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Today’s Plan

 Higher level languages

– HPF

– ZPL
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ZPL

 Philosophy

– Provide performance portability for data-parallel programs

– Allow users to reason about performance

– Start from scratch

– Parallelism is fundamentally different from sequential computing

– Be willing to throw out conveniences familiar to sequential 
programmers

 Basic idea
– An array language

– Implicitly parallel
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ZPL History

The beginning

– Designed by a small team beginning in 1993

– Compiler and runtime released in 1997

 Claims

– Portable to any MIMD parallel computer

– Performance comparable to C with message passing

– Generally outperforms HPF

– Convenient and intuitive
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 Jacobi Iteration

– The elements of an array, initialized to 0.0 except for 1.0’s along its 
southern border, are iteratively replaced with the average of their 4 nearest 
neighbors until the greatest change between two iterations is less than 
some epsilon.

Recall Our Example Computation

 0  0  0  0

 0  0  0  0

 0  0  0  0

 0  0  0  0

 0  0  0  0

 1  1  1  1

 0
 0

 0

 0

 0

 0

 0

 0
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 program Jacobi;
 config var n : integer = 512;
 epsilon : float = 0.00001;
 region        R = [1..n, 1..n];
 var A, Temp : [R] float;
 err : float;
 direction north = [-1, 0];     south = [ 1,  0];
 east  = [ 0, 1];     west  = [ 0, -1];
 procedure Jacobi();
 [R] begin
 A := 0.0;
 [north of R] A := 0.0; [west of R]  A := 1.0;
 [east of R]  A := 0.0; [south of R] A := 0.0;
 repeat
 Temp := ( A@north + A@east + A@west + A@south)/4.0;
 err  := max<< abs(Temp – A);
 A    := Temp;
 until err < epsilon;
 end;
 end;

Jacobi Iteration– The Main Loop

 +  +  +  ) / 4.0 := (

 Naming Convention:
 Arrays begin with upper case letters
 Scalarsbegin with lower case letters

 Reductions:
 max<< returns the maximum 

of an array expression

Lecture 20
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 program Jacobi;
 config var n : integer = 512;
 epsilon : float = 0.00001;
 region        R = [1..n, 1..n];
 var A, Temp : [R] float;
 err : float;
 direction north = [-1, 0];     south = [ 1,  0];
 east  = [ 0, 1];     west  = [ 0, -1];
 procedure Jacobi();
 [R] begin
 A := 0.0;
 [north of R] A := 0.0; [west of R]  A := 1.0;
 [east of R]  A := 0.0; [south of R] A := 0.0;
 repeat
 Temp := (A@north + A@east + A@west + A@south)/4.0;
 err  := max<< abs(Temp – A);
 A    := Temp;
 until err < epsilon;
 end;
 end;

Jacobi Iteration– The Region

 +  +  +  ) / 4.0 := (

 end;

 [R] begin



March 18, 2013

Calvin Lin, The University of Texas at Austin 4

CS380P Lecture 15 Introduction to ZPL 7

 program Jacobi;
 config var n : integer = 512;
 epsilon : float = 0.00001;
 region        R = [1..n, 1..n];
 var A, Temp : [R] float;
 err : float;
 direction north = [-1, 0];     south = [ 1,  0];
 east  = [ 0, 1];     west  = [ 0, -1];
 procedure Jacobi();
 [R] begin
 A := 0.0;
 [north of R] A := 0.0; [west of R]  A := 1.0;
 [east of R]  A := 0.0; [south of R] A := 0.0;
 repeat
 Temp := (A@ north + A@east + A@west + A@south)/4.0;
 err  := max<< abs(Temp – A);
 A    := Temp;
 until err < epsilon;
 end;
 end;

Jacobi Iteration– The Direction

 +  +  +  ) / 4.0 := (

 +

 +
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 program Jacobi;
 config var n : integer = 512;
 epsilon : float = 0.00001;
 region        R = [1..n, 1..n];
 var A, Temp : [R] float;
 err : float;
 direction north = [-1, 0]; south = [ 1,  0];
 east  = [ 0, 1];     west  = [ 0, -1];
 procedure Jacobi();
 [R] begin
 A := 0.0;
 

 

 repeat
 Temp := (A@north + A@east + A@west + A@south)/4.0;
 err  := max<< abs(Temp – A);
 A    := Temp;
 until err < epsilon;
 end;
 end;

