously, this approach could produce
many infeasible iRoots. an iRoot is said to be infeasible for
a program if it can never manifest in any legal execution of
that program. In the following sections, we discuss two ma-
jor sources of inaccuracy in this naive algorithm and present
our solutions.

3.3 Non-Mutex Happens Before Analysis
The profiler predicts iRoots based on a few profiled execu-
tions for a given test input. The predicted iRoots may not ap-
pear in any of the profiled executions, but they are predicted
to be realizable in some other legal executions. We should
avoid predicting iRoots that can never manifest in any of the
legal executions.

We observe that some of the happens-before relations
tend to remain the same in all of the legal executions. There-
fore, these happens-before relations can be used to filter out
infeasible iRoots predicted in the naive approach. For ex-
ample, in Figure 5(a), an access AX is executed before the
main thread forks the child thread. BX is executed in the
child thread. Assuming that AX and BX are conflicting, the
naive approach will predict two idiom1 iRoots: A ⇒ B and
B ⇒ A. However, it is trivial to observe that in any legal
execution, AX executes before BX because of the fork call.
As a result, we should not predict the iRoot B ⇒ A as a
candidate to test.

We improve the accuracy of our profiler by exploiting
the observation that non-mutex happens-before relations
mostly remain the same across different executions for a
given input. A non-mutex happens-before relation is due
to any synchronization operation other than a lock/unlock.
Happens-before relations due to locks tend to change across
executions, because the order in which locks are acquired
could easily change. On the contrary, we find that non-mutex
happens-before relations (e.g. fork-join, barrier and signal-
wait) are more likely to remain constant across different
executions. Therefore, the profiler predicts an iRoot only if
it does not violate the non-mutex happens-before relations
in at least one of the profiled executions. For the program in
Figure 5(a), BX cannot happen before AX any of the exe-
cutions according to the non-mutex happens-before relation
due to fork. As a result, the profiler will not predict B ⇒ A
as a candidate iRoot to test. Though effective in pruning
infeasible iRoots, this analysis is not sound because some
non-mutex happens-before relations are not guaranteed to
remain constant across different executions for an input.

3.4 Mutual Exclusion Analysis
Mutual exclusion constraints imposed by locks could also
prevent naively predicted iRoots from manifesting in any of
the alternate executions. For example, in Figure 5(b), all the
accesses (AX , BX and CX ) are protected by the same lock
m. Assume that these accesses conflict with each other. The
naive approach would predict A ⇒ C (and C ⇒ B) to be a
candidate iRoot to test. Clearly, A ⇒ C (and C ⇒ B) is not
feasible because of the mutual exclusion constraint imposed
by the lock m.

To further improve its accuracy, the profiler is augmented
with a mutual exclusion analysis phase to filter those infea-
sible iRoots that are caused by the mutual exclusion con-
straints. To achieve this, the profiler needs to collect two
types of information for each access AX . One is the lock-
set information which contains the set of locks that are held
by Thd(AX) when executing AX . The other is the critical
section information which specifies whether AX is the first
or the last access to X in the critical section that contain AX .

We now use an example to illustrate how these two types
of information can be used to filter infeasible iRoots caused
by the mutual exclusion constraints. Consider the example
in Figure 5(b). The profiler needs to decide whether iRoot
A ⇒ C is feasible. It first checks the locksets of both ac-
cesses: AX and CX . If the locksets are disjoint, the profiler
will immediately predict the iRoot to be feasible. If not, the
profiler will go to the next step. In this example, AX and CX

have the same lockset {m}. Therefore, the profiler proceeds
to the next step. In the second step, for each common lock
(in our example its m), the profiler checks whether the mu-
tual exclusion constraint imposed by the common lock will
prevent the iRoot from manifesting. It checks whether AX

is the last access to X in the critical section that is guarded
by the common lock m, and whether CX is the first access



to X in the critical section that is guarded by the common
lock m. If either of them is not true, the profiler will pre-
dict that the iRoot is infeasible. In our example, since BX

is the last access to X in the critical section that is guarded
by the common lock m, the iRoot A ⇒ C is predicted to be
infeasible. This analysis is also not sound since control flow
differences between executions could affect our analysis, but
it works well in practice.

3.5 Online Profiling Algorithm
Our profiler predicts candidate iRoots to test for a particular
idiom using an online mechanism that we describe in detail
in this section. An online algorithm avoids the need to collect
large traces.

3.5.1 Baseline Algorithm
The profiler monitors every memory access. For each object,
the profiler maintains an access history for each thread.
We use AHX(Ti) to denote the access history for object
X and thread Ti. Each access AX in the access history
AHX(Ti) is ordered by the execution order of Ti, and is
associated with a vector clock and an annotated lockset. The
vector clock, denoted as V C(AX), is used to perform the
non-mutex happens-before analysis. It is the same as that
used in many of the dynamic data race detectors, except
that here we consider non-mutex happens-before relations.
The annotated lockset, denoted as AnnoLS(AX), is used to
perform the mutual exclusion analysis. It consists of a set of
locks, each of which is annotated with a sequence number
and two bits. The sequence number is used to uniquely
identify each critical section guarded by the lock, and the
two bits indicate whether the access is the first or the last
access in the corresponding critical section. We say that
two annotated locksets are disjoint if no common lock is
found between the two sets. Both the vector clock and the
annotated lockset are recorded when Thd(AX) is executing
AX .

When an access AX is being executed by Tc, the profiler
checks the access histories from all other threads on object
X (i.e. AHX(Tr), Tr �= Tc). If there exists a conflicting
access BX in AHX(Tr), the profiler will predict the iRoot
B ⇒ A if the following conditions are true: (1) BX does not
happen after AX by checking V C(BX) and V C(AX) (the
non-mutex happens-before check). (2) Either AnnoLS(AX)
and AnnoLS(BX) are disjoint, or for each common lock
m held by AX and BX , AX is the first access to X in the
corresponding critical section guarded by m and BX is the
last access to X in the corresponding critical section guarded
by m (the mutual exclusion check). Similarly, the profiler
will also predict the iRoot A ⇒ B according to the above
rules.

To make the profiling algorithm online, we need to deal
with several issues. One issue is that when AX executes,
some access, say CX , has not been performed yet. As a
result, CX will not be in any access history. However, the

profiler will still correctly predict iRoot A ⇒ C and iRoot
C ⇒ A at the time CX is executed if they are feasible.
Another issue with the online algorithm is that when ex-
ecutes AX , the profiler cannot precisely compute the an-
notated lockset AnnoLS(AX) required by the mutual ex-
clusion analysis. The reason is because it does not know
whether the access AX will be the last access in the cur-
rent critical section or not. We solve this issue by delaying
predicting iRoots for AX until either of the following events
happens: (1) another access to X is reached by Thd(AX).
(2) X is about to be deallocated (e.g. free()). (3) Thd(AX)
is about to exit. The insight here is that the profiler can pre-
cisely compute the annotated lockset for AX if any of the
above events happens.

