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ABSTRACT  
When it comes to software that runs on devices as varied as cell 
phones, PDAs and desktops, one size does not fit all.  This paper 
describes how mixin layers, a kind of nested generic type, can be 
used to implement a graphical user interface library that can be 
configured to run on platforms with widely dissimilar 
capabilities.  We describe the language support needed to 
incrementally build software in layers, and we describe how 
crosscutting concerns can be encapsulated within a layer.  We 
then show how layers can be reconfigured to meet changing 
requirements.  We also show how a new design pattern, the 
Sibling pattern, can be used with mixin layers to coordinate 
changes to multiple classes in the same inheritance hierarchy.  
When used appropriately, the Sibling pattern increases our 
ability to separate design concerns and to reuse code.   

Keywords 
Parametric polymorphism, mixin, layers, design pattern, GUI, 
embedded software. 

1. INTRODUCTION 
For many years, software portability meant running software on 
different general-purpose computers, each with its own operating 
system and architecture.  Software developers minimized the cost 
of supporting multiple platforms by reusing the same code, 
design, and programming tools wherever possible.  Today, 
miniaturization has led to a wide diversity of computing devices, 
including embedded systems, cell phones, PDAs, set-top boxes, 
consumer appliances, and PCs.  Though these devices are 
dissimilar in hardware configuration, purpose and capability, the 
same economic forces that necessitated software reuse among 
general-purpose computers are now encouraging reuse across 
these different classes of devices. 

To make it easier to reuse code across devices, a number of 
standardization efforts are defining new Java [2] runtime 

environments [23].  These environments are customized for 
various classes of devices while they still remain as compatible 
as possible with the Java language, JVM, and existing libraries.  
For example, Sun’s KVM [32][34] virtual machine, which is 
designed to run on devices with as little as 128K of memory, has 
removed a number of Java language features, including floating 
point numbers and class finalization, and a number of JVM 
features, such as native methods and reflection.  In addition, the 
runtime libraries and their capabilities have also been reduced to 
accommodate limited memory devices.  This redesign of the Java 
libraries leads to two questions that directly concern code reuse 
and the ability to support crosscutting concerns:     

�  How do we scale an API to accommodate different device 
capabilities? 

�  How do we reuse the same library code across different 
devices? 
 

This paper explores the above questions by designing and 
implementing a graphical user interface (GUI) that works on cell 
phones, Palm OS™ devices [29], and PCs.  The challenge is to 
provide a single GUI code-base that runs on all these devices yet 
accommodates the input, output, and processing capabilities of 
each device.  For example, a device may or may not support a 
color display, so in building our libraries we would like to be 
able to easily include or exclude color support.  Thus, we need a 
way to encapsulate features that crosscut multiple classes, such 
as support for color, to a degree that is not possible with standard 
programming technologies.  Our solution uses mixins [8] and 
mixin layers [31], along with language support for their use.   

The goal of this paper is to test the hypothesis that mixins and 
mixin layers provide a convenient mechanism for encapsulating 
crosscutting concerns.  We test this hypothesis by building 
Fidget, a flexible widget library, and showing that its design and 
implementation are effective.  We show that Fidget can be easily 
customized for various execution environments and that Fidget 
libraries are easy to use.  The main contributions of this paper 
are as follows: 

1. We demonstrate how mixins, supplemented by a number of 
supporting language features, can be used to build 
customizable software capable of running on disparate 
platforms.  

2. We define the Sibling design pattern and demonstrate how 
it can increase code modularity. 
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3. We add to the growing body of evidence that mixins, mixin 
layers, and the programming model of layered refinement 
[5] are effective in increasing code reuse.   

This paper proceeds as follows.  Section 2 defines the problem in 
more detail.  Section 3 describes our language support for 
mixins.  Section 4 discusses the design of the Fidget library and 
the components from which it’s built.  Section 5 describes how 
Fidget libraries are built and used.  Section 6 discusses our 
approach to component software design.  Finally, we present 
related work and conclusions. 

2. THE PROBLEM 
This section describes the problem of code reuse in more detail, 
sketches our solution, and explains how we will evaluate our 
solution. 

