
1

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Memory Management
for High-Performance Applications

Emery Berger
Univ. of Massachusetts, Amherst

November, 2000

Note: Some material has been added for
the classroom setting

2UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

High-Performance Applications

� Web servers,
search engines,
scientific codes

� C or C++

� Run on one or a
cluster of server
boxes software

compiler

runtime system

operating system

hardware

� Needs support at every level runtime system

2

3UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

New Applications,
Old Memory Managers

� Applications and hardware have changed

� Multiprocessors now commonplace

� Object-oriented, multithreaded

� Increased pressure on memory manager

(malloc, free)

4UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Memory Management 101

� Memory allocators:

� Accept requests for memory and return virtual

address to a block of memory of the requested

size

� Accept requests to free memory, which allows

virtual memory to be reused

� The Heap:

� The pool of unused memory

3

5UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

New Applications,
Old Memory Managers (cont)

� Applications and hardware have changed

� Multiprocessors now commonplace

� Object-oriented, multithreaded

� Increased pressure on memory manager

(malloc, free)

� But memory managers have not kept up

� Inadequate support for modern applications

6UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Memory Allocators

� Input:

� Size of requested chunk of virtual memory

� Output:

� Memory address of allocated virtual memory

� The Heap: (today’s definition)

� Structure for managing allocated and

unallocated memory

4

7UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Current Memory Managers
Limit Scalability

Runtime Performance

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Processors

S
pe

ed
up

Ideal

Actual

� As we add

processors,

program slows

down

� Caused by heap

contention

Larson server benchmark on 14-processor Sun

8UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

The Problem

� Current memory managers
inadequate for high-performance

applications on modern architectures

� Limit scalability & application

performance

5

9UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Implementing Memory Managers

� Memory managers must be
� Space efficient

� Very fast

� Heavily-optimized C code

� Hand-unrolled loops

� Macros

� Monolithic functions

⇒Hard to write, reuse, or extend

10UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Real Code: DLmalloc 2.7.2
#define chunksize(p) ((p)->size & ~(SIZE_BITS))
#define next_chunk(p) ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))
#define prev_chunk(p) ((mchunkptr)(((char*)(p)) - ((p)->prev_size)))
#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
#define inuse(p)\
((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
#define set_inuse(p)\
((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
#define clear_inuse(p)\
((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
#define inuse_bit_at_offset(p, s)\
(((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)

#define set_inuse_bit_at_offset(p, s)\
(((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)

#define MALLOC_ZERO(charp, nbytes) \
do { \
INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
CHUNK_SIZE_T mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
long mcn; \
if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
switch (mctmp) { \
case 0: for(;;) { *mzp++ = 0; \
case 7: *mzp++ = 0; \
case 6: *mzp++ = 0; \
case 5: *mzp++ = 0; \
case 4: *mzp++ = 0; \
case 3: *mzp++ = 0; \
case 2: *mzp++ = 0; \
case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \

} \
} while(0)

6

11UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

This Talk

� Building memory managers

� Heap Layers framework

� Problems with current memory managers

� Contention, false sharing, space

� Solution: provably scalable memory
manager

� Hoard

� Extended memory manager for servers

� Reap

12UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Problems with General-Purpose
Memory Managers

� Previous work for multiprocessors

� Concurrent single heap [Bigler et al. 85, Johnson 91, Iyengar 92]

� Impractical

� Multiple heaps [Larson 98, Gloger 99]

� Reduce contention but cause other problems:

� P-fold or even unbounded increase in space

� Allocator-induced false sharing

7

13UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Multiple Heap Allocator:
Pure Private Heaps

� One heap per processor:

� malloc gets memory

from its local heap

� free puts memory

on its local heap

� STL, Cilk, ad hoc

x1= malloc(1)

free(x1) free(x2)

x3= malloc(1)

x2= malloc(1)

x4= malloc(1)

processor 0 processor 1

= in use, processor 0

= free, on heap 1

free(x3) free(x4)

Key:

14UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Problem:
Unbounded Memory Consumption

� Producer-consumer:

� Processor 0 allocates

� Processor 1 frees

� Unbounded memory
consumption
� Crash!

free(x1)

x2= malloc(1)

free(x2)

x1= malloc(1)

processor 0 processor 1

x3= malloc(1)

free(x3)

8

15UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Multiple Heap Allocator:
Private Heaps with Ownership

� free returns memory
to original heap

� Bounded memory
consumption

� No crash!