Jacobi Iteration– The Border

 +  +  +  ) / 4.0 := (

 [north of R] A := 0.0;  [west of R]  A := 1.0; 
 [south of R] A := 0.0;  [east of R]  A := 0.0; 



March 18, 2013

Calvin Lin, The University of Texas at Austin 5

CS380P Lecture 15 Introduction to ZPL 9

 program Jacobi;
 config var n : integer = 512;
 epsilon : float = 0.00001;
 region        R = [1..n, 1..n];
 var A, Temp : [R] float;
 err : float;
 direction north = [-1, 0];     south = [ 1,  0];
 east  = [ 0, 1];     west  = [ 0, -1];
 procedure Jacobi();
 [R] begin
 A := 0.0;
 [north of R] A := 0.0; [west of R]  A := 1.0;
 [east of R]  A := 0.0; [south of R] A := 0.0;
 repeat
 Temp := (A@north + A@east + A@west + A@south)/4.0;
 err  := max<< abs(Temp – A);
 A    := Temp;
 until err < epsilon;
 end;
 end;

Jacobi Iteration– Remaining Details

 +  +  +  ) / 4.0 := (
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 Scalar promotion

– Arrays can be promoted to scalars

– Scalars assume the shape of the arrays that they’re promoted to

– Functions can also be promoted

– The abs function is applied to each element of the array expression

– Function promotion provides some amount of code reuse

Arrays and Scalars

 Temp := (A@north + A@east + A@west + A@south)/ 4.0;

 abs(Temp - A)
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 Regions state what, not how

– Regions are index sets

– Regions and region operators (of , at , in , . . .) replace indexing and 
looping to simplify programming

Regions Are Declarative

 region R = [1..8, 1..8];

 region C = [2..7, 2..7];

 var X,Y = [R] integer;

 e  = [ 0, 1];

 n  = [-1, 0];

 ne = [-1, 1]];

 [C] X :=  [C] Y@e :=  [n of C] Y :=  [C] Y := X@ne
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 Defining adjacent regions

– The of operator defines a 
region adjacent to the given 
region in the specified 
direction

The Of Operator

 region R = [1..8, 1..8];

 region C = [2..7, 2..7];

 var X,Y = [R] integer;

 e  = [ 0, 1];

 n  = [-1, 0];

 ne = [-1, 1]];

 [e of R]  [e of R] X := 

 [e of C]

 [C]

 [e of C] X := 

 X

 [R]  X
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Region Operators

 Simple region calculus

– A dense r-dimensional region can be specified by pairs of upper and lower 
limits:  <L1, U1>, <L2, U2>. . . <Lr, Ur>

– If direction d = (d1, d2. . . dr) and R = <L1, U1>, <L2, U2>. . . <Lr, Ur>

– Then we have the following:

 R at d = <L1+d1, U1 +d1 >, <L2 +d2, U2 +d2 >. . . <Lr +dr, Ur +dr >
 

d of R satisfies

<Ui+1, Ui +di > if  di > 0

<li', Ui
’ >  =       <li, Ui >              if  di = 0

<L i+di, Li-1>     if  di < 0
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Class Exercise
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 Applied to statements

– The region r prepended to a statement gives the indices over which all 
computation on rank r arrays is applied

– By applying regions to entire statements, array references are identical by 
default

– Regions are scoped, i.e., a region on an inner statement overrides a region 
on an outer statement

– Regions can be dynamic, i.e., bounds are evaluated at runtime

Regions as Indices

 [Rr]  . . .  Ar + Br . . .

 [1..n] begin . . .

 [2..n-1] . . . A + B . . .

 end;

 [i..j] . . . A + B . . .
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How Do We Get Parallelism?

 Array language semantics

– Assign the rhs elements to the lhs elements in any order

– There are implied barrier between statements and between the 
evaluation of the rhs and the lhs

 Temp := [R] A := B;

 A

 B
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 Reductions and scans

– Reductions (<<) and scans (||) are array functionals that perform global 
operations

+<< A reduces an array expression A to its sum, producing a scalar

Global Operators

 +<< 2  4  6  8  ≡ 20

 +||  2  4  6  8  ≡ 2  6  12  20

 Reduce  Scan

 +<<
 *<<

 max<<
 min<<

 &<<
|<<

 +||
 *||

 max||
 min||

 &||
|||

 +|| A computes the parallel prefix of 

 A, producing an array of the 

 same size as A
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Other Language Details

 Data types
boolean

ubyte sbyte char   

integer  uinteger

float    double   quad

 Unary operators
+    - !