3.5.2 Optimizations
We have designed a few optimizations to make the online
algorithm practical for large applications.

(1) Condensing access histories. We find that it is not
necessary to store two accesses in an access history if these
two accesses are identical. Two accesses from the same
thread are said to be identical if they are originated from
the same static instruction, and have the same vector clock
and annotated lockset. The reason is because iRoots only
consider static instructions (rather than dynamic events).
Therefore, an access will not be added to an access history if
an identical access in the access history can be found. This
optimization is sound and can not only save space, but save
time as well since each time when predicting iRoots, the
number of accesses in the access histories that need to be
examined reduces.

(2) Caching prediction results. To predict iRoots for an
access AX , the profiler needs to scan the access histories
from all other threads on object X , which could be a time
consuming operation. We call this operation a full scan. We
observe that it is not always needed to perform a full scan.
If AX does not cause the access history to be updated (i.e.
it can be condensed according to the previous optimization),
the profiler can safely skip the full scan as no new iRoot will
be predicted even if a full scan is performed.

(3) Removing useless access history entries. We observe
that it is not necessary to keep all access histories from
the beginning of the program execution. If an access in
the access history can no longer be part of any potentially
predicted iRoot, we can safely remove it from the access
history.

(4) Monitoring only shared instructions. Maintaining ac-
cess histories for each memory location is very expensive.
Clearly, the profiler does not need to maintain access histo-
ries for thread private locations. We perform an online analy-
sis that runs concurrently with the profiler and detects the in-
structions that can access shared locations. The profiler uses
this information to create access histories only for the lo-
cations accessed by these shared instructions. We omit the
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Figure 6. Predicting iRoots for compound idioms.

details of the shared instruction analysis due to space con-
straint.

3.6 Predicting iRoots for Compound Idioms
To predict iRoots for compound idioms, we designed an al-
gorithm that leverages the idiom1 prediction results. The ap-
proach is generic to all compound idioms defined in Sec-
tion 2. The algorithm is divided into two parts: identifying
local pairs, and correlating with idiom1 prediction results.
In this section, we discuss these two parts in detail.

3.6.1 Identifying Local Pairs
A local pair, as suggested by its name, is a pair of accesses
from the same thread. During a profiling execution, if the
profiler finds two accesses AX and BY (X may or may
equal to Y ) such that AX and BY are from the same thread,
AX is executed before BY , and the number of dynamic
instructions executed between AX and BY is less than a
pre-set threshold vw (vw stands for vulnerability window
and is specified in the idiom definition), it will record a
local pair [AX , BY ]. For example, Figure 6 shows a profiling
execution. Accesses AX and BY in T1 are executed first,
followed byCX andDY in T2. The profiler records two local
pairs from this profiling execution: [AX , BY ] and [CX , DY ].
To collect local pairs, the profiler uses a rolling window for
each thread to keep track of the recent accesses.

3.6.2 Correlating with Idiom1 Prediction Results
To predict iRoots for compound idioms, we propose to lever-
age the idiom1 prediction results. We use an example to
illustrate how to correlate local pairs with idiom1 predic-
tion results to predict compound idiom iRoots. Consider
the example shown in Figure 6. As mentioned, the profiler
identifies two local pairs: [AX , BY ] and [CX , DY ]. Mean-
while, the profiler also records the idiom1 prediction results.
For instance, AX and CX can produce two idiom1 iRoots
A ⇒ C and C ⇒ A according to the idiom1 prediction al-
gorithm, therefore the profiler records both AX → CX and
CX → AX in the idiom1 prediction results 1. Similarly, the
profiler records BY → DY and DY → BY . Now, consider

1 Notice that the idiom1 prediction results are only useful for the current
profiling execution, and will be discarded once the execution finishes. They
are different from the predicted idiom1 iRoots which last across executions.
They contain more information than idiom1 iRoots do.

the first local pair [AX , BY ]. According to the predicted id-
iom1 results, CX can potentially depend on AX , and BY

can potentially depends on DY . As a result, the profiler pre-
dicts an idiom4 iRoot A ⇒ C...D ⇒ B (assume X �= Y ).
Similarly, for another local pair [CX , DY ], the profiler pre-
dicts another idiom4 iRoot C ⇒ A...B ⇒ D. Currently,
the profiler performs the correlation part at the end of each
profiling execution. Similar optimization technique is used
to condense local pairs, that is if two local pairs from the
same thread have both their accesses identical, the profiler
just records one of them.

4. Actively Testing Predicted iRoots
In this section, we discuss the design and implementation
of Maple’s active scheduler. Maple’s profiler predicts a set
of iRoots that can be realized in an execution using a test
input. The goal of Maple’s active scheduler is to validate the
prediction by orchestrating the thread schedule to realize the
predicted iRoots in an actual execution for the test input.

4.1 A Naive Approach
Suppose that we want to expose an idiom1 candidate iRoot
A ⇒ B. The static instructionsA andB are called candidate
instructions. In a test run, there might be multiple dynamic
accesses associated with a single candidate instruction. We
still use AX to denote a dynamic accesses to object X
by the candidate instruction A. The naive approach works
as follows. Whenever a candidate instruction (say AX ) is
reached by a thread (say T1), the active scheduler delays the
execution of T1. During the delay, if another thread (say T2)
reaches the other candidate instruction (say BX ), then the
iRoot A ⇒ B is exposed by executing AX first and then
executing BX (as shown in Figure 7(a)).

This approach is used in several prior studies (e.g. [36]).
While it is simple, it can lead to several issues, including
deadlocks (also referred as thrashing in [20]). Consider the
example in Figure 7(b). Suppose that T1 reaches AX first.
The active scheduler, in this case, delays the execution of T1,
waiting for the other candidate instruction to be reached in
T2. T2 is blocked when calling the barrier function, leading
to a deadlock because no thread can make forward progress
at that state. One way to mitigate this issue is to make use
of timeout. In the example, if a timeout is introduced for
each delay, T1 will eventually be woken up when the timeout
has expired. However, as discussed in the following sections,
this is not enough to address most of the issues.

4.2 Non-preemptive and Strict Priority Scheduler
There are two problems with a timeout-based approach.
First, it is sensitive to the underlying environment, hence
fragile [19]. For instance, the timeout should be set to a
larger value when running the program on a slower ma-
chine. Second, determining how long the timeout should be
is not straightforward. A large timeout is detrimental to per-
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Figure 7. (a) The ideal situation for exposing an idiom1 iRoot A ⇒ B. (b) The naive approach could deadlock when exposing
an idiom1 iRoot A ⇒ B. (c) The situation in which the watch mode is turned on for exposing an idiom1 iRoot A ⇒ B.

formance due to the longer delays, while a shorter timeout
could cause unnecessary give ups.

An alternative to timeout is to monitor the status of each
thread (blocked or not) by instrumenting every synchroniza-
tion operations and blocking system calls (e.g. [20, 35, 38]).
For example, in Figure 7(b), if the active scheduler keeps
track of the status of each thread, it should know that T2 is
blocked after it calls the barrier function. Thus, T1 will be
woken up immediately since no other thread in the system
can make forward progress at that state.