� “Ptmalloc” (Linux),
LKmalloc

x1= malloc(1)

free(x1)

free(x2)

x2= malloc(1)

processor 0 processor 1

16UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Problem:
P-fold Memory Blowup

� Occurs in practice

� Round-robin producer-

consumer

� processor i mod P allocates

� processor (i+1) mod P frees

� Footprint = 1 (2GB),

but space = 3 (6GB)

� Exceeds 32-bit address
space: Crash!

free(x2)

free(x1)

free(x3)

x1= malloc(1)

x2= malloc(1)

x3=malloc(1)

processor 0 processor 1 processor 2

9

17UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Problem:
Allocator-Induced False Sharing

� False sharing

� Non-shared objects

on same cache line

� Bane of parallel applications

� Extensively studied

� All these allocators
cause false sharing!

CPU 0 CPU 1

cache cache

bus

processor 0 processor 1

x2= malloc(1)x1= malloc(1)

cache line

thrash… thrash…

18UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

So What Do We Do Now?

� Where do we put free memory?

� on central heap:

� on our own heap:

(pure private heaps)

� on the original heap:

(private heaps with ownership)

� How do we avoid false sharing?

� Heap contention

� Unbounded memory

consumption

� P-fold blowup

10

19UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Overview

� Building memory managers

� Heap Layers framework

� Problems with memory managers

� Contention, space, false sharing

� Solution: provably scalable allocator

� Hoard [ASPLOS 2000]

� Extended memory manager for servers

� Reap

20UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Hoard: Key Insights

� Bound local memory consumption

� Explicitly track utilization

� Move free memory to a global heap

� Provably bounds memory consumption

� Manage memory in large chunks

� Avoids false sharing

� Reduces heap contention

11

21UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Overview of Hoard

� Manage memory in heap blocks
� Page-sized
� Avoids false sharing

� Allocate from local heap block
� Avoids heap contention

� Low utilization

� Move heap block to global heap
� Avoids space blowup

global heap

…

processor 0 processor P-1

22UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

� Space consumption: near optimal worst-case

� Optimal: O(n log M/m) {P « n} [Robson 77]

� Hoard: O(n log M/m + P)

� Private heaps with ownership:

O(P n log M/m)

� Provably low synchronization

Summary of Analytical Results

n = memory required

M = biggest object size

m = smallest object size

P = processors

12

23UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Empirical Results

� Measure runtime on 14-processor Sun

� Allocators

� Solaris (system allocator)

� Ptmalloc (GNU libc)

� mtmalloc (Sun’s “MT-hot” allocator)

� Micro-benchmarks

� Threadtest: no sharing

� Larson: sharing (server-style)

� Cache-scratch: mostly reads & writes
(tests for false sharing)

� Real application experience similar

24UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Runtime Performance:
threadtest

speedup(x,P) = runtime(Solaris allocator, one processor)
/ runtime(x on P processors)

� Many
threads,
no sharing

� Hoard
achieves
linear
speedup

13

25UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Runtime Performance:
Larson

� Many
threads,
sharing
(server-style)

� Hoard
achieves
linear
speedup

26UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Runtime Performance:
false sharing

� Many
threads,
mostly reads
& writes of
heap data

� Hoard
achieves
linear
speedup

14

27UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Hoard in the “Real World”

� Open source code
� www.hoard.org

� 13,000 downloads

� Solaris, Linux, Windows, IRIX, …

� Widely used in industry
� AOL, British Telecom, Novell, Philips

� Reports: 2x-10x, “impressive” improvement in performance

� Search server, telecom billing systems, scene rendering,
real-time messaging middleware, text-to-speech engine,
telephony, JVM

� Scalable general-purpose memory manager

28UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Summary

� Building memory managers

� Heap Layers framework [PLDI 2001]

� Problems with current memory managers

� Contention, false sharing, space

� Solution: provably scalable memory manager

� Hoard [ASPLOS-IX]

� Extended memory manager for servers

� Reap [OOPSLA 2002]

15

29UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

� Hoard is really just a work queue

� Instead of handing out work, it hands out

virtual memory

� Performance considerations

� Locality

Lessons

� Use private heaps

� Reduces interaction

among processors

30UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

� Performance considerations

� Load balance

� Granularity

� Use a global heap

� Monitor utilization

� Don’t let any heap hoard

all of the free memory

Lessons (cont)

� Use page-sized blocks

� Avoids false sharing

� Reduces global heap

interactions

16

31UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS , A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Next Class

� No reading

� Work on Assignment 4

