
March 27, 2013

Calvin Lin, The University of Texas at Austin 1

CS380P Lecture 18 Performance Portability 1

Today’s Plan

 The role of abstractions

– How compilers can break the tradeoff between performance and
portability

– Compare MPI and ZPL

– Performance

– Portability

– Programmability

– Weaknesses of ZPL

CS380P Lecture 18 Performance Portability 2

Recall MPI

 MPI provides a wide interface

– 12 ways to perform point-to-point communication

– MPI 2.0 offers one-sided communication

 Why so many choices?

 What problems does this create?

Normal

Nonblock

Persistent

Normal Sync Ready Buffered

MPI_Send

MPI_Send_init MPI_Ssend_init

MPI_Isend

MPI_Rsend_init MPI_Bsend_init

MPI_Ssend

MPI_Issend MPI_Irsend

MPI_Rsend MPI_Bsend

MPI_Ibsend

March 27, 2013

Calvin Lin, The University of Texas at Austin 2

CS380P Lecture 18 Performance Portability 3

Premature Optimization

 The root of all evil

– Requires manual changes to the application source code

– Embeds optimizations into the source code

 Long term implications

– Complicates maintenance

– Defeats portability

 What’s the fundamental problem?

– MPI is too low level

– MPI over-specifies the communication

– It specifies whatto send, whento send it, and howto send it by
specifying details of the implementation, such as the marshalling of
data, synchronization, and buffering

CS380P Lecture 18 Performance Portability 4

Problems with MPI’s Wide Interface (cont)

 Long term problems

– No performance portability

– A form of premature optimization

 Sun E5000 Cray T3E

March 27, 2013

Calvin Lin, The University of Texas at Austin 3

CS380P Lecture 18 Performance Portability 5

Portable High Level Languages

 How do we produce portable code?

– What kind of communication code should we produce?

CS380P Lecture 18 Performance Portability 6

 m3
 m1

 m2

Compiling Higher Level Languages

 Option 1: Portable compiler

– Compile to an intermediate language, such as C+MPI

 ZPL

 C + MPI

 Advantages

– Intermediate code is portable

– Compiler has a single backend

 Disadvantages
– Favors portability over

performance

– We’re still using the MPI
interface, so we have the same
performance portability
problems that an MPI
programmer faces

 ZPL
 Compiler

 Disdvantages

– What if m3 is a multi-core?

March 27, 2013

Calvin Lin, The University of Texas at Austin 4

CS380P Lecture 18 Performance Portability 7

 m3
 m1

 m2

Compiling Higher Level Languages

 Option 2: Machine-specific compiler

– Create multiple backends for multiple target platforms

 ZPL

 C2 + MPI

 ZPL
 Compiler1

 C1 + MPI C3 + MPI

 Advantages

– Can exploit machine
assumptions

 Disadvantages

– Intermediate code is not portable

– Lotsof work in building
backends

 Can we resolve this conflict between portability and performance? Can we resolve this conflict between portability and performance?

CS380P Lecture 18 Performance Portability 8

Ironman Interface

 A communications interface

– A set of four calls which define constraints
about possible communication

– Individually, each call has little meaning

– Collectively, they can be bound to different
mechanisms for different machines

 The name is not based on the comic book

– It’s a reference to Strawman, Woodman,
Tinmanand Ironman, . . .

which were different versions of the Ada
language specification

March 27, 2013

Calvin Lin, The University of Texas at Austin 5

CS380P Lecture 18 Performance Portability 9

The Ironman Interface

 DR– Destination Ready

– Earliest point at which the destination can
receive data

 SR– Source Ready

– Earliest point at which the sender can transmit
data

 DN– Destination Needed

– Latest point at which destination can receive
data

 SV– Sender Volatile

– Latest point by which data must be
transmitted from the sender

 time
 DR

 SR

 DN

 SV

 Receiver

 Sender

CS380P Lecture 18 Performance Portability 10

The Ironman Interface (cont)

 DR– Destination Ready

– Assuming that the destination receives data
into a buffer, this receive cannot occur until
the buffer has been allocated, and it cannot
occur while the buffer’s data is in use

