
March 23, 2011

Calvin Lin, The University of Texas at Austin 1

CS380P Lecture 14 HPF 1

Today’s Plan

 Higher level languages

– Raising the level of abstraction with HPF

“I don’t know what the technical characteristics of the standard
language for scientific and engineering computation in the year 2000
will be . . . but I know it will be called Fortran.”

– John Backus, c 1980

CS380P Lecture 14 HPF 2

HPF: High Performance Fortran

 Philosophy

– Automatic parallelization won’t work

– For data parallelism, what’s important are data placementand data motion

– Give the compiler help:

– Extends Fortran with directives that guide data distribution

– Allow slow migration from legacy codes

– The directives are only hints

 Basic idea

– Each processor operates on part of the overall data

– Directives indicate which processor operates on which data

– Much higher level than message passing

March 23, 2011

Calvin Lin, The University of Texas at Austin 2

CS380P Lecture 14 HPF 3

HPF History

The beginning

– Designed by large consortium in the early 90’s

– Participation by academia, industry, and national labs

– All major vendors represented

– Convex, Cray, DEC, Fujitsu, HP, IBM, Intel, Meiko, Sun,
Thinking Machines

– Heavily influenced by Fortran-D from Rice

– D stands for “Data” or “Distributed”

– HPF 2.0 specified in 1996

CS380P Lecture 14 HPF 4

 Context

– Part of early 90’s trend towards consolidating supercomputing research

– To reduce risk, fund a few large projects rather than a lot of small risky
projects

– Buoyed by the success of MPI

– Aware of the lessons of vectorizing compilers

– Compilers can train programmers by providing feedback

Strategic Decisions

March 23, 2011

Calvin Lin, The University of Texas at Austin 3

CS380P Lecture 14 HPF 5

Vectorizing Compilers

 Basic idea

– Instead of looping over elements of a vector, perform a single vector
instruction

– Example
for (i=0; i<100; i++)

A[i] = B[i] + C[i];

 Scalar code

– Execute 4 instructions 100 times

– 2 Loads

– 1 Add

– 1 Store

 Advantages?

 Vector code

– Execute 4 instructions once

– 2 vector Loads

– 1 vector Add

– 1 vector Store

CS380P Lecture 14 HPF 6

Guidelines for Writing Vectorizable Code

 1. Avoid conditionals in loops

for (i=0; i<100; i++)

if (A[i] > MaxFloat)

A[i] = MaxFloat;

 2. Promote scalar functions
for (i=0; i<100; i++)

foo (A[i], B[i]);

– Lots of function calls inside a
tight loop

– Function call boundaries inhibit
vectorization

 for (i=0; i<100; i++)

A[i] = min(A[i],MaxFloat)

 Foo(A, B);

– One function call

– Body of this function call can be easily
vectorized

March 23, 2011

Calvin Lin, The University of Texas at Austin 4

CS380P Lecture 14 HPF 7

Guidelines for Writing Vectorizable Code (cont)

 3. Avoid recursion

 4. Choose appropriate memory layout
– Depending on the compiler and the hardware, some strides are

vectorizable while others are not

 Other guidelines?

 The point
– These are simple guidelines that programmers can learn

– The concept of a vector operation is simple

CS380P Lecture 14 HPF 8

 HPF: A community project

– Compiler directives don’t change the program’s semantics

– They only affect performance

– Allows different groups to conduct research on different aspects of the
problem

– Even the “little guy” can contribute

Strategic Decisions (cont)

Both

 Based on Fortran

– Why Fortran?

– Fortran77 or Fortran90?

 Huge base of existing scientific software

March 23, 2011

Calvin Lin, The University of Texas at Austin 5

CS380P Lecture 14 HPF 9

 An array language

– Can operate with entire arrays as operands

– Pairwise operators

– Reduction operators

– Uses slice notation

– array1d(low: high: stride) represents the elements of array1

starting at low, ending at high, and skipping every stride-1
elements

– The stride is an optional operand

– Converts many loops into array statements

Fortran 90

CS380P Lecture 14 HPF 10

 Jacobi Iteration

– The elements of an array, initialized to 0.0 except for 1.0’s along its
southern border, are iteratively replaced with the average of their 4 nearest
neighbors until the greatest change between two iterations is less than
some epsilon.