In building a graphics library that accommodates dissimilar 
devices, we would like to mix and match features depending on 
the target execution environment, where a feature is some 
characteristic or attribute of a GUI such as color support.  This 
goal of flexible feature selection highlights two requirements of 
reusable code: (1) modularity and (2) easy composition.  
Specifically, the code for a feature should be completely 
encapsulated in a module, and these modules should be easy to 
compose with one another. 

Unfortunately, current programming technologies do not achieve 
the first goal of completely encapsulating feature 
implementations.  In object-oriented languages like Java, the 
basic unit of encapsulation and reuse is the class.  Once the 
organization of classes in a program is fixed, it is always possible 
to define new features whose implementations crosscut the 
existing set of classes [26][37].  For example, it is common for 
features that add global properties to a program, such as security, 
thread safety, fault tolerance, or performance constraints, to 
affect the code in multiple classes.  Generally speaking, object-
oriented programs consist of sets of collaborating classes [19], 
and changes to one class often require coordinated changes to 
other classes.   

In Fidget, for example, color support is an optional crosscutting 
feature that would break encapsulation and limit reuse if 
standard object-oriented techniques were used.  There are two 
reasons for this.  First, color support cannot simply be inherited 
from a superclass because individual widgets, implemented in 
their own classes, provide specialized color processing.  Thus, 
the code implementing color support is scattered [21] among 
multiple widget classes, making the code difficult to reuse and 
difficult to remove.  Second, widget classes commingle code for 
color support with that of other features.  This tangling [21] of 
feature code in a class makes the class more complex, more 
interdependent with other classes and, ultimately, more difficult 
to reuse. 

Current object-oriented programming languages such as Java also 
do not achieve the second goal of making features easy to 
compose.  Java’s support for variation depends primarily on 
single inheritance and subtype polymorphism, which do not scale 
well when there are a large number of optional features.  To 
understand this shortcoming, consider the possible features that a 
text field widget might have:  the ability to query or change the 

font; to echo input; to choose the echo character set; to allow for 
selection, cut, paste, drag and drop; to support resizing; and to 
support different styles of event handling—the list goes on.  By 
encapsulating each optional feature in its own class, we could 
build a text field widget by creating a class hierarchy that 
contains a base class and selected feature classes in linear order.  
The result would be a fixed class hierarchy that supports the 
selected text field features.  However, different combinations of 
features would require different hierarchies.  In some cases these 
new hierarchies would require existing feature classes to have 
different superclasses, which would lead to a replication of code 
that quickly becomes unmanageable as the number of different 
feature combinations increases [6]. 

2.1 Our Solution 
In our solution, Fidget GUIs are constructed by plugging together 
large-scale components, where each component represents the 
implementation of a single feature and where each component 
may contain code for multiple classes.  The language we use, 
Java Layers [13][25], extends the compositional capability of 
Java to better support large-scale component programming.  

Java Layers (JL) extends Java by supporting constrained 
parametric polymorphism [12] and mixins [8].  Parametric 
polymorphism enhances reuse by allowing the same generic 
algorithm to be applied to different types.  As with most 
proposals [1][9][24] for adding generic types to Java, JL’s 
implementation of parametric polymorphism differs from C++’s 
templates [35] by allowing type parameters to be constrained. 

Mixins are types whose supertypes are specified parametrically.  
Mixins further enhance reuse over parametric polymorphism by 
allowing the same subtype specialization to be applied to 
different types.  In Section 3, we describe JL’s support for mixins 
and its language features that make programming with mixins 
more convenient.  

Mixin layers [30][31] are a special form of mixins that can be 
used to coordinate changes to multiple collaborating classes.  
Mixin layers are mixins that contain nested types, which can 
themselves be mixins.  We describe mixin layers in more detail 
in the next section.  In Section 4, we describe Fidget’s mixin 
layers and how they are used to implement the Sibling design 
pattern, which coordinates changes among collaborating classes 
and their superclasses. 

