
March 20, 2013

Calvin Lin, The University of Texas at Austin 1

CS380P Lecture 16 Using ZPL 1

Today’s Plan

 Higher level languages

– Using ZPL

– Performance portability

CS380P Lecture 16 Using ZPL 2

Finding the Bounding Box

 Given

– X and Y are 1D arrays of coordinates such that (Xi, Yi) is a position in the
2D plane

– How do you compute the bounding box in ZPL?

 [R] begin

 rightedge := max<< X;

 topedge := max<< Y;

 leftedge := min<< X;

 bottomedge := min<< Y;

 end;

March 20, 2013

Calvin Lin, The University of Texas at Austin 2

CS380P Lecture 16 Using ZPL 3

 type point = record

 x : integer; -- x coordinate

 y : integer; -- y coordinate

 end;

 var Points : [1..n] point; -- points in a plane

 . . .

 [R] begin

 rightedge := max<< Points.x;

 topedge := max<< Points.y;

 leftedge := min<< Points.x;

 bottomedge := min<< Points.y;

 end;

Bounding Box Using Records

 Using a Point Type

CS380P Lecture 16 Using ZPL 4

Recall the Connected Components Algorithm

 The Amazing Levialdi Shrinking Operator (1972)
– Each pixel simultaneously changes state according to the following rules

(1) A 1 bit becomes a 0 if there are 0’s to its West, NW, and North

(2) A 0 bit becomes a 1 if there are 1’s to its West and North

X
0 ? 1

? ?1
1

0 1
0 0

? 0
? ?

(3) All other bits remain unchanged

March 20, 2013

Calvin Lin, The University of Texas at Austin 3

CS380P Lecture 16 Using ZPL 5

 . . .

 Count := 0;

 repeat

 Next := Image & (Image@north | Image@nw | Image@west);

 Next := Next | (Image@west & Image@north & !Image);

 Conn := Next@east | Next@se | Next@south;

 Conn := Image & !Next & !Conn;

 Count += Conn;

 Image := Next;

 smore := |<< Next;

 until !smore;

 . . .

8-way Connected Components

 ZPL Solution

 Rule 1

 Rule 2

 Test for Poof

CS380P Lecture 16 Using ZPL 6

Matrix Multiplication

 Observation

– To compute the (i,j) element of C, we compute the dot product of the ith

row of A and the jth column of B

 Cannon’s algorithm [Cannon ’69]

– For n × n matrices, each dot product consists of n multiplications

– If we skewthe rows of A and the columns of B appropriately, we can
align these n multiplications by shifting the A matrix to the left and the B
matrix to the top

 C B A
 = ×××× i

 j

March 20, 2013

Calvin Lin, The University of Texas at Austin 4

CS380P Lecture 16 Using ZPL 7

 c11

Cannon’s Algorithm [1969]

 c12 c13

 c21 c22 c23

 c31 c32 c33

 c41 c42 c43

 a11 a12 a13

 a21 a22 a23

 a31 a32

 a41 a42 a43

 a33

 a14

 a24

 a44

 a34

 b11

 b12

 b13

 b21

 b22

 b23

 b31

 b32

 b33

 b41

 b42

 b43

 A and B are first skewed. They then
conceptually pass over the result array C, which
is initialized to 0’s. As Aik and Bkj pass over Cij,
they are multiplied and the result is added to Cij

CS380P Lecture 16 Using ZPL 8

Skewed Arrays

 ZPL supports only dense arrays

– How do we represent skewed arrays?

