
A Comparison of Shared and Nonshared 
Memory Models of Parallel Computation 
RICHARD J. ANDERSON AND LAWRENCE SNYDER 

Invited Paper 

Four algorithms are analyzed in the shared and nonshared (distributed) 
memory models ofparallel computation. The analysis shows that the shared 
memory model predicts optimality for algorithms and programming styles 
that cannot be realized on any physical parallel computers. Programs 
based on these techniques are inferior to programs wrinen in the nonshared 
memory model. The “unit” cost charged for a reference to shared memory 
is argued to be the source of the shared memory model’s inaccuracy. The 
implications of these observations are discussed. 

I. INTRODUCTION 
The single goal of parallel computation is performance. 

As always, performance is achieved by an efficient program 
optimally compiled for and executed on a powerful ma- 
chine. We are interested here in designing efficient parallel 
algorithms and writing fast parallel programs. It should 
be clear that being successful at these tasks requires an 
accurate understanding of the costs involved. How time 
consuming is a barrier synchronization? How expensive is 
a memory reference? Unfortunately, there is a complication 
with accurately knowing the costs in the parallel setting that 
does not arise in sequential computing. 

In sequential computation, the von Neumann machine 
model is a sufficiently accurate description of the physical 
hardware to be the basis for efficient algorithm design 
and programming, as well as language design and com- 
piler optimizations. In parallel computation, however, it 
is not yet clear which architecture will emerge as the 
most performant, or even if it will be a single machine 
type. We are confronted with a number of very diverse 
parallel architectures: hypercubes, butterflies, clusters, and 
shared bus machines, to name only representative MIMD 
machines. These machines differ in fundamental ways that 
affect the costs algorithm designers and programmers must 
know. 

One approach, illustrated by “blue collar” programs [8], 
is to write low level, machine specific programs that exploit 
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the characteristics of particular computers. Although this 
may achieve high performance, it greatly decreases the 
portability of the program, more severely limiting its wide 
use than in the sequential case. At the other extreme, many 
researchers have advocated high level languages that are 
sufficiently “far” from any architecture as to be independent 
of particular machine features. This solves the portability 
problem in the sense that the program does not rely on 
any specific machine features, but portability in the parallel 
context requires more. The program not only must run on 
another machine, it must run well. Compilation techniques 
are not yet powerful enough “to span the distance” between 
high level programs and low level parallel machines with 
efficient code. 

An intermediate approach, allowing us to overcome the 
problems of many diverse machines while possibly achiev- 
ing portability and high performance, is to develop a 
compromise abstract machine incorporating features critical 
to a variety of architectures. Such a machine has been 
called a parallel type architecture [15]. The goal of the 
type architecture is to possess those “essential” capabilities 
that all or most parallel machines can realize efficiently. It 
avoids “features” peculiar to specific machines that do not 
scale well. Programs that are efficient on the logical type 
architecture should also be efficient on physical parallel 
machines, assuring portability with performance. 

The most important feature of the type architecture 
approach is that it enables the algorithm designer and the 
programmer to have a realistic model of the costs of parallel 
computation. For example, the type architecture can indi- 
cate by its characteristics whether barrier synchronization 
is an expensive operation or an inexpensive operation and 
thus can be avoided or exploited by the programmer. Since 
there is not yet a consensus on a parallel type architecture 
(only a candidate has been proposed [15]), it is not possible 
to consider all cost sensitive aspects of parallel machines. 
Accordingly, we will concentrate here on one specific 
feature of parallel computers-memory structure. 

The goals are to demonstrate how the choice of memory 
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model affects the performance of parallel programs, to 
illustrate that the nonshared memory model is superior to 
the shared memory model because it leads to better perfor- 
mance, and to justify the advice to algorithm designers and 
programmers that the nonshared memory model is to be 
preferred over the shared memory model. As a corollary, it 
will follow that nonshared memory should be a component 
of the parallel type architecture. 

The approach to realizing these goals is first to define 
shared and nonshared memory models to be used as the 
basis for analyzing parallel algorithms and to introduce 
two problems that exhibit different characteristics when 
solved with the different memory models. Then for each 
problem and each model an algorithm will be developed. 
The performance of the four resulting algorithms will be 
the basis of analysis and comparison. The results, that the 
nonshared memory solutions are superior and the shared 
memory programs are inferior, will guide the subsequent 
discussion. 