 SR– Source Ready

– The data cannot be sent until its been
computed by the sender

 DN– Destination Needed

– The point at which the destination needs to
use the data that it’s receiving

 SV– Source Volatile

 time
 DR

 SR

 DN

 SV

– If the sender is re-using the buffer, then this is the point at which the
source’s data is no longer valid

March 27, 2013

Calvin Lin, The University of Texas at Austin 6

CS380P Lecture 18 Performance Portability 11

Example Bindings

 Synchronous Sends

-SV()-

Receive data in P2DN()-

-SR()Send data from P1

-DR()-

Effect at P2SPMD codeEffect at P1

CS380P Lecture 18 Performance Portability 12

Example Bindings II

 Non-blocking Sends and non-blocking Receives

-SV()
Wait for send to

complete

Wait for receive at
P2DN()-

-SR()
Non-blocking send

from P1

Non-blocking
receive in P2DR()-

Effect at P2SPMD codeEffect at P1

March 27, 2013

Calvin Lin, The University of Texas at Austin 7

CS380P Lecture 18 Performance Portability 13

Example Bindings III

 User-Defined Callback Routines

-SV()-

Wait for receive to
completeDN()-

-SR()Send data

Post receive
callbackDR()Synchronize

Effect at P2SPMD codeEffect at P1

 Usage

– This binding is similar to the use of non-blocking receives, but when the
message is complete, a user-defined callback routine is called to un-
marshall the data as it arrives

CS380P Lecture 18 Performance Portability 14

Example Bindings IV

 One-sided Communication

-SV()-

SynchronizeDN()Synchronize

-SR()
Put data into
destination

SynchronizeDR()Synchronize

Effect at P2SPMD codeEffect at P1

 Usage

– Some hardware allows one processor to Put data onto another processor’s
memory

– This mechanism is one-sided because the destination process is not
involved

March 27, 2013

Calvin Lin, The University of Texas at Austin 8

CS380P Lecture 18 Performance Portability 15

Static Analysis– Identify Uses and Defs

 Example ZPL code

 X := D;

 . . .

 S := . . .;

 . . .

 D := S@east

 Y := D;

 . . .

 S := . . .;

 DR();

 SR();

 DN();

SV();

 Last use of Dbefore data transfer
 Cannot receive into D before this point

 Last modification of Sbefore data transfer
 Cannot send D before this point

 Need to receive D by this point
 Next of use of Dafter data transfer

 Need to send S by this point
 Next of modification of Safter data transfer

CS380P Lecture 18 Performance Portability 16

Static Analysis (cont)

 Example ZPL code

 X := D;

 . . .

 S := . . .;

 . . .

 D := S@east;

 Y := D;

 . . .

 S := . . .;

 DR();

 SR();

 DN();

SV();

 Overall compilation scheme

– Identify the need for communication

– Use dependence analysis to identify Defs and
Uses, which define the four points of interest

– Perform code motion to push the four locations
apart

– Assign static Communication Tags to each set
of Ironman calls

– These tags are used to maintain state across
calls at runtime

– Insert parameters to each call
 Array language

semantics help by
reducing control

flow

March 27, 2013

Calvin Lin, The University of Texas at Austin 9

CS380P Lecture 18 Performance Portability 17

Performance Summary

 Extra procedure call overhead

– Less than 1%

 On an Intel Paragon

– Can use MPI, which maps well to Intel’s NX message passing library

 On the Cray T3E

– One-sided communication is 60-66% faster than MPI

 Key benefit

– Ironman produces code that is both portable and efficient

CS380P Lecture 18 Performance Portability 18

The Larger Lessons?

