
March 20, 2013

Calvin Lin, The University of Texas at Austin 1

CS380P Lecture 17 ZPL's Performance Model 1

Today’s Plan

 Higher level languages

– Using ZPL

– Reasoning about performance with ZPL programs

– A case study that pulls together many ideas that we’ve discussed
this semester

 Distributed Work Queue Discussion (II)

 PSP Discussion

CS380P Lecture 17 ZPL's Performance Model 2

Quiz

 1. Chapter 8 discusses ZPL’s performance model, claiming that

 programmers can get a rough estimate of performance by examining

 the syntax of their ZPL programs. What is the largest weakness of
 this model?

March 20, 2013

Calvin Lin, The University of Texas at Austin 2

CS380P Lecture 17 ZPL's Performance Model 3

Performance Portability

 Tension

– How do we get both portability and good performance?

– For performance reasons:

– Exploit machine details

– Defeats portability

– For portability reasons:

– Avoid all machine details

– May lead to poor performance on all machines

 Reason by analogy

– In sequential computing, languages such as C and Fortran achieve both
portability and good performance

– Why is this?

– Do all sequential languages achieve performance portability?

 machine machine
 machine

 machine

CS380P Lecture 17 ZPL's Performance Model 4

Consider Some Examples

 C, Fortran ZPL

 Phase
Abstractions

 CTA

 Prolog Haskell

 Language

 Functional:
 Expr evaluation

 ?

 Logic:
 Search

 ?

 Imperative:
 State change

 Programming Model

 von Neumann

 Machine Model

March 20, 2013

Calvin Lin, The University of Texas at Austin 3

CS380P Lecture 17 ZPL's Performance Model 5

The CTA—The Candidate Type Architecture

 CTA

– An abstract machine model

– Describes essential features of a wide class of MIMD machines

– Ignores machine-specific idiosyncrasies

 The model

– P processors

– λ >>1 latency to non-local memory

– Unspecified interconnect

Interconnection Network

...vN vN vN vN vN vN

C

Processor

Memory
N
I
C

CS380P Lecture 17 ZPL's Performance Model 6

The Phase Abstractions [Alverson, et al, 1992]

 Focus on scalable parallelism

– Code

– Data

– Communication
 Can we scale these as a unit?

March 20, 2013

Calvin Lin, The University of Texas at Austin 4

CS380P Lecture 17 ZPL's Performance Model 7

Reasoning About Performance

 Specify the following

– How processors are allocated to computation

– How regions (and arrays) are allocated in memory

– Rules of operation for primitive ZPL facilities including costs for
computation and communication

 Ensure that all source language features are explained

 Explain the interactions with optimizations

CS380P Lecture 17 ZPL's Performance Model 8

Assigning Work to Processors

 Two approaches for data-parallel computation
– Consider as an example: A := B+C@east

– Virtual Processors: (Unlimited Parallelism Approach)

Each processor is allocated one scalar data value, that is, think of there
being as many processors as array elements

– Multiple Points Per Processor: (Scalable Parallelism Approach)

Each processor is allocated n values

– n=1 is the virtual processor case

– n=all-elements approximates the sequential case

– Algorithms with this feature are scalable

March 20, 2013

Calvin Lin, The University of Texas at Austin 5

CS380P Lecture 17 ZPL's Performance Model 9

Assigning Work (cont)

 Are the two views equivalent?

– Virtualization ignores grain size

– Emulation misses the advantages of long instruction sequences

– Pipelining

– Caching

– Prefetching

– Virtualization misses significant costs such as local shifting:
V:=V@right

CS380P Lecture 17 ZPL's Performance Model 10

ZPL Assumes Multiple Points Per Processor

 Region allocation rule

– ZPL allocates regions to processors so that many contiguous elements are
assigned to each

 Array allocation rules

– Union the regions together to compute the bounding region

– Get processor number and arrangement from the command line

– Allocate the bounding region to the processors

Let’s walk-through the processLet’s walk-through the process

March 20, 2013

Calvin Lin, The University of Texas at Austin 6

CS380P Lecture 17 ZPL's Performance Model 11

Union the Regions Together

 Compute the region footprint

– Align indices in a global index space

– Only interacting regions are unioned

– If region R is used to declare an array which is manipulated in the scope
of region S, then R and S are said to interact

