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Chapel Generalizes ZPL

Extends first class index sets
— Unifies local and distributed arrays A

— Generalizes the idea to support richer data tggosts,
graphs, maps)

> No syntactic

Relaxes constraints on array alignment performance model

— Preserves compiler’s ability to reason about &lign
arrays

J
Supports user-defined distributions

Supports more general parallelism
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Chapel Goals

Goals
— Supportgeneral parallel programming
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General Parallel Programming

Should be able to express any parallel computation
— Should never hit a limitation requiring the usereturn to MPI

Supports both data-parallelism and task-parallelism
— As well as the ability to compose these naturally

Provides multiple levels of software parallelism
— Module-level, function-level, loop-level, stateréevel, ...

Supports general levels of hardware parallelism
— Inter-machine, inter-node, inter-core, vectorzatimultithreading, ...
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Chapel Goals (cont)

Goals

Supportgeneral parallel programming

Provide global view abstractions

Provide support for locality

Reduce gap between mainstream languages andeptaatjuages
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History— High Productivity Computing Systems Program

DARPA HPCS Program (2002)
— Realization that programmer productivity is catic
— Sought to increase programmer productivity by 192®10
— Productivity = Performance +
Programmability +( |ncludes both hardware
Portability + and language design
Robustness

Phased competition
— Phase 2 (2003-2006)
— Cray (Chapel)
— IBM (X10)
— Sun (Fortress)
— Phase 3 (2006-2010)
— Cray, IBM
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Chapel’s Productivity Goals

Vastly improve programmability over current languages/models
— Writing parallel codes
— Reading, modifying, porting, tuning, maintainimyolving them

Support performance at least as good as MPI
— Competitive with MPI on generic clusters
— Better than MPI on more capable architectures

Improve portability compared to current languages/models
— As ubiquitous as MPI, but with fewer architectumasumptions
— More portable than OpenMP, Unified Parallel C, &oay Fortran, ...

Improve code robustnessia improved semantics and concepts
— Eliminate common error cases altogether
— Better abstractions to help avoid other errors
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Previous Languages— Two Extremes
OpenMP
ZPL Higher-Level
Abstractions
Expose P
Implementing MPI
Mechanisms
Target Machine BITEECE Target Machine
“Why is everything so painful?” “Why do my hands feel tied?”
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Multi-Resolution Language Design

The Chapel approach
— Allow the language to be used at multiple levélalzstraction
— Provide high-level features and automation forvemience
— Provide the ability to drop down to lower, morenual levels
— Use appropriate separation of concerns to keege tlagers clean

language concepts

< Dlstrlbutlon.s >
Data parallelism

task scheduling
Stealable Tasks = zhnisiteteje memory management

Suspendable Tasks Garbage Collection
Target Machine Region-based
ead per Ta Malloc/Free
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Chapel In a Nutshell

Base language
— Standard stuff: types, expressions, statements, functions, modules
— Object-orientation: value- and reference-based classes (optional)
— lterators: functions that generate a stream of return values
— Latent types: ability to omit types of variables, arguments, etc.

Task parallelism
— Task creation: structured and unstructured task creation
— Synchronization: through sync variables, transactional memory
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Chapel In a Nutshell (cont) i)

Data parallelism
— Data structures: global view of dense, sparse, associative arrays
— Operators: forall loops, promotion of scalar operators/functipn.