11. SHARED AND NONSHARED MEMORY MODELS 
To understand the impact of the memory model on 

algorithm design, we will introduce shared and nonshared 
memory parallel computer models. Two variants of the 
shared memory model will be defined in order to cover 
the two most commonly used forms. 

The models will have P processors, each with the usual 
processing capabilities and its own program counter, i.e., 
the models are MIMD. All models will be assumed to have 
the same memory capacity. They will differ principally in 
memory organization. 

In the shared memory models there is a single (flat) 
memory, each location of which is accessible by any of 
the P processors. In accordance with prevailing definitions, 
a reference to the shared memory takes “unit” time inde- 
pendent of the size of the memory or the pattern of the other 
processor’s references [6]. Since any processor can refer- 
ence any memory location, it is necessary to define what 
happens when two processors reference the same address. 
The two most common formulations either permit multi- 
ple processors to reference the same location, called the 
concurrent-read-concurrent-write (CRCW) model, or forbid 
multiple processors from referencing the same location, 
called the exclusive-read-exclusive-write (EREW) model. 
(Because the situation is asymmetric, making multiple reads 
somewhat more plausible than multiple writes, there is 
also the CREW model too.) Various approaches have been 
used to give the CRCW model a well-defined outcome 
when multiple processors write different values to the same 
location, including selecting the value from the processor 
with the smallest ID, selecting a random processor to be 
“winner,” etc. Since our use of the CRCW will have the 
property that all of the processors will be writing the same 
value, no specific choice is required. We will refer to the 
two shared models as SC and SE. Notice that these are both 
models of computation that cannot be physically realized 
~151. 

The nonshared or local memory model will have its 
memory partitioned into P modules, one associated with 
each processor. Reference by a processor to a location in its 
associated memory takes “unit” time. It is not possible for a 
processor to reference any other memory directly. Informa- 
tion is exchanged among the processors via messages sent 
over a communication network that connects the processors 
together directly. The specific topology of the network is 
not important, provided it has two properties needed in 
the later development: logarithmic diameter and bounded 
degree. Many topologies have these properties including 
the shuffle exchange [ll], the cube connected cycles [9], 
and certain single-stage interconnection networks [ 131. The 
time to communicate between two adjacent processors over 
the network will be considered to take a constant amount 
of time.’ This local memory model will be referred to as L .  

111. Two PROBLEMS 
The two problems, selected to illustrate the effects of 

shared memory on practical program performance, exhibit 
several important properties. They are simple in concept. 
The solutions in both models are representative of com- 
mon programming techniques for the models, and so will 
illustrate typical stylistic forms. Most importantly, the al- 
gorithms can be proved to be optimal for their respective 
memory models, thus removing the possibility that the poor 
problem solution is due to a poor choice of algorithm.’ 

The problems: 

FINDING THE MAXIMUM: Given N distinct inte- 
gers, find the value with the largest magnitude. 

Take N = P unless otherwise stated. Also notice that 
because the “word model” is being used, i.e., every value 
fits into a word and a whole word is processed in any 
operation, the magnitude of the integers is unimportant. 

EVEN/ODD PAIR TEST Given a permutation a1 , u2, 

. . .  ,unp of the integers l , . . .  , n P ,  determine if any 

P contain an evedodd pair, i.e., an U n k + i  and U n k + j ,  

such that U&+i = 22 and &k+j = 22 + 1 for some x, 
and 15 i , j  5 n. 

Take n = l ogP  unless otherwise stated. This is 
a specialized computation to illustrate features of the 
different models and is not necessarily of practical utility. 

Of the n-blocks unk+l,unk+2,”‘,unk+n, 0 5 k < 

IV. FOUR ALGORITHMS 
In the following subsections four algorithms will be de- 

veloped to solve the maximum and even/odd pair problems 
using the global and local memory models. 

‘This assumption is not literally true since as larger and larger com- 
puters are considered the networks just mentioned must have longer and 
longer wires [lo]. It has been argued, however, that such considerations 
apply to all computers independent of memory organization [15]. 

*For the shared memory models, the correctness proofs are based on 
SIMD versions of the machines. At the level of detail of the models, 
however, the SIMD version can simulate the MIMD version with only a 
constant difference in performance. The conclusions will not be affected. 
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A.  Maximum Finding, Shared Memory Model 
The best approach to finding the maximum, assuming a 

CRCW shared memory model, is an ingenious algorithm 
due to Valiant [17]. It finds the maximum in O(log1ogN) 
time, based on the shared memory assumptions. By group- 
ing the numbers into sets and making all possible com- 
parisons for each set simultaneously, it finds a maximum 
element for each set; these go on to be inputs to another 
application of the same strategy. 

