
A Comparison of Shared and Nonshared
Memory Models of Parallel Computation
RICHARD J. ANDERSON AND LAWRENCE SNYDER

Invited Paper

Four algorithms are analyzed in the shared and nonshared (distributed)
memory models ofparallel computation. The analysis shows that the shared
memory model predicts optimality for algorithms and programming styles
that cannot be realized on any physical parallel computers. Programs
based on these techniques are inferior to programs wrinen in the nonshared
memory model. The “unit” cost charged for a reference to shared memory
is argued to be the source of the shared memory model’s inaccuracy. The
implications of these observations are discussed.

I. INTRODUCTION
The single goal of parallel computation is performance.

As always, performance is achieved by an efficient program
optimally compiled for and executed on a powerful ma-
chine. We are interested here in designing efficient parallel
algorithms and writing fast parallel programs. It should
be clear that being successful at these tasks requires an
accurate understanding of the costs involved. How time
consuming is a barrier synchronization? How expensive is
a memory reference? Unfortunately, there is a complication
with accurately knowing the costs in the parallel setting that
does not arise in sequential computing.

In sequential computation, the von Neumann machine
model is a sufficiently accurate description of the physical
hardware to be the basis for efficient algorithm design
and programming, as well as language design and com-
piler optimizations. In parallel computation, however, it
is not yet clear which architecture will emerge as the
most performant, or even if it will be a single machine
type. We are confronted with a number of very diverse
parallel architectures: hypercubes, butterflies, clusters, and
shared bus machines, to name only representative MIMD
machines. These machines differ in fundamental ways that
affect the costs algorithm designers and programmers must
know.

One approach, illustrated by “blue collar” programs [8],
is to write low level, machine specific programs that exploit

Manuscript received October 30, 1990; revised December 24, 1990.
The authors are with the Department of Computer Science and Engi-

IEEE Log Number 9143456.
neering, University of Washington, Seattle, WA 98195.

the characteristics of particular computers. Although this
may achieve high performance, it greatly decreases the
portability of the program, more severely limiting its wide
use than in the sequential case. At the other extreme, many
researchers have advocated high level languages that are
sufficiently “far” from any architecture as to be independent
of particular machine features. This solves the portability
problem in the sense that the program does not rely on
any specific machine features, but portability in the parallel
context requires more. The program not only must run on
another machine, it must run well. Compilation techniques
are not yet powerful enough “to span the distance” between
high level programs and low level parallel machines with
efficient code.

An intermediate approach, allowing us to overcome the
problems of many diverse machines while possibly achiev-
ing portability and high performance, is to develop a
compromise abstract machine incorporating features critical
to a variety of architectures. Such a machine has been
called a parallel type architecture [15]. The goal of the
type architecture is to possess those “essential” capabilities
that all or most parallel machines can realize efficiently. It
avoids “features” peculiar to specific machines that do not
scale well. Programs that are efficient on the logical type
architecture should also be efficient on physical parallel
machines, assuring portability with performance.

The most important feature of the type architecture
approach is that it enables the algorithm designer and the
programmer to have a realistic model of the costs of parallel
computation. For example, the type architecture can indi-
cate by its characteristics whether barrier synchronization
is an expensive operation or an inexpensive operation and
thus can be avoided or exploited by the programmer. Since
there is not yet a consensus on a parallel type architecture
(only a candidate has been proposed [15]), it is not possible
to consider all cost sensitive aspects of parallel machines.
Accordingly, we will concentrate here on one specific
feature of parallel computers-memory structure.

The goals are to demonstrate how the choice of memory

001 8-921 919 1/04004480$0 1 .OO 0 199 1 IEEE

480 PROCEEDINGS OF THE IEEE, VOL. 79, NO. 4, APRIL 1991

model affects the performance of parallel programs, to
illustrate that the nonshared memory model is superior to
the shared memory model because it leads to better perfor-
mance, and to justify the advice to algorithm designers and
programmers that the nonshared memory model is to be
preferred over the shared memory model. As a corollary, it
will follow that nonshared memory should be a component
of the parallel type architecture.

The approach to realizing these goals is first to define
shared and nonshared memory models to be used as the
basis for analyzing parallel algorithms and to introduce
two problems that exhibit different characteristics when
solved with the different memory models. Then for each
problem and each model an algorithm will be developed.
The performance of the four resulting algorithms will be
the basis of analysis and comparison. The results, that the
nonshared memory solutions are superior and the shared
memory programs are inferior, will guide the subsequent
discussion.

