Memory Management
for High-Performance Applications

Emery Berger
Univ. of Massachusetts, Amherst

November, 2000

Note: Some material has been added for
the classroom setting

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

High-Performance Applications

m Web servers,
search engines,
scientific codes

m CorC++

m Run on one or a
cluster of server
bOXCS software

® Needs support at every level

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

New Applications,
Old Memory Managers

» Applications and hardware have changed
= Multiprocessors now commonplace
= Object-oriented, multithreaded

= Increased pressure on memory manager
(mal I oc, free)

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Memory Management 101

= Memory allocators:

= Accept requests for memory and return virtual
address to a block of memory of the requested
size

= Accept requests to free memory, which allows
virtual memory to be reused

= The Heap:

= The pool of unused memory

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

New Applications,
Old Memory Managers (cont)

» Applications and hardware have changed
= Multiprocessors now commonplace
= Object-oriented, multithreaded

= Increased pressure on memory manager
(mal I oc, free)

= But memory managers have 7ot kept up

= Inadequate support for modern applications

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Memory Allocators

= Input:

= Size of requested chunk of virtual memory
= Output:

= Memory address of allocated virtual memory
» The Heap: (today’s definition)

= Structure for managing allocated and
unallocated memory

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Current Memory Managers
Limit Scalability

= As weadd Runtime Performance
1 14
p OCESSOfS, "
program slows 2 el
dOWl’l 13 '] — Actual
S 8
B 7
m Caused by heap g .
. 5
contention 4
3
2
1
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of Processors

Larson server benchmark on 14-processor Sun

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

The Problem

m Current memory managers
inadequate for high-performance
applications on modern architectures

= Limit scalability & application
performance

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Implementing Memory Managers

= Memory managers must be
= Space efficient
= Very fast

» Heavily-optimized C code
= Hand-unrolled loops
s Macros

s Monolithic functions

- Hard to write, reuse, or extend

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Real Code: DLmalloc 2.7.2

#define next_chunk(p) ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))
#define prev_chunk(p) ((mchunkptr)(((char*)(p)) - ((p)->prev_size)))

#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))

#define inuse(p)\

((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
#define set_inuse(p)\

((mchunkptr)(((char®)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
#define clear_inuse(p)\

((mchunkptr)(((char®)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
#define inuse_bit_at_offset(p, s)\

(((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)

#define set_inuse_bit_at_offset(p, s)\

(((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)

#define MALLOC_ZERO(charp, nbytes) \
do{ \
INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
CHUNK_SIZE_T mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
long men; \
if (mctmp < 8) men = 0; else { men = (mctmp-1)/8; mctmp %= 8; } \
switch (mctmp) { \
case 0: for(;;) { *mzp++=0; \
case 7: *mzp++=0; \
case 6: *mzp++ \
case 5: *mzp++ \
case 4: *mzp++ \
case 3: *mzp++ \
case 2: *mzp++=0; \
case 1: *mzp++ = 0; if(men <= 0) break; men--; } \

}
} while(0)

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

This Talk

m Building memory managers
» Heap I ayers framework

= Problems with current memory managers
= Contention, false sharing, space

= Solution: provably scalable memory
manager

n Hoard

m Extended memory manager for servers
] Rfﬁlp

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Problems with General-Purpose
Memory Managers

= Previous work for multiprocessors

s Concurrent single hea igler e al. 85, Johnson 91, Iyengar 92
g g yeng

= Impractical

] Multlple heaps [Larson 98, Gloger 99]

= Reduce contention but cause other problems:
» P-fold or even unbounded increase in space

» Allocator-induced false sharing

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Multiple Heap Allocator:
Pure Private Heaps

Key: _.
= One heap per processor: [0] = nuse processoro

. = free, on heap 1
= nal | oc gets memory

trom its local heap
_processor0___processor 1
= free puts memory x1= mal | oc(1)

J 2= Il 1
on its local heap fxree?:n oo

x3= mal | oc(1)

n STL’ Cllk’ dd /?0€ free(x3)

LI

UNIVERSITY OF MASSACHUSETTS, AMHERST + Department of Computer Science

Problem:
Unbounded Memory Consumption

rocessor 1

» Producer-consumer: — processor0___

x1= mal | oc(1)

m Processor 0 allocates

x2= mal | oc(1)

s Processor 1 frees

x3= mal | oc(1)

= Unbounded memory
u[mm

consumption
= Crash!

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Multiple Heap Allocator:
Private Heaps with Ownership

rocessor 1

m free returns memory processor 0
107 x1= mal | oc(1)
to original heap

x2= mal | oc(1)

= Bounded memory

consumption
= No crash! IE

» “Ptmalloc” (Linux),
LKmalloc

UNIVERSITY OF MASSACHUSETTS, AMHERST + Department of Computer Science

Problem:
P-fold Memory Blowup

= Occurs in practice

processor0 __ processor 1 processor 2
= Round-robin producet- X1z mltoc(1)
consumer
. free(x2)
= processor 7 z20d P allocates x3=nal | oc(1)
= processor (7+7) mod P frees | cexa)
u Footprint =1 (ZGB), E
but space = 3 (6GB)

= Exceeds 32-bit address
space: Crash!