Our approach eliminates the need for monitoring thread
status. The main idea is to leverage the non-preemptive and
strict priorities provided by the underlying operating system
(OS). All threads are forced to run on a single processor.
Each thread is assigned a non-preemptive strict priority. Un-
der this scenario, a lower priority thread never gets executed
if there exists a non-blocked higher priority thread. In Linux,
the real-time priorities are actually non-preemptive strict pri-
orities 2. By using non-preemptive strict priorities, the dead-
locks will be automatically detected and resolved by the un-
derlying OS since it knows the status of each thread. Let us
consider the example in Figure 7(b). Initially, T1 has a prior-
ity Pinit(T1) and T2 has a priority Pinit(T2). Suppose that
Pinit(T1) > Pinit(T2). Therefore, T1 executes first. When
T1 reaches AX , the active scheduler changes the priority of
T1 to Plow such that Plow < Pinit(T2). Due to the nature
of the non-preemptive strict priorities, T1 is preempted by
T2 immediately after the priority change. When T2 calls the
barrier function, it is blocked. At this moment, T1 becomes
the only non-blocked thread, and resumes execution imme-
diately after T2 is blocked. The deadlock situation is natu-
rally resolved. Note that the active scheduler only needs to
monitor the instructions involved in the iRoot being exposed,
thus limiting the runtime overhead.

4.3 Complementary Schedules
Another problem with the approach discussed in Section 4.1
is that it does not have a mechanism to control the order in
which threads get executed. Assume that we want to expose
the idiom1 iRoot A ⇒ B in the example of Figure 7(c),
where AX is in T1 and BX in T2, respectively. Because both
AX and BX are protected by the same lock m, if BX is

2 More specifically, schedule policy SCHED FIFO.

reached by T2 first, the iRoot will not be exposed. The delay
introduced before BX will not help because T1 will never be
able to reach AX due to the fact that T2 is still holding the
lock m. In order to expose this iRoot, AX must be reached
by T1 first. However, the naive approach (Section 4.1) cannot
guarantee this as it does not have a mechanism to control the
order in which the threads get executed.

We address this issue using a technique called comple-
mentary schedules. The idea is to use two test runs on each
candidate iRoot. Each newly created thread Ti, including the
main thread, is assigned with an initial priority Pinit(Ti). In
the first test run, the initial priorities are assigned from high
to low, following the order of thread creation. To be more
precise, we have Pinit(Ti) > Pinit(Tj) (Ti has a higher
priority than Tj) if thread Ti is created earlier than Tj . In
the second test run, initial priorities are assigned from low to
high, following the order of threads creation. In order words,
Pinit(Ti) < Pinit(Tj) if thread Ti is created earlier than Tj .
Using this technique, we increase the likelihood that, in one
of the two test runs, AX will be reached first in the example
shown in Figure 7(c).

4.4 Watch Mode Optimization
A problem with the naive approach is that it can unnecessar-
ily give up exposing some iRoot in certain cases. Consider
the example in Figure 7(c). We are still interested in expos-
ing the idiom1 iRoot A ⇒ B. If T1 reaches AX first, the
naive approach gives up exposing the iRoot for AX right af-
ter the timeout. However, giving up is not necessary here be-
cause it is still possible that BX could execute later without
any access to X in between AX and BX .

We use a mechanism called watch mode to exposes an
iRoot in such case. In watch mode, every memory access is
monitored. Consider again the example in Figure 7(c). When
T1 reaches AX first and sets its priority to Plow (Plow is
lower than any initially assigned priorities), T2 gets control
and executes, but is blocked when trying to acquire the lock
m. As mentioned above, T1 resumes immediately after T2 is
blocked and executes AX . At this moment, instead of giving
up exposing iRoot for AX , the active scheduler enters the
watch mode and monitor every memory access. The active
scheduler still keeps the priority of T1 to Plow. Once the lock
m is released, T1 is preempted by T2 because T2 has a higher
priority than T1. Shortly after, T2 reaches BX and no access



to X is found in between AX and BX . Therefore, the iRoot
A ⇒ B is exposed.

In the same example, during the watch mode, it is likely
that T1 reaches an instruction – no matter whether it is a
candidate instruction or not – that accesses X as AX does.
In such case, the active scheduler is not able to expose iRoot
for AX because T1 already has the lowest priority at that
moment. It just ends the watch mode and gives up exposing
iRoot for AX . If the access to X (not instruction B) is
from a thread other than T1 (say T3), the active scheduler
sets the priority of T3 to Plow. The intuition here is that
some other threads may make progress and reach the other
candidate instruction B. However, if the conflicting access is
eventually executed by T3 in spite of its lowest priority, the
active scheduler ends the watch mode and gives up.

The watch mode can be implemented efficiently using
debug registers or by leveraging the selective instrumenta-
tion mechanism in PIN [28]. We implement the second ap-
proach. For compound idioms, the execution under watch
mode is usually short given that we have distance constraints
in the idiom definitions. For idiom1, the selective instrumen-
tation mechanism in PIN can affect performance depending
on how long the active scheduler spends in watch mode. The
overhead is discussed in Section 6.

4.5 Candidate Arbitration
There might exist multiple dynamic accesses that correspond
to the same candidate instruction during the execution. In
many cases, the active scheduler has to decide which of these
accesses belongs to the candidate iRoot to expose. For ex-
ample, while the active scheduler is exposing iRoot for AX

(seeking candidate instruction B in other threads), it is possi-
ble that another thread also reaches the candidate instruction
A, or another thread reaches candidate instruction B, but it
happens to access a location other than X (say BY ). In either
one of these situations, the active scheduler has two choices:
either continue to expose the iRoot A ⇒ B for AX , or give
up on that attempt and seek to expose the iRoot for latter
access of A or for BY . We decided to make these choices
random with equal probability. We choose not to use a fixed
policy because it could cause some feasible iRoot to become
impossible to expose. We save the random seed for repro-
duction purpose.

We aware that the random arbitration algorithm we use
may cause a later access exponentially unlikely to be used
as part of a candidate iRoot. This will become an issue
when we do want to expose an iRoot for a later access (e.g.
only the iRoot that uses this access will lead to a bug).
Nevertheless, we are still able to expose all the bugs we
have analyzed using this strategy (Section 6.2). This may
be because many of the bugs we analyzed manifest early
in their executions, or not many dynamic accesses exist
for the candidate instructions in the iRoots that expose the
bugs. Even if that, we believe this is an important problem
and we plan to address it in our future work. Currently,

we can think of two possible ways. First, we can associate
more information with each candidate instruction such as
its calling context so that some irrelevant accesses that use
the same instruction but different contexts will be filtered
out. Second, we can devise a more sophisticated arbitration
algorithm using more test runs.