11. SHARED AND NONSHARED MEMORY MODELS
To understand the impact of the memory model on

algorithm design, we will introduce shared and nonshared
memory parallel computer models. Two variants of the
shared memory model will be defined in order to cover
the two most commonly used forms.

The models will have P processors, each with the usual
processing capabilities and its own program counter, i.e.,
the models are MIMD. All models will be assumed to have
the same memory capacity. They will differ principally in
memory organization.

In the shared memory models there is a single (flat)
memory, each location of which is accessible by any of
the P processors. In accordance with prevailing definitions,
a reference to the shared memory takes “unit” time inde-
pendent of the size of the memory or the pattern of the other
processor’s references [6]. Since any processor can refer-
ence any memory location, it is necessary to define what
happens when two processors reference the same address.
The two most common formulations either permit multi-
ple processors to reference the same location, called the
concurrent-read-concurrent-write (CRCW) model, or forbid
multiple processors from referencing the same location,
called the exclusive-read-exclusive-write (EREW) model.
(Because the situation is asymmetric, making multiple reads
somewhat more plausible than multiple writes, there is
also the CREW model too.) Various approaches have been
used to give the CRCW model a well-defined outcome
when multiple processors write different values to the same
location, including selecting the value from the processor
with the smallest ID, selecting a random processor to be
“winner,” etc. Since our use of the CRCW will have the
property that all of the processors will be writing the same
value, no specific choice is required. We will refer to the
two shared models as SC and SE. Notice that these are both
models of computation that cannot be physically realized
~151.

The nonshared or local memory model will have its
memory partitioned into P modules, one associated with
each processor. Reference by a processor to a location in its
associated memory takes “unit” time. It is not possible for a
processor to reference any other memory directly. Informa-
tion is exchanged among the processors via messages sent
over a communication network that connects the processors
together directly. The specific topology of the network is
not important, provided it has two properties needed in
the later development: logarithmic diameter and bounded
degree. Many topologies have these properties including
the shuffle exchange [ll], the cube connected cycles [9],
and certain single-stage interconnection networks [131. The
time to communicate between two adjacent processors over
the network will be considered to take a constant amount
of time.’ This local memory model will be referred to as L .

111. Two PROBLEMS
The two problems, selected to illustrate the effects of

shared memory on practical program performance, exhibit
several important properties. They are simple in concept.
The solutions in both models are representative of com-
mon programming techniques for the models, and so will
illustrate typical stylistic forms. Most importantly, the al-
gorithms can be proved to be optimal for their respective
memory models, thus removing the possibility that the poor
problem solution is due to a poor choice of algorithm.’

The problems:

FINDING THE MAXIMUM: Given N distinct inte-
gers, find the value with the largest magnitude.

Take N = P unless otherwise stated. Also notice that
because the “word model” is being used, i.e., every value
fits into a word and a whole word is processed in any
operation, the magnitude of the integers is unimportant.

EVEN/ODD PAIR TEST Given a permutation a1 , u2,

. . . ,unp of the integers l , . . . , n P , determine if any

P contain an evedodd pair, i.e., an U n k + i and U n k + j ,

such that U&+i = 22 and &k+j = 22 + 1 for some x,
and 15 i , j 5 n.

Take n = l ogP unless otherwise stated. This is
a specialized computation to illustrate features of the
different models and is not necessarily of practical utility.

Of the n-blocks unk+l,unk+2,”‘,unk+n, 0 5 k <

IV. FOUR ALGORITHMS
In the following subsections four algorithms will be de-

veloped to solve the maximum and even/odd pair problems
using the global and local memory models.

‘This assumption is not literally true since as larger and larger com-
puters are considered the networks just mentioned must have longer and
longer wires [lo]. It has been argued, however, that such considerations
apply to all computers independent of memory organization [15].

*For the shared memory models, the correctness proofs are based on
SIMD versions of the machines. At the level of detail of the models,
however, the SIMD version can simulate the MIMD version with only a
constant difference in performance. The conclusions will not be affected.