2.2 Methodology 
We evaluate our approach by using mixins in JL to design and 
implement a number of graphics library features.  We then 
compose these features to generate specialized instances of 
Fidget libraries for various devices.  The generated graphics 
libraries are not complete GUIs but are prototypes used to 
validate our design approach.  So, for example, we provide some 
basic look-and-feel options and describe how a complete 
platform-specific skin would be implemented using our design, 
but we do not provide the complete implementation. 

We also demonstrate that Fidget libraries can be easily 
configured for cell phones, Palm OS devices, and PCs.  We use 
the Fidget libraries to implement simple applications, and we 
compare application development using Fidget against the use of 
a more conventional GUI library.  Since our goal is to evaluate 
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the usefulness of Java Layers for library and application 
development, we do not write low-level graphics code to 
interface directly with each device’s operating system.  Instead, 
we scaffold our code on top of a small subset of the Java graphics 
library present on each device. 

Our target PC environment is standard edition Java 1.3.1 and its 
development kit (SDK) [33].  We use the Java 2 Micro Edition 
(J2ME) Wireless Toolkit 1.0.3 Beta [23] for our cell phone and 
Palm environments.  Our Palm OS tests are run on the Palm OS 
Emulator version 3.2 [29]. 

3. SUPPORT FOR MIXINS 
To provide background for the subsequent discussion, this 
section explains the benefits of programming with mixins, 
describes the stepwise refinement programming methodology, 
and describes how Java Layers provides language support for 
stepwise program refinement. 

3.1 Mixins 
Mixins are useful because they allow multiple classes to be 
specialized in the same manner, with the specializing code 
residing in a single reusable class.  For example, suppose we 
wish to extend three unrelated classes–Car , Box and House—to 
have a "locked" state by adding two methods, lock()  and 
unlock() .  Without mixins, we would define subclasses of 
Car , Box, and House  that each extended their respective 
superclasses with the lock()  and unlock()  methods.  The 
lock code would be replicated in three places.  With mixins, we 
would instead write a single class called Lockable  that could 
extend any superclass, and we would instantiate the Lockable  
class with Car , Box, and House .  The lock()  and 
unlock()  methods would only be defined once.  In JL syntax, 
the Lockable  mixin would be defined as follows: 

class Lockable<T> extends T { 
 private boolean _locked; 
 public lock(){_locked = true;} 
 public unlock(){_locked = false;} }  

Mixins are parametric types whose instantiations generate new 
class hierarchies.  For example, Lockable<Box>  generates 
the following hierarchy: 

 

 

 

 

In its current form, Lockable ’s capabilities are limited because 
nothing can be presumed about the type that gets bound to the 
type parameter T.  However, constrained parametric 
polymorphism restricts the types used in instantiations.  For 
example, the redefinition of Lockable  below guarantees that 
T’s binding implements the physical object interface (not 
shown), which means members of that interface can be used 
within Lockable  in a type-safe manner.  Similar constraints 
can be specified using an extends  clause [25].    

class Lockable<T implements PhysicalObject> 
 extends T {…} 

3.2 Stepwise Refinement 
The Fidget design is based on the GenVoca software component 
model [5].  This model encourages a programming methodology 
of stepwise refinement in which types are built incrementally in 
layers.  The key to stepwise refinement is the use of components, 
which we call layers, that encapsulate the complete 
implementation of a single feature.  Stepwise refinement allows 
custom applications to be built by mixing and matching the 
features they need.   

Continuing with our previous example, suppose we define the 
Colorable  and Ownable  mixins in the same way that we 
defined the Lockable  mixin.  Colorable  manages a 
physical object’s color and Ownable  manages ownership 
properties.  We can now create a variety of physical objects that 
support various combinations of features: 

Colorable<Ownable<Car>> 
Colorable<Lockable<Box>> 
Lockable<Ownable<Colorable<House>>>   

We can think of each of the above instantiations as starting with 
the capabilities of some base class, Car , Box or House , and 
refining those capabilities with the addition of each new feature.  
In the end, a customized type supporting all the required features 
is produced.  Mixins can be used in this way to provide some of 
the flexibility of multiple inheritance while avoiding its pitfalls 
[36]. 

