
March 18, 2013

Calvin Lin, The University of Texas at Austin 1

CS380P Lecture 15 Introduction to ZPL 1

Today’s Plan

 Higher level languages

– HPF

– ZPL

CS380P Lecture 15 Introduction to ZPL 2

ZPL

 Philosophy

– Provide performance portability for data-parallel programs

– Allow users to reason about performance

– Start from scratch

– Parallelism is fundamentally different from sequential computing

– Be willing to throw out conveniences familiar to sequential
programmers

 Basic idea
– An array language

– Implicitly parallel

March 18, 2013

Calvin Lin, The University of Texas at Austin 2

CS380P Lecture 15 Introduction to ZPL 3

ZPL History

The beginning

– Designed by a small team beginning in 1993

– Compiler and runtime released in 1997

 Claims

– Portable to any MIMD parallel computer

– Performance comparable to C with message passing

– Generally outperforms HPF

– Convenient and intuitive

CS380P Lecture 15 Introduction to ZPL 4

 Jacobi Iteration

– The elements of an array, initialized to 0.0 except for 1.0’s along its
southern border, are iteratively replaced with the average of their 4 nearest
neighbors until the greatest change between two iterations is less than
some epsilon.

Recall Our Example Computation

 0 0 0 0

 0 0 0 0

 0 0 0 0

 0 0 0 0

 0 0 0 0

 1 1 1 1

 0
 0

 0

 0

 0

 0

 0

 0

March 18, 2013

Calvin Lin, The University of Texas at Austin 3

CS380P Lecture 15 Introduction to ZPL 5

 program Jacobi;
 config var n : integer = 512;
 epsilon : float = 0.00001;
 region R = [1..n, 1..n];
 var A, Temp : [R] float;
 err : float;
 direction north = [-1, 0]; south = [1, 0];
 east = [0, 1]; west = [0, -1];
 procedure Jacobi();
 [R] begin
 A := 0.0;
 [north of R] A := 0.0; [west of R] A := 1.0;
 [east of R] A := 0.0; [south of R] A := 0.0;
 repeat
 Temp := (A@north + A@east + A@west + A@south)/4.0;
 err := max<< abs(Temp – A);
 A := Temp;
 until err < epsilon;
 end;
 end;

Jacobi Iteration– The Main Loop

 + + +) / 4.0 := (

 Naming Convention:
 Arrays begin with upper case letters
 Scalarsbegin with lower case letters

 Reductions:
 max<< returns the maximum

of an array expression

Lecture 20

CS380P Lecture 15 Introduction to ZPL 6

 program Jacobi;
 config var n : integer = 512;
 epsilon : float = 0.00001;
 region R = [1..n, 1..n];
 var A, Temp : [R] float;
 err : float;
 direction north = [-1, 0]; south = [1, 0];
 east = [0, 1]; west = [0, -1];
 procedure Jacobi();
 [R] begin
 A := 0.0;
 [north of R] A := 0.0; [west of R] A := 1.0;
 [east of R] A := 0.0; [south of R] A := 0.0;
 repeat
 Temp := (A@north + A@east + A@west + A@south)/4.0;
 err := max<< abs(Temp – A);
 A := Temp;
 until err < epsilon;
 end;
 end;

Jacobi Iteration– The Region

 + + +) / 4.0 := (

 end;

 [R] begin

March 18, 2013

Calvin Lin, The University of Texas at Austin 4

CS380P Lecture 15 Introduction to ZPL 7

 program Jacobi;
 config var n : integer = 512;
 epsilon : float = 0.00001;
 region R = [1..n, 1..n];
 var A, Temp : [R] float;
 err : float;
 direction north = [-1, 0]; south = [1, 0];
 east = [0, 1]; west = [0, -1];
 procedure Jacobi();
 [R] begin
 A := 0.0;
 [north of R] A := 0.0; [west of R] A := 1.0;
 [east of R] A := 0.0; [south of R] A := 0.0;
 repeat
 Temp := (A@ north + A@east + A@west + A@south)/4.0;
 err := max<< abs(Temp – A);
 A := Temp;
 until err < epsilon;
 end;
 end;

Jacobi Iteration– The Direction

 + + +) / 4.0 := (

 +

 +

CS380P Lecture 15 Introduction to ZPL 8

 program Jacobi;
 config var n : integer = 512;
 epsilon : float = 0.00001;
 region R = [1..n, 1..n];
 var A, Temp : [R] float;
 err : float;
 direction north = [-1, 0]; south = [1, 0];
 east = [0, 1]; west = [0, -1];
 procedure Jacobi();
 [R] begin
 A := 0.0;

 repeat
 Temp := (A@north + A@east + A@west + A@south)/4.0;
 err := max<< abs(Temp – A);
 A := Temp;
 until err < epsilon;
 end;
 end;

Jacobi Iteration– The Border

 + + +) / 4.0 := (

 [north of R] A := 0.0; [west of R] A := 1.0;
 [south of R] A := 0.0; [east of R] A := 0.0;