4.6 Dealing with Asynchronous External Events
Some applications depend on asynchronous external events
such as network and asynchronous signals. These events are
usually difficult to deal with in the active scheduler because
it has no control on when these events are delivered. Con-
sider the example in Figure 8 where T2 has a higher prior-
ity initially. When T2 reaches BX , its priority is changed to
Plow, at which point T1 is scheduled. If T1 is blocked when
calling the function sigwait (e.g. because the signal might
not have been delivered yet), since all threads except T2 are
blocked in the system at that time, T2 has to execute BX in
spite of its lowest priority; thus giving up the exposition of
iRoot A ⇒ B for BX . We observe that if the asynchronous
signal in this example is delivered earlier, the active sched-
uler might be able to expose the iRoot.

To solve this problem, the active scheduler introduces
extra time delay where it is about to give up, hoping that
the potential external event will arrive during that period.
For instance, in the example of Figure 8, when the active
scheduler is about to give up by executing BX in T2 after T1

has been blocked, a time delay is injected right before BX

is executed. During this period, if the asynchronous signal is
delivered, the active scheduler can successfully expose the
iRoot A ⇒ B.

For applications that do not depend on asynchronous ex-
ternal events, there is no need for the active scheduler to in-
ject extra time delay. We detect whether an application de-
pends on asynchronous external events by monitoring sys-
tem calls and signals during profiling. Even if an application
does depend on asynchronous external events, this might not
be true for all the iRoots. During profiling, we mark each
candidate iRoot with a flag indicating whether this iRoot de-
pends on asynchronous external events or not. The active
scheduler uses this flag to decide whether to inject time delay
or not. Finally, to ensure forward progress, we set a timeout
for each delay. The timeout value can be optimized accord-
ing to the application and the input.

4.7 Compound Idioms
A compound idiom iRoot is composed of multiple idiom1
iRoots. Our general policy for exposing compound idiom
iRoots is to expose each of the idiom1 iRoot one at a time.
Each of the idiom1 iRoot is exposed as described before, but
the algorithm for exposing compound idiom iRoots needs to
address two more issues that we describe next.

First, the active scheduler always enters the watch mode
after the first candidate instruction in a compound iRoot
is executed. To understand why, consider the example in
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Figure 10. A pre-condition exists
when trying to expose iRoot A ⇒ B.

Figure 9. The goal is to expose an idiom4 iRoot A ⇒
B...C ⇒ D. According to the idiom4 definition, we need to
make sure that there is no other access to the same locations
that A and D access in between them. Therefore, after AX is
executed in this example, we enter the watch mode. If there
is any access to location X before DY is reached, the active
scheduler stops trying to expose the iRoot for AX because
this violates the idiom definition. One complex aspect of
this implementation is that, before DY is reached, we do
not know which location it is going to access. We solve this
problem by recording the set of locations that are accessed
by T1 after AX is executed. This set is checked when DY

is reached, to verify that none of the addresses touched
conflicts with the address accessed by DY . In addition, the
active scheduler exits the watch mode and gives up exposing
iRoot forAX if the number of dynamic instructions executed
by T1 after AX exceeds the pre-defined threshold specified
in the idiom definition.

Second, the arbitration is biased after the first part of
the compound idiom iRoot is exposed. In the example of
Figure 9, after the first part of the iRoot (A ⇒ B) is exposed,
if T2 reachesAZ (an access to Z by candidate instructionA),
we have two choices: (1) ignore AZ and continue looking
for the second part of the iRoot; (2) expose the iRoot for AZ

and discard the already exposed first part. In such a case, we
select the first choice with a higher probability.

Finally, exposing iRoots for idiom5 is slightly different
from other compound idioms. To expose an idiom5 iRoot
A ⇒ B...C ⇒ D, our strategy is to let two different threads
reach A and C, respectively; then execute them, and seek B
and D in the corresponding threads.

4.8 Limitations
One limitation of the current active scheduler is that it can-
not handle pre-conditions. The pre-conditions for an iRoot is
the necessary conditions that need to satisfied to expose the
iRoot. For example, in Figure 10, there exists a pre-condition
(from unlock to lock) that needs to be satisfied so that the
iRoot A ⇒ B can be exposed. Currently, our active sched-
uler has no knowledge of these pre-conditions; therefore it
cannot enforce them. The complementary schedules might
alleviate this problem to some extent. To fully address this
problem, one possible solution would be to automatically
derive pre-conditions for a given iRoot [21]. We leave this
as a future work.

5. Memoization of iRoots
Past work on systematic testing and active testing ignore the
information about the interleavings tested from previous test
runs with different inputs. We believe that this is crucial
in reducing the number of interleavings that need to be
tested for a given program input. Therefore, we propose a
memoization module in our active testing infrastructure. The
memoization module is composed of a database of tested
interleavings and a database of fail-to-test interleavings for
each interleaving idiom as shown in Figure 1. This module is
used to avoid testing the same interleaving again and again
across different test inputs.

The candidate interleavings are pruned out depending on
whether previous attempts were made to test them. If a can-
didate interleaving was tested before (i.e. it has been exposed
by the active scheduler), it is filtered out by consulting the
tested interleavings database. This optimization is sound if
the bugs we are targeting are not value dependent. Also, if
several attempts were made in the past to test a candidate
interleaving and the active testing system failed to produce
a legal execution exposing the desired interleaving, this can-
didate interleaving is filtered out using the fail-to-test inter-
leavings database, which stores all such failed to expose can-
didate interleavings. This allows us to avoid trying to expose
thread interleavings that can never manifest. Unlike mem-
oization of tested iRoots, this is an unsound optimization
even if a bug is not value dependent. However, the number
of times a candidate interleaving is actively tested is config-
urable, and a programmer can choose to set it to a very high
value if soundness is a concern.

6. Evaluation
This section evaluates Maple and discusses our experiences
in using the tool for testing real world applications. We
first describe the configurations of Maple we used in our
experiments (Section 6.1). Then, we compare Maple with
other general concurrency testing techniques in two different
usage scenarios (Section 6.2 and Section 6.3), and show
how memoization can be useful in both of these scenarios
(Section 6.2.2 and Section 6.3.2). Finally, we discuss the
efficiency and effectiveness of Maple (Section 6.4).

6.1 Maple Configuration
Maple is built to be highly configurable. We now describe
the default configurations of Maple in our experiments.



In the Profiling Phase, the program is profiled using the
best randomized testing technique (explained later in Sec-
tion 6.3.1) a few number of times. For each profile run,
the profiler observes what iRoots are exposed and predicts
candidate iRoots to test. The profiling phase stops when no
new candidate iRoot is found for N consecutive profile runs
(we use an empirical value N = 3 throughout our exper-
iments). Unless otherwise noted, Maple observes and pre-
dicts all iRoots in the program by default, including those
iRoots from libraries such as Glibc. We believe this is nec-
essary because we do find bugs that are related to the library
code (e.g. Bug#11 and Bug#13 in Table 2).

In the Testing Phase, candidate iRoots are exposed using
the active scheduler. Currently, the active scheduler tests all
candidate iRoots starting from idiom1 and then proceeds to
test iRoots for other idioms in the order of their complexity
(one to five). For each idiom, the active scheduler always
chooses to test those iRoots that are from the application
code first. More sophisticated ranking mechanism may exist,
but we leave that to future work. Each candidate iRoot will
be attempted at most twice, as mentioned in Section 4.3.