3.3 Mixin Layers 
Mixin layers are mixins that contain nested types.  A single 
mixin layer can implement a feature that crosscuts multiple 
classes.  To see how this works, consider a simplified version of 
the basic Fidget class and the mixin layer that adds color support: 

class BaseFidget<> { 
  public class Button {…} 
  public class CheckBox {…} …} 

class ColorFidget<T> extends T { 
  public class Button extends T.Button {…} 
  public class CheckBox  
   extends T.CheckBox {…} …}  

BaseFidget  takes no explicit type parameters and contains 
two nested classes.  In Section 4.3, we explain why some 
parameterized classes don’t have explicit type parameters.  The 
main point here, however, is that upon instantiation, the behavior 
of each of the nested classes in BaseFidget  is extended by its 
corresponding class in ColorFidget .  In this way, feature 
code scattered across multiple classes is encapsulated in a single 
mixin layer. 

3.4 Java Layers 
Mixins provide a powerful way to compose software, but to avoid 
composing incompatible features, mechanisms are needed to 
restrict their use.  Type parameter constraints are one mechanism 
for restricting the use of mixins to avoid incompatibilities.  To 
better support mixin programming, JL extends the semantics of 
constrained type parameters to work with mixin layers, which we 
now describe.    

JL’s notion of deep conformance extends Java’s idea of interface 
constraints to include nested interfaces.  Normally, a Java class 

Box 

Lockable<Box> 
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that implements an interface is not required to implement the 
interface’s nested interfaces.  In Figure 1, the use of the deeply 
modifier in JL enforces the condition that for each nested 
interface in FidgetTkIfc , the revised BaseFidget  must 
define a public nested class with the same name, and that nested 
class must implement the corresponding interface.  Thus, 
BaseFidget.Button implements Fidget-
TkIfc.Button . 

When deeply is used in a mixin class’s extends  clause, the 
superclass’s public structure is preserved in the instantiated 
subclass.  By preserved, we mean that if a class nested in a mixin 
has the same name as a public class nested in the superclass, 
then the mixin’s nested class inherits from the superclass’s 
nested class.  In the ColorFidget  mixin in Figure 1, Button  
and CheckBox  must subclass their respective superclass 
members because (1) ColorFidget  deeply extends its 
superclass and, (2) any actual superclass must contain public 
Button  and CheckBox  classes due to the constraint on type 
parameter T.        

interface FidgetTkIfc { 
  interface Button {…} 
  interface CheckBox {…} …} 

class BaseFidget<>  
 implements FidgetTkIfc deeply { 
  public class Button  
   implements FidgetTkIfc.Button {…} 
  public class CheckBox  
   implements FidgetTkIfc.CheckBox {…} …} 

class ColorFidget 
 <T implements FidgetTkIfc deeply>  
 extends T deeply { 
  public class Button extends T.Button {…} 
  public class CheckBox  
   extends T.CheckBox {…} …}       

Figure 1 – Deep Conformance 

Deep conformance was originally defined by Smaragdakis [30], 
and the details of its JL implementation are available elsewhere 
[25].  The actual ColorFidget  mixin layer contains code for 
multiple classes and completely implements Fidget’s color 
display support.  Deep conformance facilitates Fidget code 
composition by guaranteeing that a library’s nested structure is 
preserved as new features are added. 

Type constraints alone, however, cannot restrict all undesirable 
mixin compositions.  The ability to restrict how mixins are 
ordered, or how many times a mixin can appear in an 
instantiation, requires a higher level of checking than is possible 
using OO type systems.  We call this extended capability 
semantic checking.  JL’s support for semantic checking is part of 
our ongoing research and is outside the scope of this paper 
[13][25].  

This ends our background discussion of JL.  We will describe 
other JL features as they are encountered during our discussion 
of Fidget’s design. 

4. FIDGET DESIGN 
This section describes how the Sibling design pattern is 
implemented using mixin layers and how the notion of 

constructor propagation is useful.  To provide context for this 
discussion, we first discuss Fidget’s architecture and its 
component design. 

