April 1, 2013

Chapel Generalizes ZPL

Extends first class index sets
— Unifies local and distributed arrays A

— Generalizes the idea to support richer data tggosts,
graphs, maps)

> No syntactic

Relaxes constraints on array alignment performance model

— Preserves compiler’s ability to reason about &lign
arrays

J
Supports user-defined distributions

Supports more general parallelism

CS380P Lecture 19 Chapel 1

Chapel Goals

Goals
— Supportgeneral parallel programming

CS380P Lecture 19 Chapel 2

Calvin Lin, The University of Texas at Austin 1

April 1, 2013

General Parallel Programming

Should be able to express any parallel computation
— Should never hit a limitation requiring the usereturn to MPI

Supports both data-parallelism and task-parallelism
— As well as the ability to compose these naturally

Provides multiple levels of software parallelism
— Module-level, function-level, loop-level, stateréevel, ...

Supports general levels of hardware parallelism
— Inter-machine, inter-node, inter-core, vectorzatimultithreading, ...

CS380P Lecture 19 Chapel 3

Chapel Goals (cont)

Goals

Supportgeneral parallel programming

Provide global view abstractions

Provide support for locality

Reduce gap between mainstream languages andeptaatjuages

CS380P Lecture 19 Chapel 4

Calvin Lin, The University of Texas at Austin 2

April 1, 2013

History— High Productivity Computing Systems Program

DARPA HPCS Program (2002)
— Realization that programmer productivity is catic
— Sought to increase programmer productivity by 192®10
— Productivity = Performance +
Programmability +(|ncludes both hardware
Portability + and language design
Robustness

Phased competition
— Phase 2 (2003-2006)
— Cray (Chapel)
— IBM (X10)
— Sun (Fortress)
— Phase 3 (2006-2010)
— Cray, IBM

CS380P Lecture 19 Chapel 5

Chapel’s Productivity Goals

Vastly improve programmability over current languages/models
— Writing parallel codes
— Reading, modifying, porting, tuning, maintainimyolving them

Support performance at least as good as MPI
— Competitive with MPI on generic clusters
— Better than MPI on more capable architectures

Improve portability compared to current languages/models
— As ubiquitous as MPI, but with fewer architectumasumptions
— More portable than OpenMP, Unified Parallel C, &oay Fortran, ...

Improve code robustnessia improved semantics and concepts
— Eliminate common error cases altogether
— Better abstractions to help avoid other errors

CS380P Lecture 19 Chapel 6

Calvin Lin, The University of Texas at Austin 3

April 1, 2013

Previous Languages— Two Extremes
OpenMP
ZPL Higher-Level
Abstractions
Expose P
Implementing MPI
Mechanisms
Target Machine BITEECE Target Machine
“Why is everything so painful?” “Why do my hands feel tied?”
CS380P Lecture 19 Chapel 7

Multi-Resolution Language Design

The Chapel approach
— Allow the language to be used at multiple levélalzstraction
— Provide high-level features and automation forvemience
— Provide the ability to drop down to lower, morenual levels
— Use appropriate separation of concerns to keege tlagers clean

language concepts

< Dlstrlbutlon.s >
Data parallelism

task scheduling
Stealable Tasks = zhnisiteteje memory management

Suspendable Tasks Garbage Collection
Target Machine Region-based
ead per Ta Malloc/Free

CS380P Lecture 19 Chapel 8

Calvin Lin, The University of Texas at Austin 4

April 1, 2013

Chapel In a Nutshell

Base language
— Standard stuff: types, expressions, statements, functions, modules
— Object-orientation: value- and reference-based classes (optional)
— lterators: functions that generate a stream of return values
— Latent types: ability to omit types of variables, arguments, etc.

Task parallelism
— Task creation: structured and unstructured task creation
— Synchronization: through sync variables, transactional memory

CS380P Lecture 19 Chapel 9
Chapel In a Nutshell (cont) i)

Data parallelism
— Data structures: global view of dense, sparse, associative arrays
— Operators: forall loops, promotion of scalar operators/functipn.