6.2 Usage Scenario 1: Exposing Bugs with Bug
Triggering Inputs

One scenario that Maple can be useful is when a program-
mer or a user accidentally exposed a non-deterministic bug
for some input, but is unable to reproduce the failed execu-
tion. In that case, the programmer can use Maple with the
bug triggering input to quickly expose the buggy interleav-
ing. Once the buggy interleaving is found, Maple can also re-
produce it faithfully by replaying the same schedule choices,
which can be very useful during the debugging process.

To evaluate the ability of Maple in exposing bugs in such
scenarios, we choose 13 buggy application with their corre-
sponding bug triggering inputs (shown in Table 2). Among
these benchmarks, 4 (Bug#1 to Bug#4) are synthetic bugs
studied in [27], 1 (Bug#5) is a code snippet extracted from a
real buggy program, and 8 (Bug#6 to Bug#13) are real bugs
from real executions.

We want to know whether Maple is able to expose these
bugs and how fast it can expose these bugs when compar-
ing to other general concurrency testing tools. We com-
pare Maple with two random testing techniques, PCT and
PCTLarge. PCT [3] is a recently proposed random testing
technique that provides probabilistic guarantee in exposing
concurrency bugs. In PCT, threads are randomly assigned a
non-preemptive strict priority (similar to that used in the ac-
tive scheduler of Maple); during execution, PCT changes the
priority of the currently running thread to lowest at random
points d times. The authors state that most of the concur-
rency bugs can be exposed with a small value of d. In our
experiment, we choose to use d = 3. PCTLarge is a varia-
tion of PCT that we proposed. It has the same algorithm as
that in PCT except that it uses non-strict priorities instead of
strict priorities. For instance, in Linux, we use nice values

to serve as non-strict priorities. Higher priority threads will
have more time quantum than lower priority threads. Inter-
estingly, we found that PCTLarge usually performs better
than PCT. More details are provided in Section 6.3.1.

For each bug, we run it repeatedly using its bug triggering
input until the bug is triggered. Each time, a different testing
technique is used. We compare the time needed by each test-
ing technique to expose the bug. For Maple, we assume no
previously built memoization database is available. The ef-
fect of memoization is discussed in Section 6.2.2. Table 2
shows the results. As shown in the table, Maple can expose
all 13 bugs, including 3 previously unknown bugs (Bug#11
to Bug#13). In contrast, PCT and PCTLarge can only ex-
pose 7 and 11 bugs respectively before timeout (24 hours) in
reached. Moreover, Maple can expose all the real bugs much
faster than PCT and PCTLarge. Maple uses more time to ex-
pose Bug#5 than PCT and PCTLarge. This is because Bug#5
is an idiom4 bug and a lot of time is spent testing irrelevant
idiom1, idiom2 and idiom3 iRoots according to our current
ranking mechanism. We found that PCT or PCTLarge expose
bugs faster than Maple on some applications with small ex-
ecution lengths (e.g. Bug#3). This is expected because the
smaller the execution length, the higher the probability to
expose the bug, but Maple has to pay a high cost for anal-
ysis. Nevertheless, the random techniques do not scale for
long execution lengths (e.g. Bug#8). Bug#10 does not have
an idiom because it is value dependent.

6.2.1 Experiences in Finding Unknown Bugs
We found three previously unknown bugs. Bug#11 was ac-
cidentally found when testing Bug#9, a documented bug in
Aget. We observed a situation where the program hangs
when testing Bug#9. We looked at the iRoot that caused the
hang and tried the same iRoot again with the same random
seed. In addition, we attached a tracer to the active scheduler
to record the execution trace. The deadlock happened again
in less than 5 runs 3. With the help of the trace, we eventu-
ally found the root cause of this bug. The thread that handles
signals is asynchronously canceled when holding an i/o lock
(in printf), causing a deadlock in the main thread when it
tries to acquire the same lock.

Bug#12 is an intermittent bug in an CNC-based appli-
cation that manifests as an assertion failure. CNC was de-
veloped by Intel and stands for Concurrent Collections. The
particular application we examined is a server-client appli-
cation that builds on Intel Thread Building Blocks (TBB)
to synchronize threads. This bug was provided to us by a
developer at Intel who could not expose it even after at-
taching a software deterministic record and replay tool to
it [37]. Maple was able to expose the assertion failure in
about 400 test runs, much faster than the two random testing
techniques. However, because we do not have access to the

3 This is because we cannot faithfully replay some non-deterministic exter-
nal events which are part of the program inputs.



Maple PCT [3] PCTLarge

ID App Type Idiom # Profile Profile
Time # Test Test

Time
Total
Time # Runs Time # Runs Time # NonStack

Mem Ops
#
Thds

Native
Time

1 LogProcSweep S Idiom1 11 16.5 1 0.6 17.1 98511 86400(TO) 10169 8188.6 3.3K 3 0.1
2 StringBuffer S Idiom1 8 12.0 1 0.8 12.8 40 56.4 61 49.1 2.4K 2 0.1
3 CircularList S Idiom3 6 9.5 1 1.0 10.6 6 9.1 18 14.6 3.3K 3 0.1
4 BankAccount S Idiom1 6 9.0 1 0.9 10.0 12 17.4 44 35.4 3.6K 3 0.1
5 MySQL-LogMiss E Idiom4 8 13.2 100 120.8 133.9 18 29.0 15 13.6 4.9K 3 0.1
6 Pbzip2 R-K Idiom1 8 151.9 2 3.2 155.1 26933 86400(TO) 3336 6144.1 32.1M 3 0.1
7 Apache #25520 R-K Idiom1 36 580.7 93 1544.2 2124.9 3485 31688.0 12951 86400(TO) 218.5K 5 3.6
8 MySQL #791 R-K Idiom1 10 436.5 3975 43097.6 43534.1 11754 86400(TO) 10574 81887.2 1.8M 13 4.4
9 Aget #2 R-K Idiom4 9 148.1 11 29.2 177.4 152 355.0 335 619.5 32.0K 3 0.1
10 Memcached #127 R-K N/A 41 304.6 4 11.3 316.0 1010 3635.1 306 782.5 89.5K 4 1.2
11 Aget #1 R-U Idiom1 9 74.7 18 123.9 198.6 32075 86400(TO) 47636 86400(TO) 529.5K 3 0.1
12 CNC R-U Idiom1* 6 50.6 403 4163.8 4214.4 11063 86400(TO) 10012 49046.8 209.6K 3 1.1
13 Glibc R-U Idiom1* 30 1120.4 20 36.6 1157.0 39560 86400(TO) 16147 34349.1 28.5M 4 0.1

Table 2. Bug exposing capability given bug triggering inputs. All the time reported in the table are in seconds. TO stands
for timeout (24 hours). In the type column, S stands for synthetic bugs, E stands for extracted bugs, R-K stands for real bugs
which are known, and R-U stands for real bugs which are unknown. * The root cause of Bug#12 and bug Bug#13 have not
been confirmed yet. They are exposed when attempting idiom1 iRoots.

source code, we could not help the programmer understand
the root cause of the bug using iRoot.