ANDERSON AND SNYDER: MEMORY MODELS OF PARALLEL COMPUTATION 481

1’

A. Maximum Finding, Shared Memory Model
The best approach to finding the maximum, assuming a

CRCW shared memory model, is an ingenious algorithm
due to Valiant [17]. It finds the maximum in O(log1ogN)
time, based on the shared memory assumptions. By group-
ing the numbers into sets and making all possible com-
parisons for each set simultaneously, it finds a maximum
element for each set; these go on to be inputs to another
application of the same strategy.

All Compares Algorithm: The maximum is found in
stages. At stage i the input, 711,722, . . . , ns(q, is partitioned
into the fewest number T of sets SI, S 2 , . . . , S, of like size
(ISil = ISjl, 1 5 i, j < T and JS,J 5 IS1l) such that

A separate processor is assigned to perform each of the
(I”;.) distinct comparisons nu : nv of elements in each
set sk. There are enough processors by the condition (*)
on the cardinality of the sets so all comparisons can be
performed simultaneously; the CRCW model permits the
necessary concurrent reads to memory

Each set SI, has a bit vector of length (Ski associated
with it that is set to l’s at the start of the stage. Once
the comparisons are made, the processor performing the
nu : nv comparison sets to 0 the bit corresponding to
the smaller value; the CRCW model permits the necessary
concurrent writes to memory. (Notice that the value stored
by any two processors to the same memory location is
always the same.) One position, the vth say, will remain
set to 1, and so n, was the maximum of the set; it moves

0
Many details, which can be found in [17] and [12],

have been omitted. (See Example 1.) The key points of
the algorithm are these: Each stage can be performed
by P processors in constant time assuming a CRCW
shared memory. There are O(log1og P) stages and so
O(log1ogP) running time. No algorithm can solve this
problem (asymptotically) faster using shared memory and
P processors [17].

Example 1: The All Comparisons maximum finding al-
gorithm applied to 1000 values takes four stages.

Stage 1: The 1000 values are partitioned into 333 sets
of 3 elements each and a set of 1 element requiring
999 comparisons.

1000 = 333 x 3 + 1 values.

on to be an input to stage i + 1.

+ 1 x 0 = 333 x 3 + 0 comparisons.

...

Stage 2: The winners of the 334 sets of Stage 1 advance
and are partitioned into 47 sets of 7 elements each and a

set of 5 elements requiring 997 comparisons.

334 = 47 x 7 + 5 values.

997 = 47 x (i) + (;) = 47 x 21 + 10 comparisons.

..
Comparisons

a; : a;

. . .

Stage 3: The winners of the 48 sets of Stage 2 advance
and are partitioned into 2 sets of 24 elements requiring
552 comparisons.

48 = 2 x 24 values.

552 = 2 x (y) = 2 x 276 = 552.

Stage 4: The winners of the 2 sets of Stage 3 advance
0 and are compared, yielding the result.

B. Maximum Finding, Local Memory Model
The best algorithm for finding the maximum of N

numbers stored in the unit-cost local memories of P = N
processors is the tournament algorithm. This assumes that
the machine’s communication structure “contains” a tree of
height = diameter of the network, which is the case for
the graphs cited in local memory model definition. Notice
that by the assumption of a constant degree, the tree has
height Cl(log P) .

Tournament Algorithm: Assume a value in each pro-
cessor’s memory and assume a tree is embedded in the
communication structure of the machine. Name the pro-
cessors according to their role in the tree and permit
them to refer to their neighbor processors by their logical
relationship. Initially, each leaf sends its value to its parent
processor:

process leaf(va1 : int, parent : port);
begin parent c Val end.

Interior nodes read the values from their children, waiting
if the value hasn’t arrived; they then pass to their parents
the largest of their children’s values and their own:

process intnode(va1 : int, lchild, rchild, parent : port);
begin parent t max(va1, lchild, rchild) end.

The maximum is the value “emitted” by the root. 0

482 PROCEEDINGS OF THE IEEE, VOL. 79, NO. 4, APRIL 1991

With a unit time memory reference and a constant time
channel transmission, the execution of the algorithm can
be divided into constant time steps, where a processor at
height i is active only at step i. This gives an execution time
of O(1og P), the best possible for the local memory model
because the assumed Q(1og P) network diameter implies
R(log P) time is required to bring the values together.

Schwartz [ll] observed that the Tournament Algorithm
can find the maximum of N = O(P log P) values stored
O(log P) per processor with no increase in asymptotic time
complexity. This is accomplished by initially employing
each processor to find the local maximum of the O(1og P)
values using a sequential search. The results are then treated
as the values of the original algorithm. Indeed this seems to
be a satisfactory way to solve the problem no matter how
many elements there are.