=

The bounding region is allocated to processorsThe bounding region is allocated to processors

i,ji,j

Bounding
2D Region

Bounding
2D Region

CS380P Lecture 17 ZPL's Performance Model 12

Get Processor Number + Arrangement

 Number of processors

– Specified on the command line

– May also be specified in the program

 Arrangement

– To understand allocation, assume that the processors are arranged in a grid

P2P1 P3P0 P4 P5 P6 P7

P2P1 P3P0

P4 P5 P6 P7

P4 P5

P6 P7
P2

P1

P3

P0

The CTA does not
favor any

arrangement, so
use a generic one

The CTA does not
favor any

arrangement, so
use a generic one

March 20, 2013

Calvin Lin, The University of Texas at Austin 7

CS380P Lecture 17 ZPL's Performance Model 13

Allocate the Bounding Region to the Grid

 Attempt to balance the distribution

– Regions inherit their position from the bounding region

– Array elements inherit their positions—and hence their allocation—from
their index’s position in the region

P0
P0 P1

P1

P3
P3P2

P2

CS380P Lecture 17 ZPL's Performance Model 14

More Typical Allocations

 1D is segmented

 2D is panels, strips or blocks

 3D?

P2P1 P3P0

P1P0

P2 P3

P2P1 P3P0

P1

P0

P2

P3

March 20, 2013

Calvin Lin, The University of Texas at Austin 8

CS380P Lecture 17 ZPL's Performance Model 15

Fundamental Property of ZPL

 Simple alignment
– For any arrays A, B of the same rank and having an element [i,...,k],

that element will be stored on the same processor for each array

 Corollary
– Element-wise operations do not require any communication:

[R] ... A+B ...

=

CS380P Lecture 17 ZPL's Performance Model 16

Rules of Operation

 WYSIWYG performance

– Performance is given in terms of the CTA

– Coarse performance features are visible

– Performance is relative,

e.g. operation x is more expensive in communication than operation y

 Rules
A + B -- Element-wise array operations

– No communication

– Per processor work is some constant C

– Work fully parallelizable, i.e. time = work/P

March 20, 2013

Calvin Lin, The University of Texas at Austin 9

CS380P Lecture 17 ZPL's Performance Model 17

Rules of Operation (cont)

 Rules
B + A@east -- @ references

– Arrays allocated with overlap regionsfor every direction used

– Nearest neighbor point-to-point communication of edge elements, i.e.
small communication, little congestion

– Edge communication benefits from surface-to-volume advantage: an n
increase in elements, adds √n communication load

– Possible local data motion

P2P1 P3P0
 Recall the CTA

 Charge λλλλ time for
communicating through

the network

 Recall the CTA

 Charge λλλλ time for
communicating through

the network

Unlimited Parallelism
does not support this view

Unlimited Parallelism
does not support this view

CS380P Lecture 17 ZPL's Performance Model 18

Is This Simplistic Analysis Accurate?

 It’s not even close, but it’s often good enough

– Contention in the network yields variance

– Processors may not be adjacent

– Processors are not synchronized

– Transmission time depends on message length

– A better model: α + β n

where n is the message length,

α is the startup cost and β is the per-byte cost

– Software costs can dominate network time

March 20, 2013

Calvin Lin, The University of Texas at Austin 10

CS380P Lecture 17 ZPL's Performance Model 19

A Contrarian View

 Model as accurately as possible

“Communication is the most expensive aspect of parallel computing, so
structure the computation so that it optimizes the use of communication”

 Is this a good idea?

– Structuring a program to optimize communication will embed properties
and assumptions of a specific computer into the source code

– Parallel machines vary widely in their characteristics => source code must
be changed for every machine

 Wisdom
– Do not try to be too accurate

– Think of @-communication as a small but non-negligible cost, and leave
the optimization to the compiler

– We will see a great example of this next lecture

CS380P Lecture 17 ZPL's Performance Model 20

Rules of Operation (cont)

 Rules
+<<A -- Reduce

– Accumulate local elements

– Ladner/Fischer O(log P) tree accumulation, or better

– Broadcast, which is worst case O(log P), but usually less

+||A -- Scan

– Accumulate local elements

– Ladner/Fischer O(log P) tree parallel prefix logic

– Update of local elements

>>[1..n,k]A -- Flood

– Multicast array segments, O(log P) worst case

– Represent data non-redundantly

No other parallel language has a performance model No other parallel language has a performance model

March 20, 2013

Calvin Lin, The University of Texas at Austin 11

CS380P Lecture 17 ZPL's Performance Model 21

Applying The WYSIWYG In Real Life

program Life;
config var n : integer = 512;
region R = [1..n, 1..n];

BigR = [0..n+1,0..n+1];
direction N = [-1, 0]; NE = [-1, 1];

E = [0, 1]; SE = [1, 1];
S = [1, 0]; SW = [1,-1];
W = [0,-1]; NW = [-1,-1];

var NN : [R] ubyte; TW : [BigR] boolean;
procedure Life();

[R] begin
TW := (Index1 * Index2) % 2; -- Make some data
repeat

NN := (TW@N + TW@NE + TW@E + TW@SE
+ TW@S + TW@SW + TW@W + TW@NW);

TW := (NN=2 & TW) | NN=3;
until !|<<TW;

end;

Performance costs implied by WYSIWYG modelPerformance costs implied by WYSIWYG model

 Declarations
 Element-wise
 Element-wise with @’s
 Parallel prefix

CS380P Lecture 17 ZPL's Performance Model 22

Optimizations Can Help

 WYSIWYG is the worst case

– Optimizations are possible

 Sequential Optimizations

– Stencil optimizations

– Compute sum of yellow items once per processor rather than once per
element

 Parallel Optimizations

– Asynchronous communication overlaps communication with
computation and hides communication latency

8 additions specified per
element, but fewer
additions are possible—
How?