Locality
— Locales:language concept for reasoning about machine tgcali
— On clauses:ability to place tasks, variables on specific lesal
— Distributions: recipes for implementing distributed arrays on lesa

CS380P Lecture 19 Chapel 10

Calvin Lin, The University of Texas at Austin 5

Task Parallelism— Creating Tasks

Spawn a task: begin
begin DoThisTask();
WhileContinuing();
TheOriginalThread();

Wait for tasks to complete:sync
— Wait for all tasks created within a dynamic scope

sync {
begin treeSearch(root);

}

def treeSearch(node) {
if node ==nil then return
begin treeSearch(node.right);
begin treeSearch(node.left);

}

CS380P Lecture 19 Chapel 11

Task Parallelism: Task Coordination

Full/Empty variables
— Maintain full/lempty state along with a value

var result$: sync real ;// result is initially enpty

sync {
begin ... =result$; /'l block until full, |eave enpty
begin result$=...; /'l block until enpty, |eave full

}

result$.readXX(); /'l read value, |eave state unchanged;

/1 other variations also supported

CS380P Lecture 19 Chapel 12

Calvin Lin, The University of Texas at Austin

April 1, 2013

Task Parallelism: Task Coordination

single-assignment variables — Write once only
var result$: single real = begin f(); //

total += result$; /1 block until f()

Atomic sections
atomic {
newnode.next = insertpt;
newnode.prev = insertpt.prev;
insertpt.prev.next = newnode;
insertpt.prev = newnode;

CS380P Lecture 19 Chapel

initially enpty

/'l do sone other things

has conpl et ed

13

Task Parallelism: Structured Tasks

Cobegin — Create one task per statement
computePivot(lo, hi, data);

} // inplicit join here

Coforall — Create one task per iteration
coforall e in Edges {
exploreEdge(e);
} // inmplicit join here

CS380P Lecture 19 Chapel

cobegin { computeTaskA(...);
Quicksort(lo, pivot, data); computeTaskB(..
Quicksort(pivot, hi, data); computeTaskC(..

cobegin {
)i

)i
Y /7 inplicit join

14

Calvin Lin, The University of Texas at Austin

April 1, 2013

Domains

domain: a first-class index set

var m=4,n=8;

var D: domain (2) =[1..m, 1..n];

D
CS380P Lecture 19 Chapel 15
Domains (]

| Data Parallelism

domain: a first-class index set

var m=4,n=28;

var D: domain (2) =[1..m, 1..n];
var Inner: subdomain (D) = [2..m-1, 2..n-1];

= Inner

CS380P Lecture 19 Chapel

16

Calvin Lin, The University of Texas at Austin

April 1, 2013

Domains: Some Uses

Declaring arrays:
var A, B:[D] real ; 11
A
B
lteration (sequential or parallel): ADEREE
for ij in Inner{..} b
or: forall ij in Inner{...} ‘i?-----
Jo[e[e[e[e]e
p Ll
Array Slicing:
A[Inner] = B[lnner]; -
Alnner Blnner
PR
Array reallocation: 1}
D =[1..2*m, 1..2*n]; [}
A
CS380P Lecture 19 Chapel B 17
Global View (Chapel) vs. Fragmented View
Example
— 3 point stencil of a vector
. Fragmented View
Global View def main() {
\ var n: int =1000;
def main() { var locN: int =n/numProcs;
var n: int =1000; var a, b: [0..locN+1] real ;
var a, b:[1..n] real ; i) . .
. I (iHaveRightNeighbor) {
forall i in 2.n-1{ i send (right, a(locN));
b(i) = (a(i-1) + a(i+1))/2; ; , recv (right, a(locN+1));
} ! if (iHaveLeftNeighbor) {
send (left, a(1));
B = (A@east + A@west)/2; recv (left, a(0));
}
forall i in 1.locN {
b() = (a(-1) + a(i+1))/2;
1
CS380P Lecture 19 Chapel 18

Calvin Lin, The University of Texas at Austin

April 1, 2013

Global View (ZPL) vs. Fragmented View

Example
— 3 point stencil of a vector
Global View
begin

region R=[1.n];
var n:int

A, B : [R] real;

procedure main()

[R] begin
B = (A@west+A@east)/2;
end;

end;

B = (A@east + A@west)/2;

Fragmented View

def main() {
var n: int =1000;
var locN: int =n/numProcs;
var a, b: [0..locN+1] real ;

. if (iHaveRightNeighbor) {
i send (right, a(locN));
! recv (right, a(locN+1));

if (iHaveLeftNeighbor) {
send (left, a(1));
recv (left, a(0));

forall i in 1.locN {
b(i) = (a(i-1) + a(i+1))/2;

-

CS380P Lecture 19 Chapel 19
Data Parallelism: Other Domains (e

| Data Parallelism

(10)

0)

- 0 0 0 0 =) 0 O

u a a a a a

u a a a a a

u a a a a a

u a a a a a FFFFH FFH

dense (10.24) strided (10.24) sparse (10.24)
“steve”
“mary”
L “wayne”
associative “david”
sohn”
“samuel”
“brad”
CS380P Lecture 19 Chapel 20