Compare the two algorithms for finding the maximum.
1) The All Compares algorithm requires O(N log log N)
total instructions (work), while the Tournament algorithm
executes O (N) instructions. 2) The All Compares algo-
rithm has essentially full processor utilization, while the
processors in the Tournament algorithm, when N = P,
execute only a constant amount of time.

C. EvenlOdd Pair, Shared Memory
To contrast with the use of the powerful CRCW model

to solve the maximum problem, we use the weaker EREW
model to compute the EvedOdd Pair test. There will be no
simultaneous memory references to any cell. The provably
best algorithm uses a global array and three phases.

Indexing Algorithm for EvedOdd Pair Test: Recalling
that the input a l , a2, . . . , anp is a permutation, declare
an array AIO : n*P]. In the first phase of the algorithm
each of the processors loops through the n integers for
which it is responsible; using each value a&+i as an index
into A, it assigns I C , its processor ID, i.e., A[a,k+i] :=
IC. In the second phase of the algorithm, each processor
again loops through its n integers; for each unk+i that
is odd, it checks if A[a,k+i - 11 = IC; if equality is
found for any of the checks, the processor reports true
during the final combining phase; otherwise it reports false.
The combining phase OR’s the Boolean values from each
processor together. The details of the combining phase are
irrelevant here. 0

The reason the details of the combining phase are unim-
portant is because we take n = logP. This implies
that the first two phases each use O(1ogP) time, since
each has performance proportional to the size of the list.
There are many solutions, such as a combining tree, that
will implement the combining phase in O(log P) time.
The Indexing algorithm thus runs in O(1ogP) time on P
processors with an EREW shared memory model. Notice
that the algorithm relies on the fact that the input is a
permutation, and that A[O] is required simply to guarantee
“in bounds” indexing.

O(1ogP) is the fastest possible performance for these
assumptions, since it takes that long to touch all of the data.

pair

Example 2

D. EvenlOdd Pair, Local Memory
Assuming each processor has n values stored in its local

memory, the optimal local memory solution also uses three
phases.

Ordering Algorithm for Even/Odd Pair Test: In the first
phase, each processor sorts its n values into order locally.
In the second phase each processor loops through the
sorted list, checking the successor of any even element to
determine if it is one larger, i.e., checking if ank+i = 22 for
some x and if ank+i+l = ank+i + 1; if so, it reports true
during the final combining phase; otherwise it reports false.
The details of the combining phase are again irrelevant. 0

Selecting n = log P, which is large enough to permit
the combining phase to be a combining tree (it could
even be the Tournament Algorithm on the Boolean values
of the outcomes), the performance is dominated by the
sorting phase. Thus the Ordering Algorithm can achieve
O(1og PloglogP) time, which is optimal for the Local
Memory model.

Notice that because local memory references suffice for
determining whether a processor has an even/odd pair, the
indexing tactic used in the Indexing algorithm could have
been used here. But this would require each processor to
have an nP + 1 element array. Totaled, this is substantially
more memory (by a factor of P) than was used by the
Indexing Algorithm. Given that we want to compare the
algorithms, it is necessary to keep the memory requirements
similar.

Maximum Finding-
To summarize the results of this section:

All Compares Algorithm (Shared) O(1og log P)
Tournament Algorithm (Local) O(1og P)

Indexing Algorithm (Shared) O(1og P)

Evidently, the memory reference time significantly af-

EvedOdd Pair-

Ordering Algorithm (Local) 0 (log P log log P) .

fects the asymptotic performance of algorithms.

v. PROGRAMMING THE PROBLEMS
Having introduced two problems and having developed

four optimal algorithms to solve them with different mem-
ory models, it is now possible to consider programming
realistic machines. We imagine a programmer, confronted
with the task of writing programs in programming lan-
guages differing in their memory models.

A. Shared Memory
Suppose the programming language provides a shared

memory for data storage. If the details of the language

ANDERSON AND SNYDER: MEMORY MODELS OF PARALLEL COMPUTATION 483

I

I
I

- I I
- --

.

are best characterized by the CRCW model, a rational
programmer should choose algorithms that are optimal
for it. Our example is the All Compares algorithm for
finding the maximum. Performance of O(1og log P) can be
predicted for the resulting program based on the model.
The Tournament algorithm, which can be compiled for this
model by simulating the embedded tree, can be dismissed
since its O(1og P) predicted performance is too slow.