All Compares Algorithm: The maximum is found in 
stages. At stage i the input, 711,722, . . . , ns(q, is partitioned 
into the fewest number T of sets SI, S 2 ,  . . . , S, of like size 
(ISil = ISjl, 1 5 i, j < T and JS,J 5 IS1l) such that 

A separate processor is assigned to perform each of the 
(I”;.) distinct comparisons nu : nv of elements in each 
set sk. There are enough processors by the condition (*) 
on the cardinality of the sets so all comparisons can be 
performed simultaneously; the CRCW model permits the 
necessary concurrent reads to memory 

Each set SI, has a bit vector of length (Ski associated 
with it that is set to l’s at the start of the stage. Once 
the comparisons are made, the processor performing the 
nu : nv comparison sets to 0 the bit corresponding to 
the smaller value; the CRCW model permits the necessary 
concurrent writes to memory. (Notice that the value stored 
by any two processors to the same memory location is 
always the same.) One position, the vth say, will remain 
set to 1, and so n, was the maximum of the set; it moves 

0 
Many details, which can be found in [17] and [12], 

have been omitted. (See Example 1.) The key points of 
the algorithm are these: Each stage can be performed 
by P processors in constant time assuming a CRCW 
shared memory. There are O(log1og P )  stages and so 
O(log1ogP) running time. No algorithm can solve this 
problem (asymptotically) faster using shared memory and 
P processors [17]. 

Example 1: The All Comparisons maximum finding al- 
gorithm applied to 1000 values takes four stages. 

Stage 1: The 1000 values are partitioned into 333 sets 
of 3 elements each and a set of 1 element requiring 
999 comparisons. 

1000 = 333 x 3 + 1 values. 

on to be an input to stage i + 1. 

+ 1 x 0 = 333 x 3 + 0 comparisons. 

... 

Stage 2: The winners of the 334 sets of Stage 1 advance 
and are partitioned into 47 sets of 7 elements each and a 

set of 5 elements requiring 997 comparisons. 

334 = 47 x 7 + 5 values. 

997 = 47 x (i) + (;) = 47 x 21 + 10 comparisons. 

.. 
Comparisons 

a; : a; 

. . .  

Stage 3: The winners of the 48 sets of Stage 2 advance 
and are partitioned into 2 sets of 24 elements requiring 
552 comparisons. 

48 = 2 x 24 values. 

552 = 2 x ( y )  = 2 x 276 = 552. 

Stage 4: The winners of the 2 sets of Stage 3 advance 
0 and are compared, yielding the result. 

B. Maximum Finding, Local Memory Model 
The best algorithm for finding the maximum of N 

numbers stored in the unit-cost local memories of P = N 
processors is the tournament algorithm. This assumes that 
the machine’s communication structure “contains” a tree of 
height = diameter of the network, which is the case for 
the graphs cited in local memory model definition. Notice 
that by the assumption of a constant degree, the tree has 
height Cl(log P) .  

Tournament Algorithm: Assume a value in each pro- 
cessor’s memory and assume a tree is embedded in the 
communication structure of the machine. Name the pro- 
cessors according to their role in the tree and permit 
them to refer to their neighbor processors by their logical 
relationship. Initially, each leaf sends its value to its parent 
processor: 

process leaf(va1 : int, parent : port); 
begin parent c Val end. 

Interior nodes read the values from their children, waiting 
if the value hasn’t arrived; they then pass to their parents 
the largest of their children’s values and their own: 

process intnode(va1 : int, lchild, rchild, parent : port); 
begin parent t max(va1, lchild, rchild) end. 

The maximum is the value “emitted” by the root. 0 
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With a unit time memory reference and a constant time 
channel transmission, the execution of the algorithm can 
be divided into constant time steps, where a processor at 
height i is active only at step i. This gives an execution time 
of O(1og P), the best possible for the local memory model 
because the assumed Q(1og P) network diameter implies 
R(log P) time is required to bring the values together. 

Schwartz [ll] observed that the Tournament Algorithm 
can find the maximum of N = O(P  log P) values stored 
O(log P) per processor with no increase in asymptotic time 
complexity. This is accomplished by initially employing 
each processor to find the local maximum of the O(1og P) 
values using a sequential search. The results are then treated 
as the values of the original algorithm. Indeed this seems to 
be a satisfactory way to solve the problem no matter how 
many elements there are. 

