2/15/2013

Today’s Plan

Division of Labor
— RISC vs. CISC
— Exposing parallelism

CS380P Lecture 9 Parallel Architectures 1

Hidden vs. Exposed Technology: RISC vs. CISC

CISC: Complex Instruction Set Computers
— VAX, Intel x86, . . .

— Instruction density was important, so architeatsenmotivated to provide
many features, i.e., lots of instructions

What do the following VAX instructions do?

— MNEGF Move negated floating point

- FFS Find first set bit

— INSQHI Insert at head of queue, interlocked
— POLYD Polynomial evaluation

The VAX had over 300 instructions
— Variable length
— Multiple complex addressing modes
— eg. Load indirect off of an offset
CS380P Lecture 9 Parallel Architectures 2

Calvin Lin, University of Texas at Austin 1

Problems with CISC Architectures

Change in context

Fewer hand-coded assembly programs

More compiled code

Compilers unable to effectively use complex inginns
Large memories decrease the benefit of compae cod

Collapsing under its own weight
— Increasingly complex control logie> increasing use of microcode
— Microcode is flexible: essentially “interpretedntml unit”
— Easier to implement than hardwired control
— Slower than hardwired control

CS380P Lecture 9 Parallel Architectures

Rise of RISC

RISC: Reduced Instruction Set Computers
— Fixed-length instructions
— Simple addressing modes
— Load/Store architecture
— Only Loads and Stores access memory

Advantages of RISC?

CS380P Lecture 9 Parallel Architectures

Calvin Lin, University of Texas at Austin

2/15/2013

2/15/2013

Advantages of RISC Architectures

Regularity and simplicity provide implementation advantages
— Less complex control logic
— Faster clock rates
— Easier to pipeline operations
— Easier to schedule multiple concurrent operations
— Recall pipelined processors. . .

CS380P Lecture 9 Parallel Architectures 5

Scheduling to Improve Performance

Code Fragment
inc x
bz $r1, |abel /l'if $r 1==0, branch to label
add $r2,%r3,%$r4

Pipeline Picture

time ————

add

«—— suonansul

Smart scheduling can shrink the bubbles
CS380P Lecture 9 Parallel Architectures 6

Calvin Lin, University of Texas at Austin 3

2/15/2013

Advantages of RISC Architectures

Compilation advantages
— Easier to compile for
— Simpler optimization model
— No variable length instructions
— Long latency instructions (loads, stores, branchesexposed
— Can re-order code to hide the latency of loadsest and branches

Don'’t pay for what you don’t need

CS380P Lecture 9 Parallel Architectures 7

Lessons from RISC vs. CISC

If you want parallelism
— Design it into the language, in this case, the ISA

If you want effective use of your system
— Expose costs
— Load/Store architecture exposes costs

— Complex instructions hide costs

These lessons apply to languages and programming dels as well

CS380P Lecture 9 Parallel Architectures 8

Calvin Lin, University of Texas at Austin 4

2/15/2013

Today’s Plan

Division of Labor
— RISC vs. CISC
— Exposing parallelism

CS380P Lecture 9 Parallel Architectures

Parallelism and the System Stack

Superscalar view of the world

— The ISA is implicitly sequential
— The hardware then dynamically figures out whateeacute in parallel

The problem
— Each level of the system reduces the amount dlade parallelism

Moore’s Funnel*

Problem
Algorithm
Language
Compiler
Architecture
Hardware

* [Chuck Moore, ¢ 2003]
10

CS380P Lecture 9 Parallel Architectures

Calvin Lin, University of Texas at Austin

2/15/2013

Implicitly Sequential Instruction Stream

source code compiler machine code hardware

FPU’s

Problems
— Compilers can expose parallelism
— Compilers must eventually emit linear code
— Hardware must then re-analyze code to perform O@Owgion
— Hardware loses information available to the coerpil

— Compiler and hardware can only communicate thrahglsequential
stream of instructions, so hardware does redunsark

How can we solve this problem?

CS380P Lecture 9 Parallel Architectures 11

Explicitly Parallel Instruction Stream

source code compiler parallel machine code hardware

FPU’s

A solution

— Hardware does not need to re-analyze code totdi#pendences
— Hardware does not perform OoO execution

VLIW: Very Long Instruction Word
— Each instruction controls multiple functional @nit
— Each instruction is explicitly parallel

CS380P Lecture 9 Parallel Architectures 12

Calvin Lin, University of Texas at Austin 6

2/15/2013

VLIW

Basic idea
— Each instruction controls multiple functional @nit
— Rely on compilers to perform scheduling and taidyg parallelism
— Simplified hardware implementations

Benefits
— Compiler can look at a larger window of instrungdhan hardware
— Can improve the scheduler even after a chip has fabricated

Problems
— Slow compilation times
— No binary compatibility
— Code is implementation-specific
— Difficult for compilers to deal with aliasing ahahg latencies