Locality
— Locales:language concept for reasoning about machine tgcali
— On clauses:ability to place tasks, variables on specific lesal
— Distributions: recipes for implementing distributed arrays on lesa
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Task Parallelism— Creating Tasks

Spawn a task: begin
begin DoThisTask();
WhileContinuing();
TheOriginalThread();

Wait for tasks to complete:sync
— Wait for all tasks created within a dynamic scope

sync {
begin treeSearch(root);

}

def treeSearch(node) {
if node ==nil then return
begin treeSearch(node.right);
begin treeSearch(node.left);

}
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Task Parallelism: Task Coordination

Full/Empty variables
— Maintain full/lempty state along with a value

var result$: sync real ;// result is initially enpty

sync {
begin ... =result$; /'l block until full, |eave enpty
begin result$=...; /'l block until enpty, |eave full

}

result$.readXX(); /'l read value, |eave state unchanged;

/1 other variations also supported
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Task Parallelism: Task Coordination

single-assignment variables — Write once only
var result$: single real = begin f(); //

total += result$; /1 block until f()

Atomic sections
atomic  {
newnode.next = insertpt;
newnode.prev = insertpt.prev;
insertpt.prev.next = newnode;
insertpt.prev = newnode;
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initially enpty

/'l do sone other things

has conpl et ed

13

Task Parallelism: Structured Tasks

Cobegin — Create one task per statement
computePivot(lo, hi, data);

} // inplicit join here

Coforall — Create one task per iteration
coforall e in Edges {
exploreEdge(e);
} // inmplicit join here
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cobegin  { computeTaskA(...);
Quicksort(lo, pivot, data); computeTaskB(..
Quicksort(pivot, hi, data); computeTaskC(..

cobegin  {
)i

)i
Y /7 inplicit join

14
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Domains

domain: a first-class index set

var m=4,n=8;

var D: domain (2) =[1..m, 1..n];

D
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Domains (]

| Data Parallelism

domain: a first-class index set

var m=4,n=28;

var D: domain (2) =[1..m, 1..n];
var Inner:  subdomain (D) = [2..m-1, 2..n-1];

= Inner

CS380P Lecture 19 Chapel
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Domains: Some Uses

Declaring arrays:
var A, B:[D] real ; 11
A
B
lteration (sequential or parallel): ADEREE
for ij in Inner{..} b
or: forall ij in Inner{...} ‘i?-----
Jo[e[e[e[e]e
p Ll
Array Slicing:
A[Inner] = B[lnner]; -
Alnner Blnner
PR
Array reallocation: 1}
D =[1..2*m, 1..2*n]; [}
A
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Global View (Chapel) vs. Fragmented View
Example
— 3 point stencil of a vector
. Fragmented View
Global View def main() {
\ var n: int =1000;
def main() { var locN: int =n/numProcs;
var n: int =1000; var a, b: [0..locN+1] real ;
var a, b:[1..n] real ; i ) . .
. I (iHaveRightNeighbor) {
forall i in 2.n-1{ i send (right, a(locN));
b(i) = (a(i-1) + a(i+1))/2; ; , recv (right, a(locN+1));
} ! if  (iHaveLeftNeighbor) {
send (left, a(1));
B = (A@east + A@west)/2; recv (left, a(0));
}
forall i in 1.locN {
b() = (a(-1) + a(i+1))/2;
1
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Global View (ZPL) vs. Fragmented View

Example
— 3 point stencil of a vector
Global View
begin

region R=[1.n];
var n:int

A, B : [R] real;

procedure  main()

[R] begin
B = (A@west+A@east)/2;
end;

end;

B = (A@east + A@west)/2;

Fragmented View

def main() {
var n: int =1000;
var locN: int =n/numProcs;
var a, b: [0..locN+1] real ;

. if  (iHaveRightNeighbor) {
i send (right, a(locN));
! recv (right, a(locN+1));

if  (iHaveLeftNeighbor) {
send (left, a(1));
recv (left, a(0));

forall i in 1.locN {
b(i) = (a(i-1) + a(i+1))/2;

-
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Data Parallelism: Other Domains (e

| Data Parallelism

(10)

0)

- 0 0 0 0 =) 0 O

u a a a a a

u a a a a a

u a a a a a

u a a a a a FFFFH FFH

dense (10.24) strided (10.24) sparse (10.24)
“steve”
“mary”
L “wayne”
associative “david”
sohn”
“samuel”
“brad”
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Data Parallelism: Domain Uses

Domains are used to declare arrays...