 Binary operators 
 +    - *   /   ^   %    & |

 Relational operators
=   !=   <   >   <=   >=

 Bitwise operators
. . .

 Assignment operators
. . .

 Control constructs
 if-then-{elsif}-else

 repeat-until

 while-do

for-do

exit

return

continue

halt

begin-end
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Consider an Example: Red/Black SOR

 Compute partial differential equations 

– Use successive over-relaxation

– Arrange 3D values into red and black cells

– Update in place by alternately computing values for red and black cells
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 DO nrel = 1,iter
 where (RED(2:NX-1,2:NY-1,2:NZ-1))
 !     Relaxation of the Red points
 U(2:NX-1,2:NY-1,2:NZ-1) =                               &
 &              factor*(hsq*F(2:NX-1,2:NY-1,2:NZ-1)+         &
 &    U(1:NX-2,2:NY-1,2:NZ-1) + U(3:NX,2:NY-1,2:NZ-1 )+      &
 &    U(2:NX-1,1:NY-2,2:NZ-1) + U(2:NX-1,1:NY-2,2:NZ -1)+      &
 &    U(2:NX-1,2:NY-1,1:NZ-2) + U(2:NX-1,2:NY-1,3:NZ ))
 elsewhere
 !     Relaxation of the Black points 
 U(2:NX-1,2:NY-1,2:NZ-1) =                               &
 &              factor*(hsq*F(2:NX-1,2:NY-1,2:NZ-1)+         &
 &    U(1:NX-2,2:NY-1,2:NZ-1) + U(3:NX,2:NY-1,2:NZ-1 )+

Two Implementations of Red/Black SOR

 Regions and region operators raise the level of abstraction

 for nrel := 1 to nITER do
 /* Red relaxation */
 [I with Red]    U := factor*(hsq*F + U@top + U@bot + U@left+
 U@right + U@front + U@back);
 /* Black relaxation */
 [I without Red] U := factor*(hsq*F + U@top + U@top + U@left+
 U@right + U@front + U@back);
 end;

 ZPL

 F90/HPF

 Can you spot the bugs? Can you spot the bugs?
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Comparing HPF and ZPL

 What’s the difference in the two codes?

– We cheated by not showing the definition of the Red mask in ZPL

 More fundamentally

– Indexing is error prone

– Different things should look different

– With the explicit indices, everything looks similar

– Why is this important?

– Abstraction principle

– If something is important, then it should be given a name and reused

– Regions and directions support provide abstraction for data-parallel 
computation
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 Data parallelism

– Often quite regular except for the end-cases

 ZPL elevates the concept of a boundary condition

Boundary Conditions

periodic mirror

 Theshallow benchmark

 /* Periodic boundary conditions */
 [e of I]  wrap U, Uold, V, Vold, P, Pold;
 [s of I]  wrap U, Uold, V, Vold, P, Pold;
 [se of I] wrap U, Uold, V, Vold, P, Pold ;

 ZPL

 C Periodic boundary conditions
 uold(m+1,:n) = uold(1,:n)
 vold(m+1,:n) = vold(1,:n)
 pold(m+1,:n) = pold(1,:n)
 u(m+1,:n) = u(1,:n)
 v(m+1,:n) = v(1,:n)
 p(m+1,:n) = p(1,:n)
 CAPR$ DO PAR on POLD<:,1>
 uold(:m,n+1) = uold(:m,1)
 vold(:m,n+1) = vold(:m,1)
 pold(:m,n+1) = pold(:m,1)
 u(:m,n+1) = u(:m,1)
 v(:m,n+1) = v(:m,1)
 p(:m,n+1) = p(:m,1)
 uold(m+1,n+1) = uold(1,1)
 vold(m+1,n+1) = vold(1,1)
 pold(m+1,n+1) = pold(1,1) 
 u(m+1,n+1) = u(1,1)
 v(m+1,n+1) = v(1,1)
 p(m+1,n+1) = p(1,1)

 HPF
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What’s Different About ZPL?

 Concise

– High level array language

– Sequential semantics

 Clean

– Eliminates array indexing

– Support for boundary conditions

 Efficient

– Provides special support for structured communication

– “Optimize the common case”

– More on this next class

 ZPL  Fortran77

 500 lines

 The Simple benchmark

 2400 lines

 C+MPI

 5000 lines
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Next Time

 Lecture

– Using ZPL

– We’ll start at 2:30for March 20 only


