
2/19/2013

Calvin Lin, University of Texas at Austin 1

CS380P Lecture 10 Speculation and Predication 1

Today’s Plan

 Division of Labor

– RISC vs. CISC

– Exposing parallelism

 38

CS380P Lecture 10 Speculation and Predication 2

Two Key Performance Bottlenecks

 Branches

– Modern microprocessors perform good branch prediction

– But when they mispredict, the penalty is high and getting higher

– Penalties increase as we increase pipeline depths

– Estimates: 20-30% of performance goes to branch mispredictions[Intel98]

– Branches also lead to small basic blocks, which restrict latency hiding
opportunities

 Memory latency
– CPU speed doubles every 18 months (60% annual increase)

– Memory speed increase about 5% per year

2/19/2013

Calvin Lin, University of Texas at Austin 2

CS380P Lecture 10 Speculation and Predication 3

 Idea

−Add a predicate flag to each instruction

− If predicate is true, the instruction is
executed

− If predicate is false, the instruction is
not executed

− Predicates are simply bits in a register

−Converts control flow into data flow

− Exposes parallelism

− With predicate flags, instr3 – instr7 can
all be fetched in parallel

instr1

instr2

. . .

P1,P2 ←←←← cmp(r2,0)

(P2)jump else

(P1)instr3

(P1)instr4

jump Exit

(P2)instr5

(P2)instr6

. . .

instr7

Predicated Execution

if

then

else

This is calledif-conversion

 Benefits?

−Fewer branches (fewer mispredictions)

−Larger basic blocks

−More parallelism

CS380P Lecture 10 Speculation and Predication 4

The Memory Latency Problem

 Memory Latency
– Writes can be done out of order and can be buffered
– Loads are the problem:processor must wait for loads to complete before

using the loaded value
– Standard latency-hiding trick:issue non-blocking load as early as possible

to hide latency

 The Problem
– Loads typically issued at beginning

of basic block
– Can’t move the Loadoutside the

basic block
– If the Loadwere to cause an

exception when the basic block
is not executed, then the early
Loadcauses an erroneous
exception

instr1

instr2

. . .

(P2)jump else

Load

instr3

jump Exit

2/19/2013

Calvin Lin, University of Texas at Austin 3

CS380P Lecture 10 Speculation and Predication 5

 Benefits?

−More freedom to move code– can now move Loads above branches as
long as the check is in the original basic block

−Complication: What happens if chk.sis issued without a corresponding
load.s?

− This is clearly an error, so we need to be careful about where we
move the load.s

(Control) Speculative Loads

 Split-phase operation

– Issue the load (load.s) as early as you
wish

– Detect any exception and record it
somewhere with the target of the load

– Can later check to see whether the load
completed successfully: chk.s

load.s r13

instr1

instr2

jump P2

load

instr3

chk.s r13

. . .

CS380P Lecture 10 Speculation and Predication 6

 The Problem

– Place N Queens on a chessboard so they don’t attack each other

 The Solution

– March through columns with a recursive procedure

– B array: check the row

– A and C arrays: check the two diagonals

– Code to test if the (i,j)th square is legal:

if ((b[i]==0) && (a[i+j-1]==0) && c[i+j+N]==0)

N-Queens Example

2/19/2013

Calvin Lin, University of Texas at Austin 4

CS380P Lecture 10 Speculation and Predication 7

N-Queens Solution

Load the addresses into registers
(Assume we can issue 3 instructions per cycle)

De-reference the arrays
Test for legality

Summary
3 basic blocks

12 instructions

13 cycles (assuming 1 cycle per instruction

except 2 cycles per load)

3 conditional branches

Almost no parallelism!

Parallelism boundary
Basic block boundary

1

2
4
5

6
8
9

10
12
13

r1 = &b[i]

r3 = &a[i+j-1]

r5 = &c[i+j+N]

load r2 = [r1]

P1,P2 ← cmp(r2,0)

<P2> jump Else

load r4 = [r3]

P3,P4 ← cmp(r4,0)

<P4> jump Else

load r6 = [r5]

P5,P6 ← cmp(r6,0)

<P5> jump Then

Else . . .

if ((b[i]==0) && (a[i+j-1]==0) && c[i+j+N]==0)

CS380P Lecture 10 Speculation and Predication 8

r1 = &b[i]

r3 = &a[i+j-1]

r5 = &c[i+j+N]

load r2 = [r1]

load.s r4 = [r3]

load.s r6 = [r5]

P1,P2 ← cmp(r2,0)

<P2> jump Else

check.s r4

P3,P4 ← cmp(r4,0)

<P4> jump Else

check.s r6

P5,P6 ← cmp(r6,0)