4.1 Architecture 
Fidget is structured as a stack of the three architectural layers 
highlighted in Figure 2:  the hardware abstraction layer, the 
kernel layer, and the user layer.  On the bottom, the hardware 
abstraction layer (HAL) interacts with the underlying device’s 
graphics system and is the only Fidget code that is device 
dependent.  On top, the user layer is a thin veneer that provides a 
familiar, non-nested, class interface to application programmers.  
Our discussion focuses on the kernel layer in the middle. 

 

 

 

 

      

 

 

Figure 2 – Fidget's Architecture 

The kernel layer defines all widgets and all optional widget 
features.  The kernel sits on top of the HAL and uses the HAL’s 
drawing and event handling capabilities to create displayable 
widgets.  Fidget widgets are modeled after those of Java’s AWT 
[20][33], so widget classes such as Window, Button and 
TextField serve the same purpose in Fidget as their analogs do in 
AWT.  The kernel implements nine such widgets, which is 
sufficient for our prototyping purposes.  Even though some 
optional features cannot be used with all devices, there is only 
one kernel code-base.  

The Fidget kernel uses a lightweight implementation [20] to 
accommodate devices with constrained memory resources.  
Lightweight widgets do not have associated peer widgets in the 
underlying graphics system, which for Fidget is either the SDK 
or J2ME.  Thus, a Fidget window that displays two buttons and a 
text field creates only one widget, a window, in the underlying 
Java system.  Fidget then draws its own buttons and text field on 
this underlying window. 

4.2 Components 
We now describe the design of the Fidget kernel classes, which 
provide the foundation and optional features for all Fidget GUIs.  
The design is based on the BaseFidget  class introduced in 
Section 3.4, which provides the minimal implementation for each 
widget in a nested class.  The nested widget classes are 
Button , CheckBox , CheckBoxGroup , Label , Panel , 
TextArea , TextComponent , TextField , and Window.   

Optional features are implemented in mixin layers that deeply 
conform to BaseFidget .  These mixin layers can contain code 
for one widget class, or they can implement crosscutting features 
and contain code for more than one widget class.  For example, 
the TextFieldSetLabel  layer affects only one class by 
adding the setLabel()  method to TextField .  Conversely, 
the LightWeightFidget  layer implements lightweight 
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widget support and contains code for most widgets.  Fidget’s 
features are listed below. 

Non-Crosscutting Kernel Mixins 
ButtonSetLabel    – Re-settable Button label 
BorderFidget     – Draws container borders 
CheckboxSetLabel    – Re-settable Checkbox label  
TextComponentSetFont  – Changeable fonts  
TextFieldSetLabel    – Re-settable TextField Label 

Crosscutting Kernel Mixins 
AltLook  – Alternative look and feel  
ColorFidget    – Color display support 
EventBase    – Basic event listeners  
EventFidget    – All event listeners/handlers 
EventFocus    – Focus event handling 
EventKey     – Key event handling 
EventMouse    – Mouse event handling 
LightWeightFidget – Lightweight support 

BaseFidget  also contains two nested classes that serve as 
superclasses for the nested widget classes.  Component  
implements common widget function and is a superclass of all 
widgets.  Container , a subclass of Component , allows 
widgets to contain other widgets.  Window is an example of a 
container widget.  Defining these superclasses in BaseFidget  
has important design consequences, which we now explore. 

4.3 The Sibling Pattern 
To enhance code modularity, the Sibling design pattern uses 
inheritance relationships between classes that are nested in the 
same class.  The pattern itself can be implemented in Java, but 
mixin layers make it more convenient to use.  We begin our 
discussion of this pattern by looking at a problem that occurs 
when certain crosscutting features are implemented with mixin 
layers.  We then show how the Sibling pattern solves this 
problem and how JL language support simplifies the solution.     

class BaseFidget<> 
 implements FidgetTkIfc deeply { 
  public abstract class Component { 
   implements FidgetTkIfc.Component {…} 
  public class Button 
   extends Component 
   implements FidgetTkIfc.Button {…} 
 
class ColorFidget 
 <T implements FidgetTkIfc deeply> 
 extends T deeply { 
  public class Component 
   extends T.Component {…} 
  public class Button 
   extends T.Button {…} …} 
 
ColorFidget<LightWeightFidget<BaseFidget>> 

Figure 3 – Incorrect BaseFidget 

The advantage of nesting Component , Container  and all 
widget classes inside of BaseFidget  is that a single mixin 
layer can affect all these classes.  We re-introduce 
BaseFidget  in Figure 3 above, this time showing the widget 
Button  and its superclass Component .  In Fidget, features 
like support for color modify the behavior of Component  as 
well as its widget subclasses.     