 Higher level languages

– Can use richer and more complicated interfaces

– No human would want to use the Ironman interface

 Abstract interfaces

– Abstract interfaces can convey moreinformation than lower-level
interfaces

– Abstract interfaces can be both portableand efficient—but they need to
convey the right information

– In the case of communication, they should specify whatand whento
transfer data and nothing more

March 27, 2013

Calvin Lin, The University of Texas at Austin 10

CS380P Lecture 18 Performance Portability 19

MPI Summary

 MPI strengths

– Has proven to be practically useful

– Runs on almost all parallel platforms

– Relatively easy to implement

– Can often serve as a building block for higher level languages

 MPI weaknesses

– Too low-level of an interface

– Limited process model

– Forces programmer to maintain a mental map between a global view of
data and multiple local views of data

– Can we articulate the problems that this causes?

CS380P Lecture 18 Performance Portability 20

Programmer Productivity

 Global View abstractions

– Language constructs that produce the same result regardless of the number
of processors that is used

– Allows programmers to debug sequentially

– Leads to more clear and concise code

March 27, 2013

Calvin Lin, The University of Texas at Austin 11

CS380P Lecture 18 Performance Portability 21

Global View vs. Fragmented View

 Example

– 3 point stencil of a vector

Global view

=

+

(

)/2

Fragmented view

 B = (A@east + A@west)/2;

CS380P Lecture 18 Performance Portability 22

Global View vs. Fragmented View

 Example

– 3 point stencil of a vector

Global view

=

+

(

)/2

Fragmented view

=

+

=

+

=

)/2 +)/2)/2

(((

 B = (A@east + A@west)/2;

March 27, 2013

Calvin Lin, The University of Texas at Austin 12

CS380P Lecture 18 Performance Portability 23

Global View vs. Fragmented View

 Example

– 3 point stencil of a vector

Global View
begin
region R = [1..n];
var n : int;

A, B : [R] real;
procedure main()
[R] begin

B := (A@west+A@east)/2;
end;

end;

Fragmented View
def main() {

var n: int = 1000;
var locN: int = n/numProcs;
var a, b: [0..locN+1] real ;

if (iHaveRightNeighbor) {
send (right, a(locN));
recv (right, a(locN+1));

}
if (iHaveLeftNeighbor) {

send (left, a(1));
recv (left, a(0));

}
forall i in 1..locN {

b(i) = (a(i-1) + a(i+1))/2;
}

}

CS380P Lecture 18 Performance Portability 24

Global View vs. Fragmented View

 Example

– 3 point stencil of a vector

Global View
begin
region R = [1..n];
var n : int;

A, B : [R] real;
procedure main()
[R] begin

B := (A@west+A@east)/2;
end;

end;

Fragmented View
def main() {

var n: int = 1000;
var locN: int = n/numProcs;
var a, b: [0..locN+1] real ;
var innerLo : int = 1;
var innerHi: int = locN;

if (iHaveRightNeighbor) {
send (right, a(locN));
recv (right, a(locN+1));

} else {
innerHi = locN-1;

}
if (iHaveLeftNeighbor) {

send (left, a(1));
recv (left, a(0));

} else {
innerLo = 2;

}
forall i in innerLo .. innerHi {

b(i) = (a(i-1) + a(i+1))/2;
}

}

 Communication becomes
geometrically more
complex for higher-
dimensional arrays

 Assumes numProcs divides n;
 a more general version would

require additional effort

March 27, 2013

Calvin Lin, The University of Texas at Austin 13

CS380P Lecture 18 Performance Portability 25

Consider therprj3 stencil from NAS MG

=

+ +
=

= w
0

= w
1

= w
2

= w
3

 8

 12

 6

 1

CS380P Lecture 18 Performance Portability 26

NAS MG rprj3 stencil in ZPL

procedure rprj3(var S,R: [,,] double ;
d: array [] of direction);

begin
S := 0.5 * R

+ 0.25 * (R@^d[1, 0, 0] + R@^d[0, 1, 0] + R@^d[0, 0, 1] +
R@^d[-1, 0, 0] + R@^d[0,-1, 0] + R@^d[0, 0,-1])

+ 0.125 * (R@^d[1, 1, 0] + R@^d[1, 0, 1] + R@^d[0, 1, 1] +
R@^d[1,-1, 0] + R@^d[1, 0,-1] + R@^d[0, 1,-1] +
R@^d[-1, 1, 0] + R@^d[-1, 0, 1] + R@^d[0,-1, 1] +
R@^d[-1,-1, 0] + R@^d[-1, 0,-1] + R@^d[0,-1,-1])