Compare the two algorithms for finding the maximum. 
1) The All Compares algorithm requires O(N log log N) 
total instructions (work), while the Tournament algorithm 
executes O ( N )  instructions. 2) The All Compares algo- 
rithm has essentially full processor utilization, while the 
processors in the Tournament algorithm, when N = P, 
execute only a constant amount of time. 

C. EvenlOdd Pair, Shared Memory 
To contrast with the use of the powerful CRCW model 

to solve the maximum problem, we use the weaker EREW 
model to compute the EvedOdd Pair test. There will be no 
simultaneous memory references to any cell. The provably 
best algorithm uses a global array and three phases. 

Indexing Algorithm for EvedOdd Pair Test: Recalling 
that the input a l ,  a2, . . . , anp is a permutation, declare 
an array AIO : n*P]. In the first phase of the algorithm 
each of the processors loops through the n integers for 
which it is responsible; using each value a&+i as an index 
into A, it assigns I C ,  its processor ID, i.e., A[a,k+i] := 
IC. In the second phase of the algorithm, each processor 
again loops through its n integers; for each unk+i that 
is odd, it checks if A[a,k+i - 11 = IC; if equality is 
found for any of the checks, the processor reports true 
during the final combining phase; otherwise it reports false. 
The combining phase OR’s the Boolean values from each 
processor together. The details of the combining phase are 
irrelevant here. 0 

The reason the details of the combining phase are unim- 
portant is because we take n = logP. This implies 
that the first two phases each use O(1ogP) time, since 
each has performance proportional to the size of the list. 
There are many solutions, such as a combining tree, that 
will implement the combining phase in O(log P) time. 
The Indexing algorithm thus runs in O(1ogP) time on P 
processors with an EREW shared memory model. Notice 
that the algorithm relies on the fact that the input is a 
permutation, and that A[O] is required simply to guarantee 
“in bounds” indexing. 

O(1ogP) is the fastest possible performance for these 
assumptions, since it takes that long to touch all of the data. 

pair 

Example 2 

D. EvenlOdd Pair, Local Memory 
Assuming each processor has n values stored in its local 

memory, the optimal local memory solution also uses three 
phases. 

Ordering Algorithm for Even/Odd Pair Test: In the first 
phase, each processor sorts its n values into order locally. 
In the second phase each processor loops through the 
sorted list, checking the successor of any even element to 
determine if it is one larger, i.e., checking if ank+i = 22 for 
some x and if ank+i+l = ank+i + 1; if so, it reports true 
during the final combining phase; otherwise it reports false. 
The details of the combining phase are again irrelevant. 0 

Selecting n = log P, which is large enough to permit 
the combining phase to be a combining tree (it could 
even be the Tournament Algorithm on the Boolean values 
of the outcomes), the performance is dominated by the 
sorting phase. Thus the Ordering Algorithm can achieve 
O(1og PloglogP)  time, which is optimal for the Local 
Memory model. 

Notice that because local memory references suffice for 
determining whether a processor has an even/odd pair, the 
indexing tactic used in the Indexing algorithm could have 
been used here. But this would require each processor to 
have an nP + 1 element array. Totaled, this is substantially 
more memory (by a factor of P) than was used by the 
Indexing Algorithm. Given that we want to compare the 
algorithms, it is necessary to keep the memory requirements 
similar. 

Maximum Finding- 
To summarize the results of this section: 

All Compares Algorithm (Shared) O(1og log P) 
Tournament Algorithm (Local) O(1og P )  

Indexing Algorithm (Shared) O(1og P) 

Evidently, the memory reference time significantly af- 

EvedOdd Pair- 

Ordering Algorithm (Local) 0 (log P log log P) . 

fects the asymptotic performance of algorithms. 

v. PROGRAMMING THE PROBLEMS 
Having introduced two problems and having developed 

four optimal algorithms to solve them with different mem- 
ory models, it is now possible to consider programming 
realistic machines. We imagine a programmer, confronted 
with the task of writing programs in programming lan- 
guages differing in their memory models. 