There is, however, a potential pitfall when parent and child 
classes are nested in the same class.  To see the problem, Figure 
3 also depicts the ColorFidget  mixin and an instantiation of 
a Fidget GUI with color support.  The instantiation includes the 
LightWeightFidget  mixin (code not shown), which is 
structured the same as ColorFidget .     

The class hierarchies generated by the instantiation are shown in 
Figure 4.  The enclosing classes form a class hierarchy, as do 
like-named nested classes.  In addition, Button  inherits from 
Component  in BaseFidget .  Notice that 
ColorFidget.Button  does not inherit from 
ColorFidget.Component , which means that the color 
support in the latter class is never used.  As a matter of fact, it 
would be useless for any mixin layer to extend Component  
because no widget will ever inherit from it.   

The inheritance relationship we really want is shown in Figure 5, 
where ColorFidget.Button  inherits from all the Button  
classes and from all the Component  classes in the mixin-
generated hierarchy.  We call this the Sibling pattern, which we 
define as the inheritance pattern in which a nested class inherits 
from the most specialized subclass of one of its siblings.  In 
Figure 5, BaseFidget.Button  inherits from the most 
specialized subclass (ColorFidget.Component ) of its 
sibling (BaseFidget.Component ).   

BaseFidget 

LightWeightFidget 

ColorFidget 

Button Component 

Button Component 

Button Component 

Figure 4 - Incorrect Hierarchy 

Figure 5 – Sibling Pattern Hierarchy 

BaseFidget 
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ColorFidget 
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Button Component 
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The Sibling pattern can be implemented in Java by using a 
distinguished name for the leaf class of all mixin-generated 
hierarchies.  Once this well-known, predetermined name is 
established by programming convention, it can be used in any 
class or mixin in the application.  This solution, however, limits 
flexibility and can lead to name conflicts when different 
instantiations are specified in the same package. 

JL provides a better way to express the Sibling pattern using its 
implicit This type parameter [14].  Parameterized types in JL 
have one implicit type parameter and zero or more explicitly 
declared type parameters.  This is automatically bound to the 
leaf class type in a mixin-generated hierarchy, which provides JL 
with a limited, static, virtual typing [38] capability.    

Figure 6 shows how BaseFidget , which declares no type 
parameters explicitly, uses its implicit This parameter to 
implement the Sibling pattern.  JL binds This to the leaf class in 
the generated hierarchy, which in our example is 
ColorFidget .  The redefined Button  class below now 
inherits from ColorFidget.Component . 

class BaseFidget<>  
 implements FidgetTkIfc deeply { 
  public abstract class Component 
   implements FidgetTkIfc.Component {…} 
  public class Button 
   extends This.Component  
   implements FidgetTkIfc.Button {…} …} 

Figure 6 - Correct BaseFidget 

The Sibling pattern allows a Fidget layer to extend individual 
widget classes and their common superclass simultaneously.  In 
this way, established object-oriented methods of class 
decomposition, in which common function is placed in 
superclasses, are extended to work with mixins layers.   In 
Fidget’s mixin layers, refinements to Component  are inherited 
by all widget classes in all layers.  This brings us to the last topic 
in our design discussion, the use of constructors with stepwise 
refinement. 

4.4 Constructor Propagation 
Since a superclass does not typically know how to initialize its 
subclasses, constructors are not inherited in Java and other OO 
languages.  JL, however, encourages the use of small mixin 
classes that incrementally add function to an application.  These 
mixins often do not require any special initialization, but they do 
need to initialize their superclasses with the arguments that the 
superclasses require.  In Fidget, for example, the TextField  
class in BaseFidget  declares four constructors, but no mixin 
layer that refines BaseFidget  needs its own initialization for 
TextField .  Unfortunately, all layers have to replicate the four 
TextField  constructors to make them available at the leaf 
class.  This replication puts a burden on mixin programmers and 
discourages the use of constructors.  