Calvin Lin, The University of Texas at Austin

April 1, 2013

10

Data Parallelism: Domain Uses

Domains are used to declare arrays...

u O O O O O TTTT T T T TI T T T T TITTITTTTTTT
] o o o o o
] o o o o o
] o o o o o
] o o o o o FFFFF‘ FFF‘
“steve”
“mary”
“wayne”
“david”
“john”
“samuel”
“brad”
CS380P Lecture 19 Chapel 21
Data Parallelism: Domain Uses (e
...to iterate over index sets...
forall ij in StrDom {
DnsArr(ij) += SpsArr(ij);
}
n::I:I::u::I:I::: j S S S S S W
ul [m] [m] [m] [m] [m]
ul [m] [m] [m] [m] [m]
SiEEnamEn) ni P o o o oo SEREnARmEREREEEnRRE
“steve”
“mary”
“wayne”
“david”
“john”
“samuel”
“brad”
CS380P Lecture 19 Chapel 22

Calvin Lin, The University of Texas at Austin

April 1, 2013

11

Data Parallelism: Domain Uses

...to slice arrays...
DnsArr[StrDom] += SpsArr[StrDom];

I::I:IIIHZIIII::: o o o o o
I m] m] m] m] m]
I m] m] m] m] m]
I m] m] m] m] m]
::::H:::H H p O O O O O
steve
mary’
‘wayne
david”
john”
'samuel
‘brad”
CS380P Lecture 19 Chapel
Data Parallelism: Domain Uses W
...and to reallocate arrays
StrDom = DnsDom by (2,2);
SpsDom += genEquator();
P OO0 Q0000 OooOooOonQg 0 0 O
PoOoOopOoOoooOoo
gggggggggggg TTTTTTTTITTITITITITITTTTTITTTT
PoOoOopOoOoooOoo ‘l'l'l'FFFFH'I’l‘I’l'FFH‘I’l‘I
“steve”
“mary”
“wayne”
“david”
“john”
“samuel”
“brad”
CS380P Lecture 19 Chapel

Calvin Lin, The University of Texas at Austin

April 1, 2013

12

Locality: Locales

locale: architectural unit of locality

Represents both a processor and local memory

Threads within a locale have ~uniform accesscallmemory
Memory within other locales is accessible, b ptice

e.g., a multicore processor or SMP node could be aéocal

R
clejel@

mmEm

CS380P Lecture 19 Chapel 25

Locality: Locales

User specifies # locales on executable command-line
prompt> myChapelProg —nl=8

Chapel programs have built-in locale variables:
config const numLocales: int ;
const LocaleSpace =[0..numLocales-1],

Locales: [LocaleSpace] locale; n.
1]z]ala]s]o]r]
Programmers can create their own locale views:
var CompGrid = Locales.reshape([1..GridRows,

1..GridCols]); [o]1]2]s]
(4 {s]e]7]
var TaskALocs = Locales[..numTaskALocs];
var TaskBLocs = Locales[numTaskALocs+1..]; n
2{a]als]o]7
CS380P Lecture 19 Chapel 26

Calvin Lin, The University of Texas at Austin

April 1, 2013

13

April 1, 2013

Locality: Task Placement

on clauses: indicate where tasks should execute

Either in a data-driven manner...

computePivot(lo, hi, data);

cobegin {
on data(lo) do Quicksort(lo, pivot, data);
on data(pivot) do Quicksort(pivot, hi, data);
}
...or by naming locales explicitly
n computeTaskA()
cobegin { computeTaskB()
on TaskALocs do computeTaskA(...); n computeTaskC()

on TaskBLocs do computeTaskB(...);
on Locales(0) do computeTaskC(...);

}

CS380P Lecture 19 Chapel 27

Locality: Domain Distribution

Domains may be distributed across locales
var D: domain (2) distributed Block on CompGrid =...;

. pEaA EEEEEN
"aaEAaE b

D -~ CompGrid

A distribution implies...
...ownership of the domain’s indices (and its arrajasirents)
...the default work ownership for operations on thendms/arrays

Chapel provides...
...a standard library of distributions (Block, RecuesBisection, ...)
...the means for advanced users to author their ogtritilitions

CS380P Lecture 19 Chapel 28

Calvin Lin, The University of Texas at Austin 14

April 1, 2013

Locality: Domain Distributions

A distribution must implement
— The mapping from indices to locales
— The per-locale representation of domain indicesaaray elements
— The compiler’s target interface for Ilowering glbliw operations