March 18, 2013

Calvin Lin, The University of Texas at Austin 5

CS380P Lecture 15 Introduction to ZPL 9

 program Jacobi;
 config var n : integer = 512;
 epsilon : float = 0.00001;
 region R = [1..n, 1..n];
 var A, Temp : [R] float;
 err : float;
 direction north = [-1, 0]; south = [1, 0];
 east = [0, 1]; west = [0, -1];
 procedure Jacobi();
 [R] begin
 A := 0.0;
 [north of R] A := 0.0; [west of R] A := 1.0;
 [east of R] A := 0.0; [south of R] A := 0.0;
 repeat
 Temp := (A@north + A@east + A@west + A@south)/4.0;
 err := max<< abs(Temp – A);
 A := Temp;
 until err < epsilon;
 end;
 end;

Jacobi Iteration– Remaining Details

 + + +) / 4.0 := (

CS380P Lecture 15 Introduction to ZPL 10

 Scalar promotion

– Arrays can be promoted to scalars

– Scalars assume the shape of the arrays that they’re promoted to

– Functions can also be promoted

– The abs function is applied to each element of the array expression

– Function promotion provides some amount of code reuse

Arrays and Scalars

 Temp := (A@north + A@east + A@west + A@south)/ 4.0;

 abs(Temp - A)

March 18, 2013

Calvin Lin, The University of Texas at Austin 6

CS380P Lecture 15 Introduction to ZPL 11

 Regions state what, not how

– Regions are index sets

– Regions and region operators (of , at , in , . . .) replace indexing and
looping to simplify programming

Regions Are Declarative

 region R = [1..8, 1..8];

 region C = [2..7, 2..7];

 var X,Y = [R] integer;

 e = [0, 1];

 n = [-1, 0];

 ne = [-1, 1]];

 [C] X := [C] Y@e := [n of C] Y := [C] Y := X@ne

CS380P Lecture 15 Introduction to ZPL 12

 Defining adjacent regions

– The of operator defines a
region adjacent to the given
region in the specified
direction

The Of Operator

 region R = [1..8, 1..8];

 region C = [2..7, 2..7];

 var X,Y = [R] integer;

 e = [0, 1];

 n = [-1, 0];

 ne = [-1, 1]];

 [e of R] [e of R] X :=

 [e of C]

 [C]

 [e of C] X :=

 X

 [R] X

March 18, 2013

Calvin Lin, The University of Texas at Austin 7

CS380P Lecture 15 Introduction to ZPL 13

Region Operators

 Simple region calculus

– A dense r-dimensional region can be specified by pairs of upper and lower
limits: <L1, U1>, <L2, U2>. . . <Lr, Ur>

– If direction d = (d1, d2. . . dr) and R = <L1, U1>, <L2, U2>. . . <Lr, Ur>

– Then we have the following:

 R at d = <L1+d1, U1 +d1 >, <L2 +d2, U2 +d2 >. . . <Lr +dr, Ur +dr >

d of R satisfies

<Ui+1, Ui +di > if di > 0

<li', Ui
’ > = <li, Ui > if di = 0

<L i+di, Li-1> if di < 0

CS380P Lecture 15 Introduction to ZPL 14

Class Exercise

March 18, 2013

Calvin Lin, The University of Texas at Austin 8

CS380P Lecture 15 Introduction to ZPL 15

 Applied to statements

– The region r prepended to a statement gives the indices over which all
computation on rank r arrays is applied

– By applying regions to entire statements, array references are identical by
default

– Regions are scoped, i.e., a region on an inner statement overrides a region
on an outer statement

– Regions can be dynamic, i.e., bounds are evaluated at runtime

Regions as Indices

 [Rr] . . . Ar + Br . . .

 [1..n] begin . . .

 [2..n-1] . . . A + B . . .

 end;

 [i..j] . . . A + B . . .

CS380P Lecture 15 Introduction to ZPL 16

How Do We Get Parallelism?

 Array language semantics

– Assign the rhs elements to the lhs elements in any order

– There are implied barrier between statements and between the
evaluation of the rhs and the lhs

 Temp := [R] A := B;

 A

 B

March 18, 2013

Calvin Lin, The University of Texas at Austin 9

CS380P Lecture 15 Introduction to ZPL 17

 Reductions and scans

– Reductions (<<) and scans (||) are array functionals that perform global
operations

+<< A reduces an array expression A to its sum, producing a scalar

Global Operators

 +<< 2 4 6 8 ≡ 20

 +|| 2 4 6 8 ≡ 2 6 12 20

 Reduce Scan

 +<<
 *<<

 max<<
 min<<

 &<<
|<<

 +||
 *||

 max||
 min||

 &||
|||

 +|| A computes the parallel prefix of

 A, producing an array of the

 same size as A

CS380P Lecture 15 Introduction to ZPL 18

Other Language Details

 Data types
boolean

ubyte sbyte char

integer uinteger

float double quad

 Unary operators
+ - !