Similarly, if the programming language is best charac-
terized by an EREW shared memory model, the rational
programmer will choose algorithms that are optimal for
it. Our example is the Indexing algorithm for testing for
an even/odd pair. Its O(1og P) predicted performance is
superior to the O(1og P log log P) predicted performance
of the Ordering algorithm in this model.

Thus the programmer considers the capabilities of the
model presented by the language and selects the best
algorithm with respect to them. The problem arises when
these predicted times are compared with the times that can
be realistically expected when the program is executed on
a physical machine. To estimate what realistic performance
to expect, we retum to our previous observation that the
two shared memory models are not physically realizable.

There are numerous problems with a physical imple-
mentation of these shared memory models [15] and a
complete treatment would be too great a diversion at this
point. The principal problem with both is the “unit” time
memory reference assumption. Simultaneous reference by
P processors to P memory locations must take at least
R(1og P) time, based simply on constant fanin/fanout
considerations. This bound does not take into account
delays due to collisions in the interconnection network, if
that is how sharing is implemented; Borodin and Hopcroft
[3] show, for oblivious routers, today’s state-of-the-art, that
these delays can be as large as Q(N112). Also, this bound
does not account for serialization at the memory module if
multiple processors reference the same module (not just the
same location, cache line or page). These can increase the
reference time substantially. A variety of tricks have been
proposed to neutralize the R(1og P) lower bound, but none
has proved adequate, as will be explained.

Even though the “unit” cost assumption is not literally
true, the algorithms can be run on physical parallel hard-
ware provided the requirements of the memory model are
simulated. Being optimistic, assume that the shared memory
references can be accomplished in O(1og P) time. Then a
simulation will be slowed down by a factor of O(1ogP)
giving the following times for each of the four programs:
All Comparessc
Toumamentsc O((1og P) 2)

O(1og P log log P)

IndexingsE O ((h PI2)
Ordering O((l0g P)2 loglog P) .
The realizable performance is worse than the predicted
performance.

B. Nonshared Memory
Suppose now that the programming language provides

nonshared memory for data storage. The rational program-

484

mer will select algorithms that perform well for that model.
For the two problems considered above, the predicted
performance is O(1og P) for the Tournament algorithm and
O(1og P log log P) for the Ordering algorithm. These must
be compared with the shared memory algorithms which can
be implemented in the local memory model by simulating
shared memory at a cost of t (P) for each step. Accepting
the Q(1ogP) lower bound as the estimate for t (P) , gives
a predicted performance of O(1og P log log P) for the All
Compares and 0 (log P) for the Indexing algorithms in
the local memory model. As expected, the optimal local
memory algorithms are predicted to be best.

But, how do the programs perform on physical machines?
Here the contrast between models is apparent, since unlike
the shared memory case, the nonshared memory programs
can be physically realized by machines such as hypercubes.
That is, the local memory references are unit time and the
logarithmic height tree can be directly embedded with a
constant time traversal of each edge. Thus the realizable
performance is:
All ComparesL
ToumamentL O(1og P)

(2,

0 (log P log log P)

IndexingL O((1og PI2>
OrderingL 0 (log P log log P) .
The realizable performance for the programs based on the
local memory model matches the programmer’s expecta-
tions, unlike the case of shared memory model.

VI. SUMMARY OF THE RESULTS
We have compared the predicted performance of pro-

grams written in different programming languages with
the realizable performance for those programs on physical
machines. In order to estimate the time t (P) required
to implement the shared memory model on a physical
machine, we chose t (P) = O(1ogP). The following table
summarizes the results.

Predicted Realizable
Shared Memory
Pgmming Model

All Compares O(1og log P) O(l0g P log log P)
Tournament O(l0g PI O((l0g PI2)
Indexing O(10g P) O((10g PI2)
Ordering O(1og p 1% 1% P) O((log P)* log log P)

Local Memory e
A1 Compares O(log P log log P) O(1og P log log P)
Tournament w o g P) O(l0g P)
Indexing O((10g p) 2) O((l0g PI2)
Ordering O(l0g P log log P) O(l0g P log log P) .

The two observations, to be discussed in the next section,
are that the local memory model has the best realizable
performance for both problems and that the local memory
model’s predictions match what should be realizable.