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Problem:
Allocator-Induced False Sharing

n False sharing

= Non-shared objects
on same cache line

= Bane of parallel applications

= Extensively studied

processer O

m All these allocators
cause false sharing] thrash...

x1= mal | oc(1)

UNIVERSITY OF MASSACHUSETTS, AMHERST + Department of Computer Science

So What Do We Do Now?

= Where do we put free memory?

= on central heap: = Heap contention

= on our own heap: = Unbounded memory
(pure private heaps) consumption

= on the original heap: = P-fold blowup

(private heaps with ownership)

= How do we avoid false sharing?

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Overview

Building memory managers

» Heap I ayers framework

Problems with memory managers

= Contention, space, false sharing

Solution: provably scalable allocator
» Hoard [ASPLOS 2000]

Extended memory manager for servers
" Rmp

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Hoard: Key Insights

= Bound local memory consumption
= Explicitly track utilization
= Move free memory to a global heap

= Provably bounds memory consumption

= Manage memory in large chunks
= Avoids false sharing

= Reduces heap contention

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

10

Overview of Hoard

global heap

» Manage memory in heap blocks

= Page-sized

= Avoids false sharing
= Allocate from local heap block

= Avoids heap contention

processor 0 processor P-1
m [ow utilization
2

w<sd

Move he lock to global he [T mEm]
* Move hsp Hock 0 bl by

= Avoids space blowup

UNIVERSITY OF MASSACHUSETTS, AMHERST + Department of Computer Science

Summary of Analytical Results

m Space consumption: near optimal worst-case

s Optimal: O(nlog M/m) {P«n} [Robson 77]
= Hoard: O(nlog M/m + P)

n = memory required
M = biggest object size
= Private heaps with ownership: m = smallest object size

O(P n log M/m) P = processors

» Provably low synchronization

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Empirical Results

= Measure runtime on 14-processor Sun

= Allocators

= Solaris (system allocator)

= Ptmalloc (GNU libc)

= mitmalloc (Sun’s “MT-hot” allocator)
= Micro-benchmarks

w Threadtest: no sharing

s Larson: sharing (server-style)

» Cache-seratch: mostly reads & writes
(tests for false sharing)

m Real application experience similar

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Runtime Performance:
threadtest

threadtest - Speedup

14 — : : : :
12 | Hoard 4 = Many

' threads,
e 10 |] no sharing
i _’/I— 1 = Hoard
B . 1 achieves
linear

- i speedup

2 | [8 10 12 14
Humber of processors

Speedu
=Nt - - -]

speedup(x,P) = runtime(Solatis allocator, one processor)
/ runtime(x on P processors)

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Runtime Performance:

Larson
Larson - Speedup

el Hoard — Ix#’f
12 7
5_1'] ‘__,-”'/Mf i
D i ,_,.v-""‘f]
g b]
(| .
£ d__d_rf/f)]
'] p— 1

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

2 | [8 10 12 14
Humber of processors

Many
threads,
sharing
(server-style)
Hoard
achieves
linear

speedup

Runtime Performance:
false sharing

B

Speedu

14

10

=R - - -]

cache-scraktch = Speedup

Hoard

2 | [8 10 12 14
Humber of processors

Many
threads,
mostly reads
& writes of
heap data
Hoard
achieves
linear

speedup

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

13

Hoard in the “Real World”

= Open source code
= www.hoard.org
= 13,000 downloads
» Solatis, Linux, Windows, IRTX, ...
» Widely used in industry
= AOL, British Telecom, Novell, Philips
= Reports: 2x-10x, “impressive” improvement in performance

= Search server, telecom billing systems, scene rendering,
real-time messaging middleware, text-to-speech engine,

telephony, JVM

= Scalable general-purpose memory manager

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Summary

Building memory managers

= Heap 1 _ayers framework [PLDI 2001]

Problems with current memory managers

= Contention, false sharing, space

Solution: provably scalable memory manager

s Hoard |7sr1.os1x]

Extended memory manager for servers

= Reap (00PSLA 2002]

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

14

Lessons

m Hoard is really just a work queue

= Instead of handing out work, it hands out
virtual memory

m Performance considerations
= Locality = Use private heaps

s Reduces interaction
among processors

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Lessons (cont)

m Performance considerations
= Load balance = Use a global heap
= Monitor utilization
= Don’t let any heap hoard
all of the free memory
= Granularity m Use page-sized blocks
= Avoids false sharing

= Reduces global heap

interactions

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

15

Next Class

= No reading
= Work on Assignment 4

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

16