The Glibc bug (Bug#13) was also accidentally discovered
when testing Bug#6 on a machine with glibc-2.5. It man-
ifested as an assertion failure from the free function. We
could reproduce the buggy interleaving using the same iRoot
and the same random seed. The bug never showed up when
a newer version of glibc was used. Since the memory man-
agement code in glibc is quite complex, the root cause has
not been confirmed yet.

6.2.2 Memoization Help Expose Bugs Faster
We aware that applying memoization may affect the bug ex-
posing capability of Maple. For example, if an iRoot cannot
be exposed under some inputs, it does not mean that it is not
feasible under other inputs. Since we put a limit on the to-
tal number of test runs on any iRoot in our current settings,
the corresponding iRoot that leads to the bug might not be
attempted when the bug triggering input is used, causing the
bug to be missed. In order to see how memoization can affect
the bug exposing capability, we evaluate 4 real bugs from
Table 2 (Bug#7 to Bug#10). Other real bugs are not cho-
sen either because the bugs can be exposed using any input
(Bug#6, Bug#11 and Bug#13), or no other input is available
(Bug#12). We first test the 4 bugs using inputs that do not
trigger the bug to build the memoization databases. Then, we
test the bugs using the bug triggering inputs. Table 3 shows
the results. We can see that all the 4 bugs can be exposed
when memoization is applied. More importantly, the time
required to expose each bug also reduces drastically. For in-
stance, we save about 94% of the testing time for Bug#8.
In fact, for the server application bugs, we save can a lot of
testing time by memoizing those iRoots that are related to
server start and server shutdown, clearly showing the benefit
of memoization.

ID App. Memo # Profile Profile
Time # Test Test

Time
Total
Time

7 Apache #25520 No 36 580.7 93 1544.2 2124.9
Yes 22 357.6 2 18.3 375.8

8 MySQL #791 No 10 436.5 3975 43097.6 43534.1
Yes 8 362.9 162 1953.6 2316.5

9 Aget #2 No 9 148.1 11 29.2 177.4
Yes 6 100.5 8 21.8 122.3

10 Memcached #127 No 41 304.6 4 11.3 316.0
Yes 36 272.6 5 12.1 284.8

Table 3. Memoization help expose bugs more quickly. All
the time reported in the table are in seconds.

6.3 Usage Scenario 2: Coverage-Driven Testing
Another usage scenario that Maple can be helpful is when a
programmer has a test input and wants to explore as many
interleavings as possible for that input within the time bud-
get. In this scenario, Maple can be used to cover more in-
terleavings quickly. Also, memoization can prevent the pro-
grammer from testing the same interleaving multiple times,
which helps reduce testing time.

6.3.1 Maple Achieves Higher Coverage Faster
The first question we want to address is whether Maple can
cover more interleavings faster than other testing techniques.
To quantify the coverage on interleavings, we use iRoot
coverage as the coverage metric in our experiments. The
iRoot coverage is measured using a tuple of numbers, each
of which is the number of exposed iRoots for one idiom.
For example, the following iRoot coverage (1, 2, 5, 100, 50)
means that the test has successfully exposed 1 idiom1 iRoot,
2 idiom2 iRoots, 5 idiom3 iRoots, 100 idiom4 iRoots and 50
idiom5 iRoots. We have implemented a tool, called observer,
in our dynamic analysis framework to measure the iRoot
coverage. The same observer is also reused in the profiler
to observe exposed iRoots during profile runs so as to avoid
testing these iRoots again during the test phase.

We compare it with 4 other testing techniques: PCT,
PCTLarge, RandDelay and CHESS. PCT and PCTLarge have
already been introduced in Section 6.2. RandDelay injects
random time delay at random points during the execution.



The number of points in which a delay is introduced is pro-
portional to the execution length (one per 50K non stack
memory accesses). The program is run on multi-core pro-
cessors when RandDelay is used. CHESS [32] is a system-
atic testing tool. For a given program and a given input, it
tries to explore all possible thread interleavings that have
few preemptions. It was originally developed for Windows
programs. We implemented it in our framework for Linux.
Currently, it works for programs that use POSIX threads for
synchronization. It employs the sleep-set based partial or-
der reduction technique described in [30], and uses a fair
scheduler discussed in [31]. We use a preemption bound of
2 throughout our experiments as suggested in [29] 4. To han-
dle a program that has data races, we run a dynamic data
race detector first to find all racy memory accesses in the
program, and then inform the CHESS scheduler so that it can
explore different orderings of these racy memory accesses.

We use seven bug-free multi-threaded applications in this
experiments, among which (fft and radix) are scientific
applications from Splash2 [46], (pfscan, pbzip2, aget) are
utility programs, and (memcached and apache) are server
applications. For scientific and utility programs, we use ran-
dom inputs (e.g. random number of thread, random files and
directories, random URLs, etc.). For memcached, we wrote
our own test cases which perform commonly used opera-
tions such as set/get keys and incr/decr keys. For apache,
we use SURGE [1] to generate URLs and use httperf to
generate parallel requests. Notice that when testing server
applications, each test run consists of starting the server, is-
suing the requests, and stopping the server. This process is
automated through scripting.

To compare Maple with these tools, we attach the same
observer to each tool to collect the iRoot coverage after each
test run. The current implementation of CHESS cannot iden-
tify the low level synchronization operations used in Glibc.
Though we can treat those unrecognizable synchronization
operations as racy memory accesses and still run CHESS on
it, we believe this approach is unfair to CHESS as the number
schedules to explore will increase unnecessarily comparing
to the case in which we can recognize those synchronization
operations. As a result, we decide to only consider iRoots
from application code and ignore library code in this exper-
iment to ensure a fair comparison.

Figure 11 shows the iRoot coverage achieved by these
tools using the same amount of time as Maple does. We
run Maple till its completion. For apache, as we are not
able to run Maple till completion due to its scale, we test
it for 6 hours. The observer overhead is excluded from the
testing time. Y-axis is normalized to the iRoot coverage
achieved by Maple. We are not able to run CHESS on aget,
memcached and apache because in these applications, some

4 In fact, 13 out of 14 bugs studied in [29] are exposed with a preemption
bound of 2. Using a preemption bound larger than 2 will drastically increase
the number of test runs and exceed our time budget.

non-deterministic events (e.g. network package arrival) are
not controllable by CHESS 5. From the results shown in
Figure 11, we find that Maple gains iRoot coverage faster
than all the tools we have analyzed. On average, it achieves
about 15% more coverage than the second best tool in our
experiment. Also, we find CHESS only achieves about 60%
of the iRoot coverage achieved by Maple using the same
amount of time as Maple does. Be aware that the results
shown in Figure 11 do not mean that Maple is able to explore
more interleavings than random testing tools and systematic
testing tools. In fact, CHESS explores a different interleaving
in each test run. The results shown here convey a message
that if we believe iRoot coverage is a good coverage metric
for concurrent testing, a specially engineered tool like Maple
is able to achieve iRoot coverage faster than a more general
testing tool such as CHESS and PCT.