+ 0.0625 * (R@^d[1, 1, 1] + R@^d[1, 1,-1] +
R@^d[1,-1, 1] + R@^d[1,-1,-1] +
R@^d[-1, 1, 1] + R@^d[-1, 1,-1] +
R@^d[-1,-1, 1] + R@^d[-1,-1,-1]);

end ;

 Yikes

– Looks quite messy because it uses a 27-point stencil

– With 27 directions, even naming them is inconvenient

– What does this code look in Fortran + MPI?

March 27, 2013

Calvin Lin, The University of Texas at Austin 14

CS380P Lecture 18 Performance Portability 27

NAS MG rprj3 stencil in Fortran+MPI

subroutine comm3(u,n1,n2,n3,kk)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer n1, n2, n3, kk
double precision u(n1,n2,n3)
integer axis

if(.not. dead(kk))then
do axis = 1, 3

if(nprocs .ne. 1) then
call sync_all()
call give3(axis, +1, u, n1, n2, n3, kk)
call give3(axis, -1, u, n1, n2, n3, kk)
call sync_all()
call take3(axis, -1, u, n1, n2, n3)
call take3(axis, +1, u, n1, n2, n3)

else
call comm1p(axis, u, n1, n2, n3, kk)

endif
enddo

else
do axis = 1, 3

call sync_all()
call sync_all()

enddo
call zero3(u,n1,n2,n3)

endif
return
end

subroutine give3(axis, dir, u, n1, n2, n3, k)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3, k, ierr
double precision u(n1, n2, n3)

integer i3, i2, i1, buff_len,buff_id

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

do i3=2,n3-1
do i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len,buff_id) = u(2, i2,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i3=2,n3-1
do i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(n1-1, i2,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

do i3=2,n3-1
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1, 2,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i3=2,n3-1
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id)= u(i1,n2-1,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,2)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i2=1,n2
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,n3-1)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

endif
endif

return
end

subroutine take3(axis, dir, u, n1, n2, n3)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u(n1, n2, n3)

integer buff_id, indx

integer i3, i2, i1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

do i3=2,n3-1
do i2=2,n2-1

indx = indx + 1
u(n1,i2,i3) = buff(indx, buff_id)

enddo
enddo

else if(dir .eq. +1) then

do i3=2,n3-1
do i2=2,n2-1

indx = indx + 1
u(1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

do i3=2,n3-1
do i1=1,n1

indx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id)

enddo
enddo

else if(dir .eq. +1) then

do i3=2,n3-1
do i1=1,n1

indx = indx + 1
u(i1,1,i3) = buff(indx, buff_id)

enddo
enddo

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2
do i1=1,n1

indx = indx + 1
u(i1,i2,n3) = buff(indx, buff_id)

enddo
enddo

else if(dir .eq. +1) then

do i2=1,n2
do i1=1,n1

indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id)

enddo
enddo

endif
endif

return
end

subroutine comm1p(axis, u, n1, n2, n3, kk)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u(n1, n2, n3)

integer i3, i2, i1, buff_len,buff_id
integer i, kk, indx

dir = -1

buff_id = 3 + dir
buff_len = nm2

do i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 3 + dir
buff_len = nm2

do i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(n1-1,

i2,i3)
enddo

enddo
endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id)= u(i1,n2-

1,i3)
enddo

enddo
endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,n3-

1)
enddo

enddo
endif

dir = -1

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len,buff_id) = u(2, i2,i3)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,