Before interpreting the results, however, it is important
to ask whether the comparison is meaningful. Specifically,
the items in the northeast quadrant of the table represent
execution of the programs on a shared memory machine

PROCEEDINGS OF THE IEEE, VOL. 79, NO. 4, APRIL 1991

while the programs in the southeast quadrant of the table
represent execution on a nonshared memory machine. It
might be argued that since the time to make a shared
memory reference on a shared memory machine is an order
of magnitude faster on today’s machines than referencing
an adjacent processor ‘on a nonshared memory machine, it
is meaningless to compare the two quadrants.

The comparison is justified for several reasons. First,
the behavior of present day machines is an unreliable
guideline since they are small, they are implemented in a
variety of technologies, they represent early designs that
will likely be improved, etc. Counting time in seconds
on present machines does not produce useful information
for this purpose. Second, the principal cost in PE-to-PE
communication on present nonshared memory computers
is packet formation time, which is independent of machine
size, i.e., it is not likely to get larger as machines do. Shared
memory reference times must increase. Third, the cost of
implementing shared memory, O(1og P), is generous in
that it does not include congestion-related problems; such
features may prevent shared memory scaling as log P.
Finally, many constants are being ignored; the fact that
the shared memory programs make considerably more
shared memory references than the local memory program’s
nonlocal references might alone erase the performance
difference between the specific reference times.

Thus the analysis can give a coarse indication of how
programs scale in the different models.

VII. INTERPRETATION AND DISCUSSION
The first conclusion from the preceding analysis is that

the nonshared memory model is accurate in that the pre-
dictions are realizable. An accurate cost model must be
an essential property of a programming model or else
programmers will be unable to make the multitude of
decisions needed to produce efficient programs.

Two counter arguments to the need for accuracy pre-
vail, the it’s-a-small-cost argument and the latency-can-be-
hidden argument.

It is true that the difference between the realizable perfor-
mance of the shared and local memory programs is small.
The factor is loglogP in one case and logP/ loglogP in
the other. Indeed, it could only be as large as t (P) . The
issue is not the magnitude of the difference, but that there
is any difference at all. The difference is large enough to
make inferior algorithms appear to be superior, causing
the rational programmer to prefer an algorithm that is
unrealizable. Since we do not know what the actual costs
are of implementing this algorithm on physical hardware,
it is not possible to assess how grievous this error is. But
in accordance with the opening assertion of this paper, it
must be assumed to be serious enough to be avoided.

Of course, the shared memory models are also claimed
to be easier to program than the local memory models and
so part of the it’s-a-small-cost argument becomes one of
cost benefit: perhaps the reduced programmer investment
is worth whatever the cost is. However, this is more
of a criticism of the sorry state of nonshared memory

programming languages than a defense of shared memory,
since presumably local memory languages can be made
as convenient as shared memory languages with suitable
development [161.

The latency-can-be-hidden argument states that there are
techniques wherein the overhead required to implement
shared memory, the t (P) in our analysis, can be hidden
and thus logically eliminated. Among the techniques that
have been mentioned are: caching active data values at the
processor to reduce congestion and speed communication,
but there is the problem of keeping the memory coherent
that probably limits how large P can realistically get [2].
Time multiplexing instruction interpretation [141 seems to
be a scalable solution, but it relies on having R(Pt(P))
active instructions underway at all times, which is not a
property of many problems, such as the All Comparisons
algorithm. Combining can reduce serialization at a memory
location and reduce traffic in the network [4], but hot spots
remain and there is no benefit when the collisions are for a
different reference in the module. In summary, no technique
has been demonstrated on a large machine, and each has
serious drawbacks.

Postulate, however, that instruction multiplexing proves
to be an effective technique for hiding latency. Then can
we say that the shared memory model is accurate? No.
The model’s unit time memory reference assumption is
accurate only when there are enough instructions available
for interpretation to hide the latency (at least R (P log P),
but perhaps more). The model is still inaccurate when
there are fewer, say only P, instructions available to
execute at a time. Parallel computation still involves many
one-per-processor operations (synchronizing, aggregation,
broadcasting, etc.) that do not produce enough threads? It is
possible, of course, to invent new models that characterize
the instruction multiplexing capability. They would have
relatively expensive memory reference when there are only
a few threads of execution and relatively cheaper memory
reference when there are many threads. Valiant’s bulk-
synchronous parallel model is such an alternative, where
the concept of parallel slackness captures the notion of
“sufficiently parallel” [B]. The essential point is that the
new models would differ from the shared memory model at
least by not having a universal unit cost memory reference.