 c11 c12 c13
 c21 c22 c23
 c31 c32 c33
 c41 c42 c43

 a11 a12 a13
 a21 a22 a23

 a31 a32
 a41 a42 a43

 a33

 a14
 a24

 a44
 a34

 b11
 b12

 b13

 b21
 b22

 b23

 b31
 b32

 b33

 b41
 b42

 b43 c42

 c11 c12 c13
 c21 c22 c23
 c31 c32 c33
 c41 c43

 b11
 b21

 b22

 b31
 b32

 b33

 b41
 b42

 b43

 b12
 b13
 b23

 a21
 a31 a32

 a41 a42 a43

 a12 a13
 a23

 a14
 a24

 a34

 a11
 a22
 a33
 a44

March 20, 2013

Calvin Lin, The University of Texas at Austin 5

CS380P Lecture 16 Using ZPL 9

Skewing the Arrays

 Use the wrap operator

– Wrap the first column to the right border, then shift left

 a11 a12 a13
 a21 a22 a23
 a31 a32 a33
 a41 a42 a43

 a21
 a31 a32

 a41 a42 a43

 a12 a13
 a23

 a14
 a24

 a34

 a11
 a22
 a33
 a44

 a14
 a24
 a34
 a44

 region Lop = [1..m, 1..n];

 direction right = [0,1];

 for i := 2 to m do

 [right of Lop] wrap A; -- Move col 1 to right border

 [i..m, 1..n] A := A@right; -- Shift last i rows left

 end;

CS380P Lecture 16 Using ZPL 10

 a11 a12 a13
 a22 a23 a24
 a32 a33 a34
 a42 a43 a44

 a14
 a21
 a31
 a41

 i=3 wrap A

 a11
a22
 a32
 a42

 a11 a12 a13
 a22 a23 a24
 a32 a33 a34
 a42 a43 a44

 a14
 a21
 a31
 a41

 i=2 A:=A@right

 a11
a21
 a31
 a41

 for i := 2 to m do

 [right of Lop] wrap A; -- Move col 1 to right border

 [i..m, 1..n] A := A@right; -- Shift last i rows left

 end;

The Four Steps of Skewing A

 - a44

 - a11 a12 a13
 a21 a22 a23
 a31 a32 a33
 a41 a42 a43

 a14
 a24
 a34

 initially

 -
 -

 a11 a12 a13
 a21 a22 a23
 a31 a32 a33
 a41 a42 a43

 a14
 a24
 a34
 a44

 i=2 wrap A

 a11
a21
 a31
 a41

March 20, 2013

Calvin Lin, The University of Texas at Austin 6

CS380P Lecture 16 Using ZPL 11

 a11 a12 a13
 a22 a23 a24
 a33 a34 a31
 a44 a41 a42

 a14
 a21
 a32
 a43

 i=4 A:=A@right

 a11
a22
 a33
 a43

 a11 a12 a13
 a22 a23 a24
 a33 a34 a31
 a43 a44 a41

 a14
 a21
 a32
 a42

 i=4 wrap A

 a11
a22
 a33
 a43

 a11 a12 a13
 a22 a23 a24
 a33 a34 a31
 a43 a44 a41

 a14
 a21
 a32
 a42

 i=3 A:=A@right

 a11
a22
 a32
 a42

 for i := 2 to m do

 [right of Lop] wrap A; -- Move col 1 to right border

 [i..m, 1..n] A := A@right; -- Shift last i rows left

 end;

The Four Steps of Skewing A

CS380P Lecture 16 Using ZPL 12

 for i := 2 to m do -- Skew A

 [right of Lop] wrap A; -- Move col 1 to right

 [i..m, 1..n] A := A@right; -- Shift last i rows left

 end;

 for i := 2 to p do -- Skew B

 [right of Rop] wrap B; -- Move row 1 to below last

 [1..n, i..p] B := B@below; -- Shift last i columns up

 end;

 [Res] C := 0.0 -- Initialize C

 for i := 1 to n do -- For A & B’s common dim

 [Res] C := C + A * B; -- Accumulate product

 [right of Lop] wrap A; -- Send first col right

 [Lop] A := A@right; -- Shift array left

 [below of Rop] wrap B; -- Send top row down

 [Rop] B := B@below; -- Shift array up

 end;