We also notice that PCTLarge performs better than other
random testing techniques like PCT and RandDelay. We
believe the reason is because PCTLarge has more con-
text switches than others. As a result, we choose to use
PCTLarge to randomize the profile runs in Maple.

Figure 12 shows the rate of increase in iRoot coverage
using different testing tools. The X-axis is the number of test
runs and the Y-axis is the total number of iRoots exposed so
far. We only show results for those applications on which
we are able to run CHESS. We run CHESS till its completion
in this experiment. The results in Figure 12 further justify
the fact that Maple is able to gain iRoot coverage faster than
random testing tools and systematic testing tools. Also, we
notice an interesting fact that CHESS experiences a slow start
in gaining iRoot coverage. We believe this is due to the use
of depth-first search strategy in CHESS. A best-first search
strategy may alleviate this problem at the cost of storing
more states [5].

6.3.2 Memoization Help Reduce Testing Time
The next question we want to address is how much test-
ing time we can save when memoization is applied under
this usage scenario. To do that, for each bug free applica-
tion, we test it using 8 different inputs (inputi, i ∈ [1, 8]).
When testing with inputi+1, we compared the testing time
between the following two methods: (1) without memoiza-
tion database; (2) using the memoization database built from
input1 to inputi. We choose to memoize both the exposed
iRoots and the fail-to-expose iRoots (we set the threshold
to 6, i.e. each iRoot will not be attempted more than 6 test
runs). For this experiment, we only test for idiom1 iRoots
due to time constraints. Figure 13 shows the results. The
Y-axis represents the testing time of the method that uses
memoization (normalized to the testing time without mem-
oization). The line plotted in red shows the average of the
applications we analyzed. We observe that, with memoiza-
tion, the testing time reduces gradually when more and more

5 Such programs are called non closed programs.
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Figure 12. Comparison with different testing methods. X-axis is the number of test runs, and Y-axis is the total number of
iRoots exposed.

inputs are tested. For input8, the average saving on testing
time is about 90%. This clearly shows the benefit of memo-
ization in reducing testing time.

6.4 Characteristics of Maple
In the following, we discuss the characteristics of Maple
in terms of its efficiency (Section 6.4.1) and effectiveness
(Section 6.4.2).

6.4.1 Performance Overhead
Table 4 shows the average performance overhead of the pro-
filer and the active scheduler for each application. We also
include the Pinbase overhead, which is the overhead of PIN
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App. Pinbase Profiler Active Scheduler

fft 6.9X 30.9X 16.3X
radix 6.9X 67.7X 17.8X

pfscan 8.3X 31.9X 27.7X
pbzip2 9.5X 183.3X 45.4X

aget 13.7X 34.4X 98.8X
memcached 2.1X 4.8X 4.1X

apache 1.7X 6.2X 6.0X
mysql 1.6X 15.7X 2.5X

Table 4. Runtime overhead of Maple comparing to native
execution time.

itself without any instrumentation. All the numbers shown
in Table 4 are normalized to the native execution time. The
overhead of the profiler varies depending on the applications.
The overhead ranges from 5X (I/O bound applications) to
200X (memory intensive applications), and on average is at
about 50X. The overhead of the active scheduler also varies,
ranging from 3X to 100X. The average overhead is about
30X. We identify two major factors that contribute to the
overhead of the active scheduler. One is due to the extra time
delay that we introduce to solve the asynchronous external
events problem. The other is because the candidate instruc-
tions of some infeasible iRoots are reached so frequently. We
believe we still have room to improve the performance of the
active scheduler.

6.4.2 Effectiveness of the Active Scheduler

App. Idiom1 Idiom2 Idiom3 Idiom4 Idiom5

fft 87.5% 100.0% 40.0% 36.0% 25.0%
radix 66.7% 0.0% 0.0% 16.9% 5.6%

pfscan 13.3% 6.7% 5.6% 4.8% 6.4%
pbzip2 23.4% 23.1% 8.0% 5.6% 12.8%

aget 13.6% 3.6% 7.0% 2.7% 8.6%
memcached 7.8% 1.4% 8.4% 2.7% 7.1%

apache 6.0%* 1.0%* 0.0%* 7.0%* 4.0%*
mysql 5.0%* 0.0%* 1.0%* 1.0%* 2.0%*

Table 5. The success rate of the active scheduler (# success-
fully exposed iRoots/ # total predicted iRoots). For apache
and mysql, we experimented with 100 randomly selected
candidate iRoots.

Finally, we discuss how effective the active scheduler
is in exposing iRoots. For each application and each id-
iom, we collect the success rate of the active scheduler (#
successfully exposed iRoots/ # total predicted iRoots). We
run Maple till its completion except for apache and mysql

which exceed our time budget. For these two applications,
we randomly sample 100 candidate iRoots for each idiom
and report the success rate. On average, the active scheduler
achieves about 28% success rate on idiom1, 17% on idiom2,
9% on idiom3, 10% on idiom4 and 9% on idiom5. We re-
alize that the success rate for the active scheduler is not sat-
isfactory. We identify three major reasons: (1) the profiler
algorithm in not accurate in the sense that it cannot detect
user customized happens before relations, producing many
infeasible iRoots; (2) the active scheduler cannot deal with
pre-conditions which might exist for some iRoots. (3) no dy-
namic information being associated with each iRoot com-
bining with the fact that the currently candidate arbitration

mechanism is not sophisticated enough causes some iRoots
unlikely to be exposed. Nonetheless, Maple succeeds at ex-
posing concurrency bugs faster than the state of the art ran-
domization techniques, as previously demonstrated. We plan
to further improve the accuracy of the profiler and the active
scheduler in future.

7. Related Work
This section places our work in the context of other testing
methodologies and bug detection tools.

7.1 Coverage Driven Concurrent Testing
There have been a few studies on coverage metrics for con-
current programs [2, 22, 24, 39, 41, 47]. Taylor et al. [41]
presented a family of coverage criteria for concurrent Ada
programs. All-du-path [47] is a coverage metric for concur-
rent programs that is based on definition-use pairs. Sherman
et al. [39] discusses a few coverage metrics based on syn-
chronizations and inter-thread dependencies. However, un-
like Maple, none of these work discusses a synergistic set of
testing tools that can help programmers achieve high cover-
age for the proposed coverage metric and analyze its effec-
tiveness in exposing concurrency bugs.

7.2 Active Testing
Recently several active testing methods have been proposed
for concurrent software testing [17, 20, 23, 35, 36, 38, 40]. A
typical active testing tool has two phases: a prediction phase
and a validation phase. In the prediction phase, these tools
use approximate bug detectors to predict potentially buggy
thread interleavings in a program. In the validation phase,
an active scheduler would try to exercise a suspicious buggy
interleaving in a real execution to verify whether it is really
a bug or merely a false positive.