The second conclusion of the analysis is that the local
memory programs have the best realizable performance.
It is important that this performance be realizable on
all machines, both shared and nonshared memory and
also among nonshared memory machines with different
topologies. Consider both cases.

A preliminary set of experiments shows that executing
local memory model programs on shared memory machines
produces better results than shared memory model programs
[7]. The experiments were run on the BBN Butterfly and
Sequent Symmetry. The local memory program was able,

3This is a parallel analogue to Amdahl’s law. He observes that multiple
processors will not speed up the sequential components of a program;
here latency hiding cannot reduce the proportional-to-P components of
the program.

ANDERSON AND SNYDER MEMORY MODELS OF PARALLEL COMPUTATION 485

for example, to exploit the fact that the Butterfly partitions
its memory into shared and local regions by concentrating
the computation in the faster local memory. The exploita-
tion of local memory was not the only advantage of the
nonshared memory programs: They were also coarser grain,
a property that is crucial in nonshared memory computers.
Large grain, which is one way to encapsulate locality,
is a generally useful feature for most parallel computers.
This suggests that there are other characteristics of parallel
programs besides memory usage that influence parallel
program performance.

The change in topology of a computer would seem to
be a feature that shouldn’t concern the programmer, yet
an essential feature of the Tournament and Ordering algo-
rithm’s performance was the fact that the tree be directly
embedded into the structure. This would seem to limit the
portability of the program while the shared memory, having
no connection to the implementing topology, should be
more portable. In fact, recent advances in programming
abstractions for nonshared memory parallel languages have
provided a means of exploiting the topology in the algo-
rithm and still being customizable to different machines [11.
As with the difficult-to-program criticism of local memory
languages, the portability criticism may simply represent
our relative inexperience with such languages.

A final point to emphasize is the distinction between
the models presented by parallel programming languages
and used by programmers for creating practical programs,
and the theoretical models used by computer scientists
to understand the fundamental limits of computation. The
former must be accurate; the latter should have whatever
properties are needed to expose the phenomena being
studied. Indeed, the PRAM model, of which the CRCW
and EREW instances were used here to justify algorithm
optimality, have been the source of numerous fundamental
insights [6] . It is sensible, when seeking to understand the
limits of concurrency, to employ a model such as the PRAM
where communication costs are completely ignored; one
discovers, as we did in the All Compares algorithm, that
finding the maximum is so easy that parallel processors can
compute the result “faster” than the time required to bring
the values together. In practical parallel computation, where
communication costs exist, accuracy is essential.

VIII. CONCLUSION
We have analyzed the shared and nonshared memory pro-

gramming models by comparing the realizable performance
of programs written in each. It was shown that the unit-cost
memory reference of the shared model, though perhaps a
simplifying assumption, nevertheless leads to algorithms
that are “impossibly” efficient. A rational programmer,
following the dictates of the model, should prefer such
solutions over the less efficient, though more realistic,
alternatives. When the programs based on the impossibly
efficient algorithms are run, their performance is worse
than the apparently slower but more practical competitors.
We conclude that the unit-cost memory model is therefore
counterproductive.

486

The nonshared memory model has been shown to be
more realistic, but it has also been criticized as being diffi-
cult to use. Clearly, creating abstractions to support con-
venient nonshared memory parallel programming should
be a research priority. The apparently simple expedient of
adding local memory to a shared memory language should
be avoided unless it is made plain that the shared memory
references require t (P) units of time to complete.

REFERENCES

[l] G. A. Alverson, W. G. Griswold, D. Notkin, and L. Snyder, “A
flexible communication abstraction for nonshared memory par-
allel computing,” in Proc. Supercomputing ’90, pp. 584-593.