A. Shared Memory 
Suppose the programming language provides a shared 

memory for data storage. If the details of the language 
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are best characterized by the CRCW model, a rational 
programmer should choose algorithms that are optimal 
for it. Our example is the All Compares algorithm for 
finding the maximum. Performance of O(1og log P) can be 
predicted for the resulting program based on the model. 
The Tournament algorithm, which can be compiled for this 
model by simulating the embedded tree, can be dismissed 
since its O(1og P )  predicted performance is too slow. 

Similarly, if the programming language is best charac- 
terized by an EREW shared memory model, the rational 
programmer will choose algorithms that are optimal for 
it. Our example is the Indexing algorithm for testing for 
an even/odd pair. Its O(1og P )  predicted performance is 
superior to the O(1og P log log P) predicted performance 
of the Ordering algorithm in this model. 

Thus the programmer considers the capabilities of the 
model presented by the language and selects the best 
algorithm with respect to them. The problem arises when 
these predicted times are compared with the times that can 
be realistically expected when the program is executed on 
a physical machine. To estimate what realistic performance 
to expect, we retum to our previous observation that the 
two shared memory models are not physically realizable. 

There are numerous problems with a physical imple- 
mentation of these shared memory models [15] and a 
complete treatment would be too great a diversion at this 
point. The principal problem with both is the “unit” time 
memory reference assumption. Simultaneous reference by 
P processors to P memory locations must take at least 
R(1og P) time, based simply on constant fanin/fanout 
considerations. This bound does not take into account 
delays due to collisions in the interconnection network, if 
that is how sharing is implemented; Borodin and Hopcroft 
[3] show, for oblivious routers, today’s state-of-the-art, that 
these delays can be as large as Q(N112). Also, this bound 
does not account for serialization at the memory module if 
multiple processors reference the same module (not just the 
same location, cache line or page). These can increase the 
reference time substantially. A variety of tricks have been 
proposed to neutralize the R(1og P) lower bound, but none 
has proved adequate, as will be explained. 

Even though the “unit” cost assumption is not literally 
true, the algorithms can be run on physical parallel hard- 
ware provided the requirements of the memory model are 
simulated. Being optimistic, assume that the shared memory 
references can be accomplished in O(1og P )  time. Then a 
simulation will be slowed down by a factor of O(1ogP) 
giving the following times for each of the four programs: 
All Comparessc 
Toumamentsc O((1og P ) 2 )  

O(1og P log log P )  

IndexingsE O ( ( h  PI2) 
Ordering O((l0g P)2 loglog P) .  
The realizable performance is worse than the predicted 
performance. 

B. Nonshared Memory 
Suppose now that the programming language provides 

nonshared memory for data storage. The rational program- 

484 

mer will select algorithms that perform well for that model. 
For the two problems considered above, the predicted 
performance is O(1og P) for the Tournament algorithm and 
O(1og P log log P )  for the Ordering algorithm. These must 
be compared with the shared memory algorithms which can 
be implemented in the local memory model by simulating 
shared memory at a cost of t (P )  for each step. Accepting 
the Q(1ogP) lower bound as the estimate for t (P) ,  gives 
a predicted performance of O(1og P log log P) for the All 
Compares and 0 (log P )  for the Indexing algorithms in 
the local memory model. As expected, the optimal local 
memory algorithms are predicted to be best. 

But, how do the programs perform on physical machines? 
Here the contrast between models is apparent, since unlike 
the shared memory case, the nonshared memory programs 
can be physically realized by machines such as hypercubes. 
That is, the local memory references are unit time and the 
logarithmic height tree can be directly embedded with a 
constant time traversal of each edge. Thus the realizable 
performance is: 
All ComparesL 
ToumamentL O(1og P) 

( 2, 

0 (log P log log P )  

IndexingL O((1og PI2> 
OrderingL 0 (log P log log P )  . 
The realizable performance for the programs based on the 
local memory model matches the programmer’s expecta- 
tions, unlike the case of shared memory model. 

VI. SUMMARY OF THE RESULTS 
We have compared the predicted performance of pro- 

grams written in different programming languages with 
the realizable performance for those programs on physical 
machines. In order to estimate the time t ( P )  required 
to implement the shared memory model on a physical 
machine, we chose t ( P )  = O(1ogP). The following table 
summarizes the results. 