<P5> jump Then

N-Queens Solution: Adding Speculation

9 cycles, 3 branches

1

2

4
5

With Speculation

6

7

8

9

r1 = &b[i]

r3 = &a[i+j-1]

r5 = &c[i+j+N]

load r2 = [r1]

P1,P2 ← cmp(r2,0)

<P2> jump Else

load r4 = [r3]

P3,P4 ← cmp(r4,0)

<P4> jump Else

load r6 = [r5]

P5,P6 ← cmp(r6,0)

<P5> jump Then

13 cycles, 3 branches

1

2
4
5

6
8
9

10
12
13

Original Code

2/19/2013

Calvin Lin, University of Texas at Austin 5

CS380P Lecture 10 Speculation and Predication 9

r1 = &b[i]

r3 = &a[i+j-1]

r5 = &c[i+j+N]

load r2 = [r1]

load.s r4 = [r3]

load.s r6 = [r5]

P1,P2 ← cmp(r2,0)

<P2> jump Else

<P1> check.s r4

<P1> P3,P4 ← cmp(r4,0)

<P4> jump Else

<P3> check.s r6

<P3> P5,P6 ← cmp(r6,0)

<P5> jump Then

N-Queens Solution: Adding Predication

r1 = &b[i]

r3 = &a[i+j-1]

r5 = &c[i+j+N]

load r2 = [r1]

load.s r4 = [r3]

load.s r6 = [r5]

P1,P2 ← cmp(r2,0)

<P2> jump Else

check.s r4

P3,P4 ← cmp(r4,0)

<P4> jump Else

check.s r6

P5,P6 ← cmp(r6,0)

<P5> jump Then

9 cycles, 3 branches

1

2

4
5

With Speculation

6

7

8

9

1

2

4

With Predication

5

6

7

CS380P Lecture 10 Speculation and Predication 10

N-Queens Solution: Summary

1

2

4

Predication

5

6

7
7 cycles, 1 branch

r1 = &b[i]

r3 = &a[i+j-1]

r5 = &c[i+j+N]

load r2 = [r1]

P1,P2 ← cmp(r2,0)

<P2> jump Else

load r4 = [r3]

P3,P4 ← cmp(r4,0)

<P4> jump Else

load r6 = [r5]

P5,P6 ← cmp(r6,0)

<P5> jump Then

13 cycles, 3 branches

1

2
4
5

6
8
9

10
12
13

Original Code
r1 = &b[i]

r3 = &a[i+j-1]

r5 = &c[i+j+N]

load r2 = [r1]

load.s r4 = [r3]

load.s r6 = [r5]

P1,P2 ← cmp(r2,0)

<P1> check.s r4

<P1> P3,P4 ← cmp(r4,0)

<P3> check.s r6

<P3> P5,P6 ← cmp(r6,0)

<P5> jump Then

2/19/2013

Calvin Lin, University of Texas at Austin 6

CS380P Lecture 10 Speculation and Predication 11

Predication is an Old Idea

 High performance computing

– SIMD machines (Single Instruction Multiple Data)

– All processors operate in lock-step but operate on different data

– What do you do with control flow?

if (A[i][j] < 0)

A[i][j] = -A[i][j]

– Compute a mask of 0’s and 1’s

– Execute both halves of the control flow using the appropriate mask

– Can do this in either hardware or software

Mask[i][j] = (A[i][j] < 0)

A[i][j] -= Mask[i][j] * 2 * A[i][j]

CS380P Lecture 10 Speculation and Predication 12

Is Predication a Good Idea?

Where should we perform predication?

 Runtime information helps

−Branch behavior

−Load latencies

 Degree of predication depends on issue width

−The ISA can be implementation-independent

−But the compilers that emit code cannot be implementation-independent

Opportunities for profiling

2/19/2013

Calvin Lin, University of Texas at Austin 7

CS380P Lecture 10 Speculation and Predication 13

Is Speculation a Good Idea?

 What are the disadvantages of speculation?

– Wasted work

 The real question: Who should perform speculation?

– The hardware can exploit runtime information

– The compiler can exploit a much larger scope

 Speculation
– Another example of a split-phase operation

CS380P Lecture 10 Speculation and Predication 14

Implications

 IA64

– The ideas are not new

– The willingness to change the ISA is new and significant

 Implications for compilers

– Increased role of the compiler

– More control over sequencing, prefetching, stores, branch prediction

– Hardware doesn’t “undo” the compiler’s work

 Future systems

– What is the right division of labor between the compiler and the hardware?

– How else can compilers be used to simplify the hardware and make the
hardware more effective?

– Can we improve the communication between the compiler and hardware?

2/19/2013

Calvin Lin, University of Texas at Austin 8

CS380P Lecture 10 Speculation and Predication 15

Epilogue

 Intel announces 64-bit IA-32

– The end of IA-64

 What went wrong with IA-64?

 What does the future hold for Dynamic Superscalar? VLIW?