CS380P Lecture 9 Parallel Architectures 13

VLIW and IA-64

VLIW
— Big in the embedded market
— Binary compatibility is less of an issue
— An old idea
— Horizontal microcode
— Multiflow (1980’s)
— Intel i860 (early 1990's)

Terminology
— EPIC: Explicitly Parallel Instruction Computer
— New twist on VLIW
— Don’'t make code implementation-specific
— 1A-64 is Intel's EPIC instruction set
— Itanium was the “first” 1A64 implementation

CS380P Lecture 9 Parallel Architectures 14

Calvin Lin, University of Texas at Austin 7

Explicitly Parallel Instruction Sets: IA-64

IA-64 Design Philosophy
— Break the model of implicitly sequential execution
— Usetemplatebits to specify instructions that can execute irafel
— Issue these independent instructions to the FRiLAsy order
— (Templates will cause some increase in code size)

— The hardware can then grab large chunks of instngand simply feed
them to the functional units

— Hardware does not spend a lot of time figuringarder of
execution; hence, simplified hardware control

— Statically scheduled code
— Hardware can then provide a larger number of tegis
— 128 (about 4 times more than current microproae$so

— Number of registers fixed by the architecture,thahumber of
functional units is not

CS380P Lecture 9 Parallel Architectures 15

|IA-64

A return to hardware “simplicity”
— Reuvisit the ideas of VLIW
— Simplify the hardware to make it faster
— Spend larger percentage of cycles doing actuak wor
— Spend larger percentage of hardware on registecbes, and FPU's
— Use larger number of registers to support morellgdism

Engineering goal parallel machine code hardware
— Produce an “inherently scalable |= — ~
architecture” =——_ —_ = program
— —>
— Design an architecturean —_— L] []
ISA—for which there can be B
many implementations (IBM/360) \ program
— This flexibility allows the implementation (0[]
to change for “years to come”
CS380P Lecture 9 Parallel Architectures 16

Calvin Lin, University of Texas at Austin

2/15/2013

2/15/2013

Two Key Performance Bottlenecks

Branches
— Modern microprocessors perform good branch priedict
— But when they mispredict, the penalty is high gatting higher
— Penalties increase as we increase pipeline depths
— Estimates: 20-30% of performance goes to branspnedlictiongintelos]

— Branches also lead to small basic blocks, whistriot latency hiding
opportunities

Memory latency
— CPU speed doubles every 18 months (60% annuaadse)y
— Memory speed increase about 5% per year

CS380P Lecture 9 Parallel Architectures 17

Branches Limit Performance
instrl
instr2

if S —Control dependences inhibit parallelism
P1, P2 « cnp(r2,0) —-Don't know whether to execute

(P2)junp el se instr3 or instr5 until thempis
completed

instr3

then instr4

| instrb5

else instr6
instr7

CS380P Lecture 9 Parallel Architectures 18

Calvin Lin, University of Texas at Austin 9

2/15/2013

Predicated Execution

instri Idea
instr2 —Add a predicate flag to each instruction
if L. —If predicate is true, the instruction is
P1,P2 « cnp(r2,0) executed
—If predicate is false, the instruction is
: not executed
(Pl)instr3

—Predicates are simply bits in a register
—Converts control flow into data flow
—Exposes parallelism

then|(P1l)instr4

else (P2) ' nstrsS —With predicate flagsinstr3 — instr7 can
(P2)instré all be fetched in parallel
Benefits?
instr7 —Fewer branches (fewer mispredictions)
—Larger basic blocks
This is calledif-conversion —More parallelism
CS380P Lecture 9 Parallel Architectures 19

The Memory Latency Problem

Memory Latency
— Writes can be done out of order and can be buffere

— Loads are the problerprocessor must wait for loads to complete before
using the loaded value

— Standard latency-hiding tricissue non-blocking load as early as possible
to hide latency

The Problem
— Loads typically issued at beginning instril
of basic block instr2
— Can'’t move thé.oadoutside the S
basic block -
— If the Load were to cause an (P2)] unp el se »
exception when the basic block Load
is not executed, then therly instr3
Load causes an erroneous junp Exit
exception
CS380P Lecture 9 Parallel Architectures 20

Calvin Lin, University of Texas at Austin 10

(Control) Speculative Loads

Split-phase operation
— Issue the loaddad.9 as early as you
wish
— Detect any exception and record it

| oad. s ri3
instrl
instr2
jump P2

somewhere with the target of the load

— Can later check to see whether the loa
completed successfullychk.s

Benefits?

d

instr3
chk.s ri3

load.®

move theoad.s

CS380P Lecture 9 Parallel Architectures

—More freedom to move code— can now move Loads abmmches as
long as the check is in the original basic block

—Complication: What happensdhk.sis issued without a corresponding

—This is clearly an error, so we need to be carmfolut where we

Calvin Lin, University of Texas at Austin

2/15/2013

11