8 additions specified per
element, but fewer
additions are possible—
How?

March 20, 2013

Calvin Lin, The University of Texas at Austin 12

CS380P Lecture 17 ZPL's Performance Model 23

More Optimizations

 Recall the bounding box code

 Each reduction has the same structure

– Iterate to find local max/min

– Aggregate using the Ladner/Fischer algorithm

– Broadcast the result to all processors

 [R] begin

 rightedge := max<< X;

 topedge := max<< Y;

 leftedge := min<< X;

 bottomedge := min<< Y;

 end;

CS380P Lecture 17 ZPL's Performance Model 24

More Optimizations (cont)

 Combine operations

– Compiler reorders code

– Fuses loops

– Combines aggregates

– Combines broadcasts

– Code runs about 4 times faster

 loop1 max (X)

 aggregate (maxX)

 broadcast (maxX)

 loop2 max (Y)

 aggregate (maxY)

 broadcast (maxY)

 loop3 min (X)

 aggregate (minX)

 broadcast (minX)

 loop4 min (Y)

 aggregate (minY)

 broadcast (minY)

 loop1 max (X)

 aggregate (maxX)

 broadcast (maxX)

 loop2 max (Y)

 aggregate (maxY)

 broadcast (maxY)

 loop3 min (X)

 aggregate (minX)

 broadcast (minX)

 loop4 min (Y)

 aggregate (minY)

 broadcast (minY)

 loop max(X), max(Y), min(X), min(Y)

 aggregate (maxX, maxY, minX, minY)

 broadcast (maxX, maxY, minX, minY)

 loop max(X), max(Y), min(X), min(Y)

 aggregate (maxX, maxY, minX, minY)

 broadcast (maxX, maxY, minX, minY)

March 20, 2013

Calvin Lin, The University of Texas at Austin 13

CS380P Lecture 17 ZPL's Performance Model 25

Summarizing ZPL’s Performance Model

 Data distribution

– The mapping of data to processors is known

 Execution costs

– The performance of all language constructs is explained in terms of these
allocations and the CTA

 The result

– Can compare worst-case analysis of program alternatives

The WYSIWYG model allows us to compare algorithms.

How do our two matrix multiplication algorithms compare?

The WYSIWYG model allows us to compare algorithms.

How do our two matrix multiplication algorithms compare?

CS380P Lecture 17 ZPL's Performance Model 26

Recall Cannon’s Algorithm [1969]

 c11 c12 c13
 c21 c22 c23
 c31 c32 c33
 c41 c42 c43

 a11 a12 a13
 a21 a22 a23

 a31 a32
 a41 a42 a43

 a21

 a14
 a24

 a44
 a24

 b11
 b12

 b13

 b21
 b22

 b23

 b31
 b32

 b33

 b41
 b42

 b43 c42

 c11 c12 c13
 c21 c22 c23
 c31 c32 c33
 c41 c43

 b11
 b21

 b22

 b31
 b32

 b33

 b41
 b42

 b43

 b12
 b13
 b23

 a21
 a31 a32

 a41 a42 a43

 a12 a13
 a23

 a14
 a24

 a24

 a11
 a22
 a21
 a44

 A and B are first skewed. They then
conceptually pass over the result array
C, which is initialized to 0’s. As Aik
and Bkj pass over Cij, they are
multiplied and the result is added to Cij

March 20, 2013

Calvin Lin, The University of Texas at Austin 14

CS380P Lecture 17 ZPL's Performance Model 27

 for i := 2 to m do -- Skew A

 [right of Lop] wrap A; -- Move col 1 to right

 [i..m, 1..n] A := A@right; -- Shift last i rows left

 end;

 for i := 2 to m do -- Skew B

 [right of Rop] wrap B; -- Move row 1 to below last

 [i..n, 1..p] B := B@below; -- Shift last i columns up

 end;

 [Res] C := 0.0 -- Initialize C

 for i := 1 to n do -- For A & B’s common dim

 [Res] C := C + A * B; -- Accumulate product

 [right of Lop] wrap A; -- Send first col right

 [Lop] A := A@right; -- Shift array left

 [below of Rop] wrap B; -- Send top row down

 [Rop] B := B@below; -- Shift array up

 end;

Cannon’s Algorithm

 Skew A, Skew B, Multiply, Accumulate, Rotate

CS380P Lecture 17 ZPL's Performance Model 28

Recall the SUMMA Algorithm [van de Geijn and Watts 1995]

The SUMMA Algorithm

A BC

a11b11

a21b11

a11b12

a21b12

Broadcast a column of A,
broadcast a row of B, and
compute the kth term of the dot
product, repeat.