Predicted Realizable 
Shared Memory 
Pgmming Model 

All Compares O(1og log P )  O(l0g P log log P )  
Tournament O(l0g PI O((l0g PI2)  
Indexing O(10g P )  O((10g PI2) 
Ordering O(1og p 1% 1% P )  O( (log P)* log log P )  

Local Memory e 
A1 Compares O(log P log log P )  O(1og P log log P )  
Tournament w o g  P )  O(l0g P )  
Indexing O((10g p ) 2 )  O((l0g PI2)  
Ordering O(l0g P log log P )  O(l0g P log log P) .  

The two observations, to be discussed in the next section, 
are that the local memory model has the best realizable 
performance for both problems and that the local memory 
model’s predictions match what should be realizable. 

Before interpreting the results, however, it is important 
to ask whether the comparison is meaningful. Specifically, 
the items in the northeast quadrant of the table represent 
execution of the programs on a shared memory machine 
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while the programs in the southeast quadrant of the table 
represent execution on a nonshared memory machine. It 
might be argued that since the time to make a shared 
memory reference on a shared memory machine is an order 
of magnitude faster on today’s machines than referencing 
an adjacent processor ‘on a nonshared memory machine, it 
is meaningless to compare the two quadrants. 

The comparison is justified for several reasons. First, 
the behavior of present day machines is an unreliable 
guideline since they are small, they are implemented in a 
variety of technologies, they represent early designs that 
will likely be improved, etc. Counting time in seconds 
on present machines does not produce useful information 
for this purpose. Second, the principal cost in PE-to-PE 
communication on present nonshared memory computers 
is packet formation time, which is independent of machine 
size, i.e., it is not likely to get larger as machines do. Shared 
memory reference times must increase. Third, the cost of 
implementing shared memory, O(1og P), is generous in 
that it does not include congestion-related problems; such 
features may prevent shared memory scaling as log P. 
Finally, many constants are being ignored; the fact that 
the shared memory programs make considerably more 
shared memory references than the local memory program’s 
nonlocal references might alone erase the performance 
difference between the specific reference times. 

Thus the analysis can give a coarse indication of how 
programs scale in the different models. 

VII. INTERPRETATION AND DISCUSSION 
The first conclusion from the preceding analysis is that 

the nonshared memory model is accurate in that the pre- 
dictions are realizable. An accurate cost model must be 
an essential property of a programming model or else 
programmers will be unable to make the multitude of 
decisions needed to produce efficient programs. 

Two counter arguments to the need for accuracy pre- 
vail, the it’s-a-small-cost argument and the latency-can-be- 
hidden argument. 

It is true that the difference between the realizable perfor- 
mance of the shared and local memory programs is small. 
The factor is loglogP in one case and logP/ loglogP in 
the other. Indeed, it could only be as large as t (P) .  The 
issue is not the magnitude of the difference, but that there 
is any difference at all. The difference is large enough to 
make inferior algorithms appear to be superior, causing 
the rational programmer to prefer an algorithm that is 
unrealizable. Since we do not know what the actual costs 
are of implementing this algorithm on physical hardware, 
it is not possible to assess how grievous this error is. But 
in accordance with the opening assertion of this paper, it 
must be assumed to be serious enough to be avoided. 

Of course, the shared memory models are also claimed 
to be easier to program than the local memory models and 
so part of the it’s-a-small-cost argument becomes one of 
cost benefit: perhaps the reduced programmer investment 
is worth whatever the cost is. However, this is more 
of a criticism of the sorry state of nonshared memory 

programming languages than a defense of shared memory, 
since presumably local memory languages can be made 
as convenient as shared memory languages with suitable 
development [ 161. 

The latency-can-be-hidden argument states that there are 
techniques wherein the overhead required to implement 
shared memory, the t ( P )  in our analysis, can be hidden 
and thus logically eliminated. Among the techniques that 
have been mentioned are: caching active data values at the 
processor to reduce congestion and speed communication, 
but there is the problem of keeping the memory coherent 
that probably limits how large P can realistically get [2]. 
Time multiplexing instruction interpretation [ 141 seems to 
be a scalable solution, but it relies on having R(Pt(P)) 
active instructions underway at all times, which is not a 
property of many problems, such as the All Comparisons 
algorithm. Combining can reduce serialization at a memory 
location and reduce traffic in the network [4], but hot spots 
remain and there is no benefit when the collisions are for a 
different reference in the module. In summary, no technique 
has been demonstrated on a large machine, and each has 
serious drawbacks. 