2,i3)
enddo

enddo
endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,2)

enddo
enddo

endif

do i=1,nm2
buff(i,4) = buff(i,3)
buff(i,2) = buff(i,1)

enddo

dir = -1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
indx = indx + 1
u(n1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
indx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
indx = indx + 1
u(i1,i2,n3) = buff(indx, buff_id)

enddo
enddo

endif

dir = +1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
indx = indx + 1
u(1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
indx = indx + 1
u(i1,1,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id)

enddo
enddo

endif

return
end

subroutine rprj3(r,m1k,m2k,m3k,s,m1j,m2j,m3j,k)
implicit none
include 'cafnpb.h'
include 'globals.h'

integer m1k, m2k, m3k, m1j, m2j, m3j,k

double precision r(m1k,m2k,m3k), s(m1j,m2j,m3j)
integer j3, j2, j1, i3, i2, i1, d1, d2, d3, j
double precision x1(m), y1(m), x2,y2

if(m1k.eq.3)then
d1 = 2

else
d1 = 1

endif

if(m2k.eq.3)then
d2 = 2

else
d2 = 1

endif

if(m3k.eq.3)then
d3 = 2

else
d3 = 1

endif

do j3=2,m3j-1
i3 = 2*j3-d3
do j2=2,m2j-1

i2 = 2*j2-d2
do j1=2,m1j

i1 = 2*j1-d1
x1(i1-1) = r(i1-1,i2-1,i3) + r(i1-1,i2+1,i3)

> + r(i1-1,i2, i3-1) + r(i1-1,i2, i3 +1)
y1(i1-1) = r(i1-1,i2-1,i3-1) + r(i1-1,i2-1,i3+1)

> + r(i1-1,i2+1,i3-1) + r(i1-1,i2+1,i3 +1)
enddo
do j1=2,m1j-1

i1 = 2*j1-d1
y2 = r(i1, i2-1,i3-1) + r(i1, i2-1,i3+1)

> + r(i1, i2+1,i3-1) + r(i1, i2+1,i3+1)
x2 = r(i1, i2-1,i3) + r(i1, i2+1,i3)

> + r(i1, i2, i3-1) + r(i1, i2, i3+1)
s(j1,j2,j3) =

> 0.5D0 * r(i1,i2,i3)
> + 0.25D0 * (r(i1-1,i2,i3) + r(i1+1,i2,i3) + x2)
> + 0.125D0 * (x1(i1-1) + x1(i1+1) + y2)
> + 0.0625D0 * (y1(i1-1) + y1(i1+1))

enddo
enddo

enddo
j = k-1
call comm3(s,m1j,m2j,m3j,j)
return
end

CS380P Lecture 18 Performance Portability 28

Performance Notes
Here we see the advantage
of ZPL’s Ironman interface

ZPL also performs better at smaller
scales where communication is not the
bottleneck ⇒ higher-level languages
need not sacrifice performance

Cray T3E

Similar observations—and more dramatic
ones—have been made using more recent
architectures, languages, and benchmarks

March 27, 2013

Calvin Lin, The University of Texas at Austin 15

CS380P Lecture 18 Performance Portability 29

Generality Notes

Each ZPL binary supports:
• an arbitrary load-time problem size
• an arbitrary load-time # of
processors
• 1D/2D/3D data decompositions

This MPI binary only supports:
•a static 2k problem size
•a static 2j # of processors
•a 3D data decomposition

The code could be rewritten to relax
these assumptions, but at what
cost?
- in performance?
- in development effort? Cray T3E

CS380P Lecture 18 Performance Portability 30

Code Size Notes

242

70

202

87

566

0

200

400

600

800

1000

1200

F+MPI ZPL
Language

L
in

es
 o

f
C

o
d

e

communication
declarations
computation

More importantly, the ZPL
is easier to write, read,
modify, and maintain

 The ZPL is 6.4× shorter because it uses Global

 View abstractions

 ⇒ Little/no code for communication

 ⇒ Little/no code for array bookkeeping

March 27, 2013

Calvin Lin, The University of Texas at Austin 16

CS380P Lecture 18 Performance Portability 31

Critiquing ZPL

 Strengths

– Concise

– Global View abstractions

– Clear performance model

 Weaknesses

– Focuses on a data parallelism

– Focuses on arrays

– Focuses on regular parallelism

– Unfamiliar to many programmers

– Is it too restrictive?

CS380P Lecture 18 Performance Portability 32

Next Time

 Chapel

– Cascade High Productivity Programming Language

 Reading

– Chapter 9

– Chapel paper (on website)