Broadcast a column of A,
broadcast a row of B, and
compute the kth term of the dot
product, repeat.

b11 b12

a11

a21

 Example

March 20, 2013

Calvin Lin, The University of Texas at Austin 15

CS380P Lecture 17 ZPL's Performance Model 29

 [1..n,1..n] C := 0.0; -- Initialize C
 [1..n,1..n] for k := 1 to n do
 [,*] Col := >>[,k] A; -- Flood kth col of A
 [*,] Row := >>[k,] B; -- Flood kth row of B
 C := C+Col*Row; -- Accumulate product
 end;

SUMMA algorithm

– Iteratively flood a column of A and a row of B into temporary matrices

– Multiply and accumulate these results into C

SUMMA in ZPL

 A

 B Row

 Col
 . . .

 . . .

CS380P Lecture 17 ZPL's Performance Model 30

Comparing the Two Algorithms

 Which matrix multiplication algorithm is better?

– Rotate vs. flood

 Cannon
 Declarations

 Skew A

 Skew B

 Initialize C

 loop through n

 C += A*B

 rotate A, B

 SUMMA
 Declarations

 Initialize C

 loop through n

 flood A[,k]

 flood B[k,]

 C += A*B

March 20, 2013

Calvin Lin, The University of Texas at Austin 16

CS380P Lecture 17 ZPL's Performance Model 31

Cannon’s Algorithm

Rotations have latency λ,
but much local data motion

Rotations have latency λ,
but much local data motion

Skew A, Skew B, {Multiply, Accumulate, Rotate}

for i := 2 to m do -- Skew A
[i..m, 1..n] A := A@^right;

end;
for i := 2 to p do -- Skew B

[1..n, i..p] B := B@^below;
end;

[Res] C := 0.0; -- Initialize C
for i := 1 to n do -- For common dim

[Res] C := C + A*B; -- For product
[Lop] A := A@^right; -- Rotate A
[Rop] B := B@^below; -- Rotate B

end;

CS380P Lecture 17 ZPL's Performance Model 32

 Floods

– The flood is typically more expensive thanλλλλ time, but less than λλλλ(log P)
. . . probably much less, and there are fewer of them

[1..m,1..p] C := 0.0; -- Initialize C

for k := 1 to n do

[1..m,*] Col := >>[,k] A; -- Flood kth col of A

[*,1..p] Row := >>[k,] B; -- Flood kth row of B

[1..m,1..p] C += Col*Row; -- Combine elements

end;

SUMMA does not require as
much communication or data
motion as Cannon’s, nor does it
touch the array as much

SUMMA does not require as
much communication or data
motion as Cannon’s, nor does it
touch the array as much

SUMMA Algorithm Analysis

March 20, 2013

Calvin Lin, The University of Texas at Austin 17

CS380P Lecture 17 ZPL's Performance Model 33

The Bottom Line

 SUMMA is the better algorithm

– Does “potentially more expensive communication”, but less of it

– Its non-redundant flood arrays cache well

– There is less local data motion

 Analytically . . .

 Empirically . . .

n (n2+2n)2n3nlog p2nSUMMA

n (2n2/2 +3n2)2n3-n2n14nCannon

Elements
Referenced

FLOPSCommunication
Volume

Comm.
Complexity

of Comm.
Operations

Algorithm

CS380P Lecture 17 ZPL's Performance Model 34

Performance
Results

March 20, 2013

Calvin Lin, The University of Texas at Austin 18

CS380P Lecture 17 ZPL's Performance Model 35

Summary

 Performance portability

– ZPL builds on the CTA, an abstract parallel machine

– The CTA provides capabilities that can be efficiently implemented on a
wide class of MIMD machines

– The mapping of ZPL programs to the CTA is well-specified

– This mapping is less flexible than HPF’s

– ZPL’s performance model allows programmers to make good algorithmic
choices

CS380P Lecture 17 ZPL's Performance Model 36

Discussion Topics

 Distributed Work Queue (II)

 Problem Space Promotion

March 20, 2013

Calvin Lin, The University of Texas at Austin 19

CS380P Lecture 17 ZPL's Performance Model 37

Next Time

 Reading

– None

 Compilation support for performance portability

– Revisit the tension between specificity and generality