 Binary operators
 + - * / ^ % & |

 Relational operators
= != < > <= >=

 Bitwise operators
. . .

 Assignment operators
. . .

 Control constructs
 if-then-{elsif}-else

 repeat-until

 while-do

for-do

exit

return

continue

halt

begin-end

March 18, 2013

Calvin Lin, The University of Texas at Austin 10

CS380P Lecture 15 Introduction to ZPL 19

Consider an Example: Red/Black SOR

 Compute partial differential equations

– Use successive over-relaxation

– Arrange 3D values into red and black cells

– Update in place by alternately computing values for red and black cells

CS380P Lecture 15 Introduction to ZPL 20

 DO nrel = 1,iter
 where (RED(2:NX-1,2:NY-1,2:NZ-1))
 ! Relaxation of the Red points
 U(2:NX-1,2:NY-1,2:NZ-1) = &
 & factor*(hsq*F(2:NX-1,2:NY-1,2:NZ-1)+ &
 & U(1:NX-2,2:NY-1,2:NZ-1) + U(3:NX,2:NY-1,2:NZ-1)+ &
 & U(2:NX-1,1:NY-2,2:NZ-1) + U(2:NX-1,1:NY-2,2:NZ -1)+ &
 & U(2:NX-1,2:NY-1,1:NZ-2) + U(2:NX-1,2:NY-1,3:NZ))
 elsewhere
 ! Relaxation of the Black points
 U(2:NX-1,2:NY-1,2:NZ-1) = &
 & factor*(hsq*F(2:NX-1,2:NY-1,2:NZ-1)+ &
 & U(1:NX-2,2:NY-1,2:NZ-1) + U(3:NX,2:NY-1,2:NZ-1)+

Two Implementations of Red/Black SOR

 Regions and region operators raise the level of abstraction

 for nrel := 1 to nITER do
 /* Red relaxation */
 [I with Red] U := factor*(hsq*F + U@top + U@bot + U@left+
 U@right + U@front + U@back);
 /* Black relaxation */
 [I without Red] U := factor*(hsq*F + U@top + U@top + U@left+
 U@right + U@front + U@back);
 end;

 ZPL

 F90/HPF

 Can you spot the bugs? Can you spot the bugs?

March 18, 2013

Calvin Lin, The University of Texas at Austin 11

CS380P Lecture 15 Introduction to ZPL 21

Comparing HPF and ZPL

 What’s the difference in the two codes?

– We cheated by not showing the definition of the Red mask in ZPL

 More fundamentally

– Indexing is error prone

– Different things should look different

– With the explicit indices, everything looks similar

– Why is this important?

– Abstraction principle

– If something is important, then it should be given a name and reused

– Regions and directions support provide abstraction for data-parallel
computation

CS380P Lecture 15 Introduction to ZPL 22

 Data parallelism

– Often quite regular except for the end-cases

 ZPL elevates the concept of a boundary condition

Boundary Conditions

periodic mirror

 Theshallow benchmark

 /* Periodic boundary conditions */
 [e of I] wrap U, Uold, V, Vold, P, Pold;
 [s of I] wrap U, Uold, V, Vold, P, Pold;
 [se of I] wrap U, Uold, V, Vold, P, Pold ;

 ZPL

 C Periodic boundary conditions
 uold(m+1,:n) = uold(1,:n)
 vold(m+1,:n) = vold(1,:n)
 pold(m+1,:n) = pold(1,:n)
 u(m+1,:n) = u(1,:n)
 v(m+1,:n) = v(1,:n)
 p(m+1,:n) = p(1,:n)
 CAPR$ DO PAR on POLD<:,1>
 uold(:m,n+1) = uold(:m,1)
 vold(:m,n+1) = vold(:m,1)
 pold(:m,n+1) = pold(:m,1)
 u(:m,n+1) = u(:m,1)
 v(:m,n+1) = v(:m,1)
 p(:m,n+1) = p(:m,1)
 uold(m+1,n+1) = uold(1,1)
 vold(m+1,n+1) = vold(1,1)
 pold(m+1,n+1) = pold(1,1)
 u(m+1,n+1) = u(1,1)
 v(m+1,n+1) = v(1,1)
 p(m+1,n+1) = p(1,1)

 HPF

March 18, 2013

Calvin Lin, The University of Texas at Austin 12

CS380P Lecture 15 Introduction to ZPL 23

What’s Different About ZPL?

 Concise

– High level array language

– Sequential semantics

 Clean

– Eliminates array indexing

– Support for boundary conditions

 Efficient

– Provides special support for structured communication

– “Optimize the common case”

– More on this next class

 ZPL Fortran77

 500 lines

 The Simple benchmark

 2400 lines

 C+MPI

 5000 lines

CS380P Lecture 15 Introduction to ZPL 24

Next Time

 Lecture

– Using ZPL

– We’ll start at 2:30for March 20 only