Cannon’s Algorithm

 Skew A, Skew B, Multiply, Accumulate, Rotate

March 20, 2013

Calvin Lin, The University of Texas at Austin 7

CS380P Lecture 16 Using ZPL 13

 Flooding

– The Flood operation is the inverse of a reduce operation

– It replicates data from lower dimensions to higher dimensions

 Example

– Can use flood to perform matrix-vector operations

– Flood the vector to be conformal with the array

Flood

CS380P Lecture 16 Using ZPL 14

The Flood Operator

 Flooding

– In ZPL, the flood operator (>>) looks like the inverse of a reduction

– It takes two regions, one applied to the statement, and the other applied to
the operator

 Collapsed regions
– One or more of the operator’s region must be collapsed to a singleton

– Replication occurs across collapsed regions

 A F (logical) F (physical)

Replicate A’s 1st column
 [1..n, 1..m] F := >>[1..n, 1] A;

March 20, 2013

Calvin Lin, The University of Texas at Austin 8

CS380P Lecture 16 Using ZPL 15

Language Support for Flooding

 Flooding

– ZPL has the flood operator (>>)

– Fortran 90 has spread

– MATLAB has “Tony’s Trick”

 [1..n,1..m] F := >>[1..n, 1] A;

 F = SPREAD (A[:,1], DIM=2,N)

 F = A(:,ones(1,size(A,2)))

 ZPL:
 Fortran90:
 MATLAB:

 A F (logical) F (physical)

CS380P Lecture 16 Using ZPL 16

......

Flood Regions and Flood Arrays

 Over-specification

– The collapsed singleton dimension over-specifies the situation

– To specify any column, use *

region FloodCol = [1..m, *]; -- Flood region

[FloodCol] F := >> [1..m, 1] A;

Think of a column
in every position

Think of a column
in every position

 A[1..m,1] F

March 20, 2013

Calvin Lin, The University of Texas at Austin 9

CS380P Lecture 16 Using ZPL 17

Matrix Multiplication Revisited

 Observation

– The first element of the ith row of A will be used to compute partial dot
products with the first element of eachcolumn of B

 SUMMA algorithm [Watts and van de Geijn 95]

– Each element in each columnof A contributes to n dot products

– Each element in each row of B contributes to n dot products

– Iteratively

– Broadcast columns of A to all processors

– Broadcast rows of B to all processors

– Compute 1/nth of the dot product for each element of C

 C B A
 = ×××× i

 j

CS380P Lecture 16 Using ZPL 18

 [1..n,1..n] C := 0.0; -- Initialize C
 [1..n,1..n] for k := 1 to n do
 [,*] Col := >>[,k] A; -- Flood kth col of A
 [*,] Row := >>[k,] B; -- Flood kth row of B
 C := C+Col*Row; -- Accumulate product
 end;

SUMMA algorithm

– Iteratively flood a column of A and a row of B into temporary matrices

– Multiply and accumulate these results into C

Matrix Multiplication Revisited

 A

 B Row

 Col
 . . .

 . . .

March 20, 2013

Calvin Lin, The University of Texas at Austin 10

CS380P Lecture 16 Using ZPL 19

 [1..n,1..n] C := 0.0; -- Initialize C
 [1..n,1..n] for k := 1 to n do
 [,*] Col := >>[,k] A; -- Flood kth col of A
 [*,] Row := >>[k,] B; -- Flood kth row of B
 C := C+Col*Row; -- Accumulate product
 end;

Invariant

– On the kth iteration, the kth term in the dot-product of row i and column j
is accumulated into position i,j

SUMMA Algorithm

 A

 B Row

 Col
 . . .

 . . .

CS380P Lecture 16 Using ZPL 20

Comparing the Algorithms

 Which matrix multiplication algorithm is better?

 Cannon
 Skew A

 Skew B

 loop through n

 C += A*B

 rotate A, B

 SUMMA
 loop through n

 flood A[,k]

 flood B[k,]

 C += A*B

March 20, 2013

Calvin Lin, The University of Texas at Austin 11

CS380P Lecture 16 Using ZPL 21

Other ZPL Constructs

 Permutation

– ZPL supports non-local data movement with the permutation operators

– Gather: # on rhs

– Scatter: # on lhs

 Hierarchical arrays

 Sparse arrays

 Distribution change