Example Computation

 0 0 0 0

 0 0 0 0

 0 0 0 0

 0 0 0 0

 0 0 0 0

 1 1 1 1

 0
 0

 0

 0

 0

 0

 0

 0

March 23, 2011

Calvin Lin, The University of Texas at Austin 6

CS380P Lecture 14 HPF 11

 Example

– The following statement computes the averaging step in the Jacobi
iteration

– Assume that next and curr are 2D arrays

Jacobi Iteration in Fortran 90

 next(2:n, 2:n) = (curr(1:n-1, 2:n) +

 curr(2:n, 3:n+1) +

 curr(3:n+1, 2:n)+

 curr(2:n, 1:n-1)) / 4

 =

 next curr

 1

 2

 n+1

 3

 1 2 3 n+1
 1

 2

 n+1

 3

 1 2 3 n+1

CS380P Lecture 14 HPF 12

Block Data Distribution

 Block distribution of 1D array

 !HPF$ PROCESSORS PROCS(4)

 !HPF$ DISTRIBUTE array1D(BLOCK) ONTO PROCS

 Block distribution of 2D array

 !HPF$ PROCESSORS PROCS(4)

 !HPF$ DISTRIBUTE array2D(BLOCK,BLOCK) ONTO PROCS

 Number of virtual processors

 Name of array

 Keywords in caps

March 23, 2011

Calvin Lin, The University of Texas at Austin 7

CS380P Lecture 14 HPF 13

Block Data Distribution (cont)

 1D block distribution

– Do not distribute dimensions with *’s

 !HPF$ PROCESSORS PROCS(4)

 !HPF$ DISTRIBUTE array2D(BLOCK, *) ONTO PROCS

 1D block distribution

 !HPF$ DISTRIBUTE array2D(*, BLOCK) ONTO PROCS

CS380P Lecture 14 HPF 14

Cyclic Data Distribution

 Cyclic distribution of 1D array

 !HPF$ PROCESSORS PROCS(4)

 !HPF$ DISTRIBUTE array1D(CYCLIC) ONTO PROCS

 Cyclic distribution of 2D array

 !HPF$ PROCESSORS PROCS(4)

 !HPF$ DISTRIBUTE array2D(CYCLIC,CYCLIC) ONTO PROCS

March 23, 2011

Calvin Lin, The University of Texas at Austin 8

CS380P Lecture 14 HPF 15

Cyclic Data Distribution (cont)

 Cyclic distribution of 1D array

– Cyclic with panels of width 2

 !HPF$ PROCESSORS PROCS(4)

 !HPF$ DISTRIBUTE array1D(CYCLIC(2)) ONTO PROCS

CS380P Lecture 14 HPF 16

Cyclic Data Distribution (cont)

 1D cyclic distribution

 !HPF$ PROCESSORS PROCS(4)

 !HPF$ DISTRIBUTE array2D(CYCLIC, *) ONTO PROCS

 Cyclic distribution of a 2D array

 !HPF$ DISTRIBUTE array2D(*, CYCLIC) ONTO PROCS

March 23, 2011

Calvin Lin, The University of Texas at Austin 9

CS380P Lecture 14 HPF 17

Block-Cyclic Data Distribution

 Block-cyclic distribution

 !HPF$ PROCESSORS PROCS(4)

 !HPF$ DISTRIBUTE array2D(BLOCK, CYCLIC) ONTO PROCS

 Block-cyclic distribution

 !HPF$ DISTRIBUTE array2D(CYCLIC, BLOCK) ONTO PROCS

CS380P Lecture 14 HPF 18

Alignment Directives

 Arrays can be aligned with one another

– Aligned elements will reside on the same physical processor

– Alignment can reduce communication

– Can align arrays of different dimensions

 Example

 !HPF$ ALIGN a (i) WITH b(i-1)

 a

 b

March 23, 2011

Calvin Lin, The University of Texas at Austin 10

CS380P Lecture 14 HPF 19

Communication is Implied by the Distribution

 Example

– The following alignment and assignment requires every element to be
communicated to a different processor

– The following induces no communication

 a

 b

 !HPF$ ALIGN a(i) WITH b(i-1)

 a(1:n) = b(1:n)

 a

 b

 !HPF$ ALIGN a(i) WITH b(i)

CS380P Lecture 14 HPF 20

Arrays of Different Dimensions Can Be Aligned

 Higher-dimensional arrays can be collapsed

– Non-collapsed dimensions are then aligned with lower-dimensional array

 Example

 !HPF$ ALIGN array2D(*,:) WITH array1D(:)

 array1D

 array2D

March 23, 2011

Calvin Lin, The University of Texas at Austin 11

CS380P Lecture 14 HPF 21

Arrays of Different Dimensions Can Be Aligned (cont)

 Lower-dimensional arrays can be replicated

– Replicated array is then aligned with higher-dimensional array

 Example

 !HPF$ ALIGN array1D(:) WITH array2D(*,:)

 array1D array1D

 array2D

 replicated values

 Distribution again induces communication

CS380P Lecture 14 HPF 22

Data Distribution and Procedure Calls

 Parameter passing

– Must bind actuals to formals

– We now need to worry about binding data distributions as well as values

– There are many options

– Serial execution for “assumed-size arrays”

– Also, “assumed-shape arrays” and “explicit-shape arrays”

 Consider two cases
– Procedure is oblivious to the data distribution

– Compiler needs to implement general code that will work for any data
distribution

– Difficult to reason about communication and locality

– Procedure defines an explicit data distribution

– Compiler must dynamically redistribute data between actuals and
formals– how expensive is this operation?