u O O O O O TTTT T T T TI T T T T TITTITTTTTTT
] o o o o o
] o o o o o
] o o o o o
] o o o o o FFFFF‘ FFF‘
“steve”
“mary”
“wayne”
“david”
“john”
“samuel”
“brad”
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Data Parallelism: Domain Uses (e
...to iterate over index sets...
forall ij in StrDom {
DnsArr(ij) += SpsArr(ij);
}
n::I:I::u::I:I::: j S S S S S W
ul [m] [m] [m] [m] [m]
ul [m] [m] [m] [m] [m]
SiEEnamEn) ni P o o o oo SEREnARmEREREEEnRRE
“steve”
“mary”
“wayne”
“david”
“john”
“samuel”
“brad”
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Data Parallelism: Domain Uses

...to slice arrays...
DnsArr[StrDom] += SpsArr[StrDom];

I::I:IIIHZIIII::: o o o o o
I m] m] m] m] m]
I m] m] m] m] m]
I m] m] m] m] m]
::::H:::H H p O O O O O
steve
mary’
‘wayne
david”
john”
'samuel
‘brad”
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Data Parallelism: Domain Uses W
...and to reallocate arrays
StrDom = DnsDom by (2,2);
SpsDom += genEquator();
P OO0 Q0000 OooOooOonQg 0 0 O
PoOoOopOoOoooOoo
gggggggggggg TTTTTTTTITTITITITITITTTTTITTTT
PoOoOopOoOoooOoo ‘l'l'l'FFFFH'I’l‘I’l'FFH‘I’l‘I
“steve”
“mary”
“wayne”
“david”
“john”
“samuel”
“brad”
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Locality: Locales

locale: architectural unit of locality

Represents both a processor and local memory

Threads within a locale have ~uniform accesscallmemory
Memory within other locales is accessible, b ptice

e.g., a multicore processor or SMP node could be aéocal

R
clejel@

mmEm
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Locality: Locales

User specifies # locales on executable command-line
prompt> myChapelProg —nl=8

Chapel programs have built-in locale variables:
config const numLocales: int ;
const LocaleSpace =[0..numLocales-1],

Locales: [LocaleSpace] locale; n.
1]z]ala]s]o]r]
Programmers can create their own locale views:
var CompGrid = Locales.reshape([1..GridRows,

1..GridCols]); [o]1]2]s]
(4 {s]e]7]
var TaskALocs = Locales[..numTaskALocs];
var TaskBLocs = Locales[numTaskALocs+1..]; n
2{a]als]o]7
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Locality: Task Placement

on clauses: indicate where tasks should execute

Either in a data-driven manner...

computePivot(lo, hi, data);

cobegin  {
on data(lo) do Quicksort(lo, pivot, data);
on data(pivot) do Quicksort(pivot, hi, data);
}
...or by naming locales explicitly
n computeTaskA()
cobegin { computeTaskB()
on TaskALocs do computeTaskA(...); n computeTaskC()

on TaskBLocs do computeTaskB(...);
on Locales(0) do computeTaskC(...);

}
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Locality: Domain Distribution

Domains may be distributed across locales
var D: domain (2) distributed Block on CompGrid =...;

. pEaA EEEEEN
"aaEAaE b

D -~ CompGrid

A distribution implies...
...ownership of the domain’s indices (and its arrajasirents)
...the default work ownership for operations on thendms/arrays

Chapel provides...
...a standard library of distributions (Block, RecuesBisection, ...)
...the means for advanced users to author their ogtritilitions
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Locality: Domain Distributions

A distribution must implement
— The mapping from indices to locales
— The per-locale representation of domain indicesaaray elements
— The compiler’s target interface for Ilowering glbliw operations

O E O TTTT T T I T T TTITITTTTTTT]T
o o
o.nof. [ S ]
B poao | 1
B p @ b e s
1 1 1
"steve”
“mary”
“wayne”
_|_|"david”
“john”
 “pete”
"peg’
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Locality: Distributions Overview