To make constructors convenient to use with mixins, JL 
introduces the propagate modifier for constructors.  Constructors 
are propagated from parent to child class, with constructors 
marked propagate in the parent only able to affect constructors 
marked propagate in the child.  (The default constructor in a 
child class is also considered propagatable.)  Constructor 
propagation is more than the simple inheritance of constructors 

because constructor signatures and bodies can change in child 
classes [13].   

In Fidget, one measure of the effectiveness of automatic 
constructor propagation is that many constructors do not need to 
be hand-coded.  In BaseFidget , 20 constructors are declared 
with propagate.  On average, the thirteen kernel layers that 
extend BaseFidget  declare just over one constructor each, 
which indicates that automatic constructor generation is 
sufficient in most cases. 

5. USING FIGDET 
In the section, we describe how to generate and use customized 
Fidget libraries.  We first look at how custom Fidget libraries are 
specified.  We then discuss how applications use a Fidget library 
in place of the AWT library.  Finally, we give details about the 
Converter application, which uses Fidget libraries on three 
different platforms. 

5.1 Building Fidget Libraries 
To build a Fidget library, we first select the SDK or J2ME 
hardware abstraction layer based on the target device’s Java 
support.  This layer, which corresponds to the HAL in Figure 2, 
provides a small set of line and curve drawing primitives that is 
consistent across all platforms. 

Next, we specify and compile the features we need in our library.  
The code implementing the different features resides in mixin 
layers in the kernel  package, which corresponds to the kernel 
layer in Figure 2.  The actual Fidget libraries are assembled in 
the user layer, which we implement in the in the widget  
package.  The code below shows the feature selection for two 
different libraries. 

package widget; 

class Fidget extends AltLook<EventFidget< 
  LightWeightFidget<BaseFidget<>>>> {} 

class Fidget extends ColorFidget< 
  ButtonSetLabel<EventKey<EventMouse< 
  EventBase<LightWeightFidget< 
  BaseFidget<>>>>>>> {} 

Both of the above libraries are lightweight implementations, the 
only kind currently available in Fidget.  The first library supports 
all events and, by overriding the drawing methods in 
LightWeightFidget , provides an alternative look and feel.  
The second library supports color displays, re-settable labels, and 
key and mouse event handling.  If a library feature is not 
supported by device it runs on, then executing the feature code 
either has no effect or throws an exception. 

In addition to the Fidget  class, the user layer contains wrapper 
classes for each widget.  These classes allow Fidget widgets to 
replace AWT widgets in application code.  Below we show the 
definitions for the Button and Window wrapper classes. 

public class Button extends Fidget.Button{} 
public class Window extends Fidget.Window{}  

To use a Fidget library, application code simply imports 
widget.*  and uses the Fidget widgets in the same way that 
AWT widgets are used.  The following sample code functions in 
a similar way using either Fidget or AWT.  The code creates a 
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window with a single button.  The button’s label is set to 
“ButtonLabel” and then the window is displayed on the screen. 

// import widget.* or java.awt.* 
public class Sample { 
  public static void main(String[] args) {  
    Window win = new Window(…); 
    Button b = new Button(“ButtonLabel”); 
    win.add(b); 
    win.setVisible(true) 
  } } 

5.2 The Converter Application 
As part of the evaluation of Fidget, a simple application named 
Converter was built on three target devices:  JDK 1.3 on Linux, 
J2ME on Palm OS, and J2ME on a cell phone emulator.  Each 
device has its own version of Converter, which converts between 
metric and US lengths. 

In all versions, the Converter  class drives the application by 
creating two ConversionPanels , one with metric units and 
one with US units.  These two ConversionPanels  are added 
to the main window of the application, and then the window is 
made visible.   

The Converter application code is not exactly the same across 
devices.  This variation reflects the need for platform specific 
code, which adds to the porting effort.  The important point, 
however, is that the same Fidget code-base, which is 
implemented in mixin layers in the kernel  package, is used on 
all three platforms to control screen I/O.  To understand the 
nature of the platform dependencies, we now describe the three 
versions of Converter.  