March 23, 2011

Calvin Lin, The University of Texas at Austin 12

CS380P Lecture 14 HPF 23

New Statements

 FORALL loop (for Fortran 77)
– Provides array language semantics
– Evaluate entire rhs of a statement before assigning to lhs
– Implied barrier between every statement
– Now part of the ANSI Fortran standard

 Example Dependence graph

 FORALL (i = 1:3)

 a(i) = b(i)

 c(i) = d(i)

 END FORALL

 b(3) b(2) b(1)

 a(3) a(2) a(1)

 d(3) d(2) d(1)

 c(3) c(2) c(1)
 a(1:3) = b(1:3)

 c(1:3) = d(1:3)

 Fortran90 equivalent?

 a(i) = b(i)

 c(i) = d(i)

CS380P Lecture 14 HPF 24

 8 7

FORALL Loops vs. DO Loops

 Example

– For the given initial values,
what do the following
compute?

 FORALL (i = 2:5)

 a(i) = a(i-1)

 END FORALL

 DO (i = 2:5)

 a(i) = a(i-1)

 END DO

 a

 Initial values

 9 10 11

 a

 Final values

 7 8 7 9 10

 7 7 a

 Final values

 7 7 7

March 23, 2011

Calvin Lin, The University of Texas at Austin 13

CS380P Lecture 14 HPF 25

 Fortran90 equivalent?

– None

Independent Loops

 INDEPENDENT directive

– Loop iterations are independent

– No implied barriers

 Example Dependence graph

 !HPF$ INDEPENDENT

 DO (i = 1:3)

 a(i) = b(i)

 c(i) = d(i)

 END DO

 b(3) b(2) b(1)

 a(3) a(2) a(1)

 d(3) d(2) d(1)

 c(3) c(2) c(1)

 a(i) = b(i)

 c(i) = d(i)

CS380P Lecture 14 HPF 26

FORALL Loops vs. Independent Loops

 Is there a difference?

– Independent loops may offer more parallelism

 FORALL INDEPENDENT

 b(3) b(2) b(1)

 a(3) a(1)

 d(3) d(2)

 c(3) c(2) c(1)

 d(1)

 a(2)

 b(3) b(2) b(1)

 a(3)
 a(1)

 d(3)
 d(2)

 c(3)
 c(2)

 c(1)

 a(2)

 d(1)

 barrier

 barrier

 barrier

March 23, 2011

Calvin Lin, The University of Texas at Austin 14

CS380P Lecture 14 HPF 27

FORALL Loops vs. Independent Loops (cont)

 Is there a difference?

– FORALL loops are concise

 Example

 FORALL (i=1:n:2)

 a(i) = b(i)

 END FORALL

 FORALL (i=1:n, j=1:n, j>=i)

 a(i) = b(i)

 END FORALL

 Strided iteration

 Upper triangular iteration

CS380P Lecture 14 HPF 28

Evaluation

 Your thoughts on HPF?

– How does it compare with MPI?

– Is this a convenient language to use?

– Can programmers get good performance?

 No performance model

– To understand locality and communication, need to understand complex
interactions among distributions

– Procedure calls are particularly bad

– Many hidden costs

– Small changes in distribution can have large performance impact

 a(i) = b(i)

 Does the following code induce communication?

March 23, 2011

Calvin Lin, The University of Texas at Austin 15

CS380P Lecture 14 HPF 29

Evaluation (cont)

 No performance model

– Complex language ⇒ Difficult language to compile

– Large variability among compilers

– Kernel HPF: A subset of HPF “guaranteed” to be fast

 An accurate performance model is essential

– Witness our experience with the PRAM

 Common user experience

– Play with random different distribution in an attempt try to get good
performance

CS380P Lecture 14 HPF 30

Evaluation (cont)

 Language is too general

– Difficult to obey an important system design principle:

“Optimize the common case”

– What is the common case?

– Sequential constructs inherited from Fortran77 and Fortran90 cause
problems

– For example, the following code forces compiler to perform matrix
transpose

 FORALL (i=1:n, j=1:n)

 a(i, j) = a(j, i)

 END FORALL

March 23, 2011

Calvin Lin, The University of Texas at Austin 16

CS380P Lecture 14 HPF 31

Next Time

 Distributed Work Queue Homework

– Due Wednesday 11:59pm

 Assignment 5

– Available Wednesday night

– Due in a while