Distributions define a mapping

— From the user’s global view operations to therfiagted implementation
for a distributed memory machine

Users can implement custom distributions
— Written using task parallel features, on claudesyains/arrays
— Must implement standard interface:
— Allocation/reallocation of domain indices and array elements
— Mapping functions (e.g., index-to-locale, index-to-value)
— Iterators: parallel/serial x global/local
— Optionally, communication idioms

Chapel’s standard library of distributions
— Written using the same mechanism as user-defirsttbdtions
— Tuned for different platforms to maximize performa
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Distributions vs. Domains

Why distinguish between distributions and domains?
Why do distributions map an indggace rather than a fixed index set?
A: To permit several domains to share a single diginh
— Amortizes the overheads of storing a distribution
— Supports trivial domain/array alignment and coepdptimizations

const D . ...distributed B1=1[1..8], __

outerD:  ...distributed B1=10..9], —

innerD:  subdomain (D) =[2..7],

slideD: subdomain D) =[4..6];

Shared distributions
support trivial alignmen
of these domains
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Distributions vs. Domains

Why distinguish between distributions and domains?
Why do distributions map an indggace rather than a fixed index set?
A: To permit several domains to share a single digioh
— Amortizes the overheads of storing a distribution
— Supports trivial domain/array alignment and coepdptimizations

const D . ...distributed B1=1[1..8],
outerD: ...distributed B1=10..9], m
innerD:  subdomain (D) =[2..7], D:ED:ED:ED
slideD: subdomain (D) =[4..6]; D:ED:D
a
When each domain is
given its own distribution
the compiler cannot reasd
CS380P Lecture 19 about alignment of indice; 32
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Recall the NAS MGrprj3 Stencil in ZPL

The Issue: 27 directions

procedure rprj3( var S,R:[,] double ;
d: array []of direction );
begin
S:= * R
+ 0.25 *(R@7d[ 1, 0,0]+ R@"[ 0, 1, 0] + R@7d[ 0, 0, 1]
R@"d[-1, 0, 0] + R@"d[ 0,-1, 0] + R@"d[ 0, 0,-1])
+ 0125 *(R@"d[1,1,0]+R@"d[1,0,1] + R@"d[O0, 1, 1]
R@"d[ 1,-1, 0] + R@7d[ 1, 0,-1] + R@7d[ 0, 1,-1] +
R@"d[-1, 1, 0] + R@7d[-1, O, 1] + R@"d[ 0,-1, 1] +
R@"d[-1,-1, 0] + R@~d[-1, 0,-1] + R@"d[ 0,-1,-1])
+ 0.0625 *(R@7[1,1,1]+R@"d[1,1,-1] +
R@"d[ 1,-1, 1] + R@"d[ 1,-1,-1] +
R@"d[-1, 1, 1] + R@"d[-1, 1,-1] +
R@"d[-1,-1, 1] + R@"d[-1,-1,-1]);
end;
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33

NAS MG rprj3 stencil in Fortran+MPI

i
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NAS MG rprj3 stencil in Chapel

Chapel solution
— Exploits first class domains

def rpri3(s, R){ .

const Stencil =[-1..1, -1..1, -1..1],

w: [0..3] real =( , 0.25, 0.125, 0.0625),
w3d = [(i,j,k) in  Stencil] w((i!=0) + (j!=0) + (k'=0));
forall ijk in S.domain do
S(ijk) = + reduce [offset in  Stencil]
(w3d(offset) * R(ijk + offset*R.stride));

}
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Summary
Generality

— Chapel extends the notion of data parallelism bdytense arrays
— (Some features not yet implemented, but the cdadi#pvithin the
design)
— Chapel supports task parallelism as well as datallplism

Philosophical difference from ZPL
— Gives up the notion of a strict performance model
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Next Time

Reading
— None

Assignment 6
— Due Monday April 8 11:59pm
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