[2] J. Archibald and J. L. Baer, “Cache coherence protocols: Eval-
uation using a multiprocessor simulation model,” ACM TOCS,
vol. 4, no. 4, DD. 273-298, 1986.
A. Borodin a6d J. Hopcroft, “Routing, merging and sorting on
parallel models of computation,” J. Comput. Syst. Sci., vol. 30,

A. Gottlieb, R. Grishman, C. Kruskal, P. McAuliffe, L. Rudolph,
and M. Snir, “The NYU ultracomputer-Designing an MIMD
shared memory computer,” IEEE Trans. Comput., vol. C-32,

W.G. Griswold, G.A. Hamson, D. Notkin, and L. Snyder,
“Scalable abstractions for parallel programming,” in Proc. 5th
Distributed Memory Comput. Conf, 1990, pp. 1008-1016.
R. Karp and V. Ramachandran, Handbook of Theoretical Com-
puter Science. Vol. A. Cambridge, MA: MIT Press, 1990.
C. Lin and L. Snyder, “A comparison of programming models
for shared memory multiprocessors,” in Proc. Znt. Con$ Parallel
Processing, vol. 11, 1990, pp. 163-170.
D. Mizell, ‘‘First ‘blue collar’ production parallel program
survey,” in Con$ Rec. Comput. Aerospace, AIAA, 1989.
F. Preparata and J. Vuillemin, “The cube-connected cycles: A
versatile network for parallel computation,” CACM, vol. 24,
no. 5 , pp. 300-309, 1981.
A. L. Rosenberg, “Three dimensional VLSI: A case study,”
JACM, vol. 30, no. 3, pp. 397-416, 1983.
J. T. Schwartz, “Ultracomputers,” ACM Trans. Programming
Languages and Systems, vol. 2, no. 4, pp. 484-521, 1980.
Y. Shiloach and U. Vishkin, “Finding the maximum, merging
and sorting in a parallel computation model,” J. Algorithms,

H. J. Siege], Interconnection Networks for Large-scale Parallel
Processing. London, U.K.: Heath, 1985.
B. J . Smith, “Architecture and applications of the HEP mul-
tiprocessor computer system,” in Proc. SPIE Symp., 1981,

L. Snyder, “Type architecture, shared memory and the corol-
lary of modest potential,” Ann. Rev. Comput. Science, vol. 1,

L. Snyder, “Applications of the ‘phase abstractions’ for portable
and scalable parallel programming,” in Proc. ICASE Work-
shop, 1990, to be published.
L. G. Valiant, “Parallelism in comparison problems,” SIAM J.
Comput., vol. 4, no. 3, pp. 348-355, 1975.
L. G. Valiant, “A bridging model for parallel computation,”
CACM, vol. 33, no. 8, pp. 103-111, 1990.

pp. 130-145, 1985.

pp. 175-189, 1983.

vol. 2, pp. 88-102, 1981.

pp. 242-248.

pp. 289-317, 1986.

Richard Anderson received the B.A. degree
in mathematics from Reed College, Portland,
OR, in 1981, and the Ph.D. degree in computer
science from Stanford University, Stanford, CA
in 1986.

He spent a post-doctoral year at the Mathe-
matical Sciences Research Institute in Berkeley,
CA, before becoming an Assistant Professor of
computer science at the University of Washing-
ton, Seattle, WA. His current research interest
is the design and implementation of parallel

algorithms for shared memory multiprocessors.

PROCEEDINGS OF THE IEEE, VOL. 79, NO. 4, APRIL 1991

Lawrence Snyder received the bachelors degree
in mathematics and economics from the Univer-
sity of Iowa, Iowa City, and in 1973 received the
Ph.D. degree from Camegie Mellon University,
Pittsburgh, PA, in computer science.

He was a visiting scholar at the University
of Washington, Seattle, WA, from 1979 to 1980
and joined the faculty permanently in 1983 after
serving on the faculties of Yale and Purdue.
During 1987-1988 he was a visiting scholar
at MIT and Harvard. His research has ranged

from the design and development of a 32-bit single chip (CMOS)
microprocessor, the Quarter Horse, to proofs of the undecidability of
properties of programs. He created the Configurable Highly Parallel
(CHiP) architecture, the Poker Parallel Programming Environment and is
the coinventor of Chaotic Routing. He is a codeveloper of the Take/Grant
Security Model and the cocreator of several new algorithms and data
structures. Following the completing of the Blue CHiP Project he is
now Principal Investigator for the Orca Project and Chief Scientist of
NWLIS. He is an associate editor of the Journal of Computer and Systems
Sciences and parallel systems editor of the Journal of the ACM. In 1989,
he was program chair for the first Symposium on Parallel Algorithms and
Architectures.

ANDERSON AND SNYDER MEMORY MODELS OF PARALLEL COMPUTATION 487

--
I - 1 I - --