In the prediction phase, these tools use either static or dy-
namic analysis techniques to predict certain types of con-
currency bugs in a program such as data races [38], atom-
icity violations [35, 36, 40], atomic-set serializability vio-
lations [17, 23], and deadlocks [20]. The interleaving pat-
terns of these tools represent erroneous interleaving patterns
and target certain types of concurrency bugs. Unlike these
tools, our interleaving idioms definitions are more general
and are used to define a coverage metric. An iRoot is not
an anomalous thread interleaving, but just a coverage ele-
ment that needs to be exposed in an execution during test-
ing. Maple’s goal is to achieve a high coverage for our in-
terleaving idioms, which we believe is more general for test-
ing purpose than these bug driven active testing tools. Also,
during testing, we memoize interleavings that have been al-
ready covered and avoid testing the same interleavings again
across different inputs. To the best of our knowledge, none
of the previous active testing tools use memoization across
different inputs.

We elaborate more on specific differences between our
idioms and the bug patterns used in prior studies. Race-



Fuzzer [38] targets data races. The interleaving pattern of
data races is different from idiom1. One obvious differ-
ence is that idiom1 not only capture inter-thread depen-
dencies that are racy, but also capture non-racy dependen-
cies. Therefore, idiom1 can capture those race free order
violation bugs which RaceFuzzer cannot. AssetFuzzer [23]
and PECON [17] detects atomic-set serializability viola-
tions [42] for Java programs. The interleaving patterns of
atomic set serializability violations are also different from
our idioms. The main reason is because these patterns are
defined over atomic sets and units of work which do not ex-
ist and cannot be easily identified in C/C++ programs. Dead-
lockFuzzer [20] detects deadlocks. Our idiom5 only captures
a subset of the deadlocks patterns that can be captured by
DeadlockFuzzer, which involve only two threads.

Maple’s prediction algorithm is similar to that in [17, 23,
36, 40] except that Maple uses an online algorithm while all
these tools use trace based offline algorithms. We believe an
online algorithm is more practical in that it does not need to
collect execution traces which can potentially be very large
for long running programs.

There are two common ways in which validation is per-
formed. One way is to precisely compute an alternate sched-
ule from the observed schedule to expose the bug and then
enforce it [17, 21, 40]. However, this requires expense analy-
sis, which is not suitable if the goal is to achieve interleaving
coverage like ours. The other approach is to use heuristics,
usually best effort methods, to expose predicted interleav-
ings [20, 23, 35, 36, 38]. Maple’s active scheduler falls into
the second category. We believe Maple is better due to the
following reasons: first, Maple uses a novel idea by lever-
aging the non-preemptive strict priorities provided by the
underlying OS, eliminating the need of monitoring all syn-
chronization operations and blocking system calls that are
required by those previous systems [23, 35, 38], thus is sim-
pler and less expensive; Second, Maple is more sophisticated
in the sense that many of the issues that Maple handles are
not handled or not handled well by those tools. For example,
RaceFuzzer, CTrigger and AtomFuzzer does not solve the
deadlock problem (also referred as thrashing [20]) very well.
Also, none of them handle asynchronous external events.

7.3 Stress Testing and Random Testing
Stress testing is still widely used in software industry to-
day. A parallel program is subjected to extreme scenarios
during test runs hoping to expose buggy interleavings. This
method is clearly inadequate since naively executing a pro-
gram again and again over an input tends to unnecessarily
test similar thread interleavings. A few techniques have been
proposed to improve the stress-testing. The main idea is to
randomize the thread interleavings so that different thread
interleavings will be exercised in different test runs. These
techniques mainly differ in the way that they randomize the
thread interleavings. For example, ConTest [6] injects ran-
dom delays at synchronization points. PCT [3] assigns ran-

dom priority to each thread and change priorities at random
points during an execution. However, all of these random
testing techniques suffer a common problem: the probabil-
ity of exposing a rare interleaving that can trigger a concur-
rency bug is very low given that the interleaving space is
so huge. Comparing to these random testing techniques, our
technique has a much higher probability in exposing concur-
rency errors due to the following two reasons: first, the id-
ioms guides our tool to test those interleavings that are more
likely to cause concurrency errors; second, we have memo-
ization which would guide us to test untested interleavings
first. Our results clearly demonstrated the ability of Maple in
exposing untested interleavings and bugs faster than the best
randomization techniques.

7.4 Systematic Testing
An alternative to stress testing is systematic testing [13,
16, 32, 44] which tries to explore all possible thread in-
terleavings for each test input. Even with partial order re-
duction techniques [10, 12], the number of thread interleav-
ings to test for a given input is still huge. Therefore, a few
heuristics have been proposed to further reduce the test-
ing time at the cost of missing potential concurrency errors.
CHESS [32] bounds the number of preemptions in each test
run. HaPSet [44] records observed PSet [48] (which are es-
sentially idiom1 iRoots) during testing and guides system-
atic search towards those interleavings that can produce new
PSet dependencies. However, even if these heuristics are
used, these tools still suffer from scalability problem, espe-
cially for programs that have long execution length. Further-
more, these tools do not have a way to remember tested inter-
leavings across different inputs, unlike Maple. Finally, these
systematic testing tools usually require a closed unit testing
environment which is in fact not easy to realize in practice.
In contrast, a completely closed unit testing environment is
not strictly required while using Maple. However, such tools
do have one distinct advantage over Maple in that they can
provide certain guarantees to find a concurrency bug in a
program for a given input.

7.5 Test Input Generation
Test input generation is a testing technique that can be used
to achieve high code coverage [4, 14, 15, 34]. For a given
program, their goal is to generate test inputs so that testing
the program with the generated test inputs can cover most
of the code in the program. In contrast, the goal of Maple
is to orchestrate thread interleavings for a given test input to
cover more thread interleavings. Thus, Maple complements
test input generators and aids in achieving higher iRoot cov-
erage.

7.6 Bug Detection Tools
Concurrency bug detection tools can be divided into two cat-
egories: static bug detection tools and dynamic bug detection
tools. Static concurrency bug detection tools [7, 11, 25, 33,



43] analyze programs statically and predict potential concur-
rency bugs. Most of the static bug detection tools produce
large volume of false positives, thus preventing them from
being widely used by programmers. MUVI [25] uses static
source analysis to predict multi-variable atomicity viola-
tions. It can complement Maple’s profiler for finding iRoots
of complex idioms, but unlike Maple, it does not use active
scheduler for exposing predicted erroneous interleavings.

Dynamic bug detection tools [8, 9, 26, 45, 49] usually
require bugs to manifest during monitored runs and do not
actively seek to expose incorrect interleavings. Maple could
complement dynamic bug detection tools by producing new
thread interleavings faster.

8. Conclusion
Maple is a new coverage-driven approach to test multi-
threaded programs. To this end, we discussed a coverage
metric based on a generic set of interleaving idioms. We dis-
cussed a profile-based predictor that determines the set of
untested thread interleavings that can be exposed for a given
input, and an active scheduler to effectively expose them. A
key advantage of our approach over random and systematic
testing tools is that we avoid testing the same thread inter-
leavings across different test inputs. Our experience in using
Maple to test real-world software shows that Maple can trig-
ger bugs faster by exposing more untested interleavings in a
shorter period of time than conventional methods.
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