O E O TTTT T T I T T TTITITTTTTTT]T
o o
o.nof. [S]
B poao | 1
B p @ b e s
1 1 1
"steve”
“mary”
“wayne”
||"david”
“john”
 “pete”
"peg’
CS380P Lecture 19 Chapel 29

Locality: Distributions Overview

Distributions define a mapping

— From the user’s global view operations to therfiagted implementation
for a distributed memory machine

Users can implement custom distributions
— Written using task parallel features, on claudesyains/arrays
— Must implement standard interface:
— Allocation/reallocation of domain indices and array elements
— Mapping functions (e.g., index-to-locale, index-to-value)
— Iterators: parallel/serial x global/local
— Optionally, communication idioms

Chapel’s standard library of distributions
— Written using the same mechanism as user-defirsttbdtions
— Tuned for different platforms to maximize performa

CS380P Lecture 19 Chapel 30

Calvin Lin, The University of Texas at Austin 15

April 1, 2013

Distributions vs. Domains

Why distinguish between distributions and domains?
Why do distributions map an indggace rather than a fixed index set?
A: To permit several domains to share a single diginh
— Amortizes the overheads of storing a distribution
— Supports trivial domain/array alignment and coepdptimizations

const Ddistributed B1=1[1..8], __

outerD: ...distributed B1=10..9], —

innerD: subdomain (D) =[2..7],

slideD: subdomain D) =[4..6];

Shared distributions
support trivial alignmen
of these domains

CS380P Lecture 19 Chapel

Distributions vs. Domains

Why distinguish between distributions and domains?
Why do distributions map an indggace rather than a fixed index set?
A: To permit several domains to share a single digioh
— Amortizes the overheads of storing a distribution
— Supports trivial domain/array alignment and coepdptimizations

const Ddistributed B1=1[1..8],
outerD: ...distributed B1=10..9], m
innerD: subdomain (D) =[2..7], D:ED:ED:ED
slideD: subdomain (D) =[4..6]; D:ED:D
a
When each domain is
given its own distribution
the compiler cannot reasd
CS380P Lecture 19 about alignment of indice; 32

Calvin Lin, The University of Texas at Austin 16

Recall the NAS MGrprj3 Stencil in ZPL

The Issue: 27 directions

procedure rprj3(var S,R:[,] double ;
d: array []of direction);
begin
S:= * R
+ 0.25 *(R@7d[1, 0,0]+ R@"[0, 1, 0] + R@7d[0, 0, 1]
R@"d[-1, 0, 0] + R@"d[0,-1, 0] + R@"d[0, 0,-1])
+ 0125 *(R@"d[1,1,0]+R@"d[1,0,1] + R@"d[O0, 1, 1]
R@"d[1,-1, 0] + R@7d[1, 0,-1] + R@7d[0, 1,-1] +
R@"d[-1, 1, 0] + R@7d[-1, O, 1] + R@"d[0,-1, 1] +
R@"d[-1,-1, 0] + R@~d[-1, 0,-1] + R@"d[0,-1,-1])
+ 0.0625 *(R@7[1,1,1]+R@"d[1,1,-1] +
R@"d[1,-1, 1] + R@"d[1,-1,-1] +
R@"d[-1, 1, 1] + R@"d[-1, 1,-1] +
R@"d[-1,-1, 1] + R@"d[-1,-1,-1]);
end;

CS380P Lecture 19 Chapel

33

NAS MG rprj3 stencil in Fortran+MPI

i

CS380P Lecture 19

Calvin Lin, The University of Texas at Austin

April 1, 2013

17

April 1, 2013

NAS MG rprj3 stencil in Chapel

Chapel solution
— Exploits first class domains

def rpri3(s, R){ .

const Stencil =[-1..1, -1..1, -1..1],

w: [0..3] real =(, 0.25, 0.125, 0.0625),
w3d = [(i,j,k) in Stencil] w((i!=0) + (j!=0) + (k'=0));
forall ijk in S.domain do
S(ijk) = + reduce [offset in Stencil]
(w3d(offset) * R(ijk + offset*R.stride));

}
CS380P Lecture 19 Chapel 35
Summary
Generality

— Chapel extends the notion of data parallelism bdytense arrays
— (Some features not yet implemented, but the cdadi#pvithin the
design)
— Chapel supports task parallelism as well as datallplism

Philosophical difference from ZPL
— Gives up the notion of a strict performance model

CS380P Lecture 19 Chapel 36

Calvin Lin, The University of Texas at Austin 18

April 1, 2013

Next Time

Reading
— None

Assignment 6
— Due Monday April 8 11:59pm

CS380P Lecture 19 Chapel 37

Calvin Lin, The University of Texas at Austin 19