Postulate, however, that instruction multiplexing proves 
to be an effective technique for hiding latency. Then can 
we say that the shared memory model is accurate? No. 
The model’s unit time memory reference assumption is 
accurate only when there are enough instructions available 
for interpretation to hide the latency (at least R ( P  log P), 
but perhaps more). The model is still inaccurate when 
there are fewer, say only P,  instructions available to 
execute at a time. Parallel computation still involves many 
one-per-processor operations (synchronizing, aggregation, 
broadcasting, etc.) that do not produce enough threads? It is 
possible, of course, to invent new models that characterize 
the instruction multiplexing capability. They would have 
relatively expensive memory reference when there are only 
a few threads of execution and relatively cheaper memory 
reference when there are many threads. Valiant’s bulk- 
synchronous parallel model is such an alternative, where 
the concept of parallel slackness captures the notion of 
“sufficiently parallel” [B]. The essential point is that the 
new models would differ from the shared memory model at 
least by not having a universal unit cost memory reference. 

The second conclusion of the analysis is that the local 
memory programs have the best realizable performance. 
It is important that this performance be realizable on 
all machines, both shared and nonshared memory and 
also among nonshared memory machines with different 
topologies. Consider both cases. 

A preliminary set of experiments shows that executing 
local memory model programs on shared memory machines 
produces better results than shared memory model programs 
[7]. The experiments were run on the BBN Butterfly and 
Sequent Symmetry. The local memory program was able, 

3This is a parallel analogue to Amdahl’s law. He observes that multiple 
processors will not speed up the sequential components of a program; 
here latency hiding cannot reduce the proportional-to-P components of 
the program. 
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for example, to exploit the fact that the Butterfly partitions 
its memory into shared and local regions by concentrating 
the computation in the faster local memory. The exploita- 
tion of local memory was not the only advantage of the 
nonshared memory programs: They were also coarser grain, 
a property that is crucial in nonshared memory computers. 
Large grain, which is one way to encapsulate locality, 
is a generally useful feature for most parallel computers. 
This suggests that there are other characteristics of parallel 
programs besides memory usage that influence parallel 
program performance. 

The change in topology of a computer would seem to 
be a feature that shouldn’t concern the programmer, yet 
an essential feature of the Tournament and Ordering algo- 
rithm’s performance was the fact that the tree be directly 
embedded into the structure. This would seem to limit the 
portability of the program while the shared memory, having 
no connection to the implementing topology, should be 
more portable. In fact, recent advances in programming 
abstractions for nonshared memory parallel languages have 
provided a means of exploiting the topology in the algo- 
rithm and still being customizable to different machines [ 11. 
As with the difficult-to-program criticism of local memory 
languages, the portability criticism may simply represent 
our relative inexperience with such languages. 

A final point to emphasize is the distinction between 
the models presented by parallel programming languages 
and used by programmers for creating practical programs, 
and the theoretical models used by computer scientists 
to understand the fundamental limits of computation. The 
former must be accurate; the latter should have whatever 
properties are needed to expose the phenomena being 
studied. Indeed, the PRAM model, of which the CRCW 
and EREW instances were used here to justify algorithm 
optimality, have been the source of numerous fundamental 
insights [6] .  It is sensible, when seeking to understand the 
limits of concurrency, to employ a model such as the PRAM 
where communication costs are completely ignored; one 
discovers, as we did in the All Compares algorithm, that 
finding the maximum is so easy that parallel processors can 
compute the result “faster” than the time required to bring 
the values together. In practical parallel computation, where 
communication costs exist, accuracy is essential. 

VIII. CONCLUSION 
We have analyzed the shared and nonshared memory pro- 

gramming models by comparing the realizable performance 
of programs written in each. It was shown that the unit-cost 
memory reference of the shared model, though perhaps a 
simplifying assumption, nevertheless leads to algorithms 
that are “impossibly” efficient. A rational programmer, 
following the dictates of the model, should prefer such 
solutions over the less efficient, though more realistic, 
alternatives. When the programs based on the impossibly 
efficient algorithms are run, their performance is worse 
than the apparently slower but more practical competitors. 
We conclude that the unit-cost memory model is therefore 
counterproductive. 
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The nonshared memory model has been shown to be 
more realistic, but it has also been criticized as being diffi- 
cult to use. Clearly, creating abstractions to support con- 
venient nonshared memory parallel programming should 
be a research priority. The apparently simple expedient of 
adding local memory to a shared memory language should 
be avoided unless it is made plain that the shared memory 
references require t ( P )  units of time to complete. 
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