Among the three versions of the Converter application, the 
Converter  class varies in two ways.  First, the precision of the 
converter is limited in J2ME environments because floating-
point numbers are not available.  In the JDK version, conversion 
results are computed and displayed as floating point numbers.  In 
the J2ME versions, the results are computed and displayed as 
integers. 

The second way in which the Converter  class varies involves 
application startup.  In the JDK version, a main()  method in 
Converter  allows the application to be run from the command 
line.  In the J2ME versions, a J2MEConverter  class wraps the 
Converter  class and implements the application interface 
required by J2ME. 

The ConversionPanel  class also differs across platforms.  
Again, the variation does not extend into the Fidget library, but 
is contained at the application level. In the cell phone version of 
the application, text fields are made smaller and certain input 
buttons are removed due to the physical limitations of the device.  
These changes are localized to the ConversionPanel  class.  

The Converter application demonstrates that (1) GUI library 
support can be easily configured for disparate devices using a 
single code-base, and (2) Fidget libraries are as easy to use as 
conventional GUI libraries.  Once the JDK-specific version of 
Converter was written, porting the application to the other 
platforms was not difficult. 

6. DISCUSSION 
In this section, we discuss the rationale, advantages and 
alternatives for Fidget’s design.  We begin by describing two 
characteristics of mixin code that impact flexibility and usability, 
layer width and feature granularity. 

6.1 Layer Width 
When a mixin layer, or a class like BaseFidget  that mixin 
layers extend, contains many nested classes, we say the layer is 
wide; otherwise, we say the layer is narrow.  In general, wide 
layers have a greater ability to implement crosscutting features.  
However, wide layers can lead to larger, more complex classes 
because they can contain the code for many nested classes.    

In Fidget, we define all widgets and their superclasses as sibling 
nested classes to increase code modularity. This organization 
encapsulates feature implementations that can refine any number 
of widgets, as the crosscutting mixin layers listed in Section 4 
illustrate.  The ability to write wide layers in Fidget, however, 
does not require that all layers be wide:  Layers that extend a 
single widget only contain code for that widget.  Wide layers, 
and the modularity they afford, allow Fidget to achieve its 
compositional flexibility.   

In general, deciding what classes to nest in an application’s 
layers requires careful planning.  Once the decision is made, only 
features that crosscut the chosen nested classes can be 
encapsulated in a mixin layer.  For example, an alternate Fidget 
design, which is actually the first design we tried, defines two 
kinds of kernel layers.  The first kind is narrow and contains only 
the Component  and Container  classes.  The second kind 
contains all the widget classes.  Using this design, refinements to 
widgets and refinements to their superclasses would be applied 
separately using different sets of layers.  The idea is to first 
select features for Component  and Container , generate 
those classes, and then use those classes as pre-packaged 
superclasses for generating customized widgets.    

Unfortunately, features like support for color crosscut both 
widgets and their superclasses.  In the alternate design, color 
support requires that two layers, one that refines widgets and one 
that refines their superclasses, be used in conjunction.  Fidget, 
however, nests all classes in the same layers, which allows us to 
implement color in one mixin layer. 

The important design point here is that when coordinated 
changes need to be made to a group of classes, the classes 
usually should be nested in the same layers.  Applications can 
certainly contain mixin layers that deeply conform to different 
interfaces.  Only those layers, however, that deeply conform to 
the same interface are interchangeable, and only those layers that 
contain all of a feature’s collaborating classes can implement that 
feature. 

6.2 Feature Granularity 
The choice between fine-grained and coarse-grained layers leads 
to a tradeoff between incrementality and compositional 
complexity.  In Fidget, we implemented event handling using 
two levels of granularity to compare each approach.  Fidget 
supports focus, key and mouse events.  The EventBase, 
EventFocus, EventKey and EventMouse  mixins 
implement the fine-grained approach, which allows incremental 
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customization based on the type of event.  For devices that don’t 
support all types of input, this approach allows more precise 
customization.  This ability to tailor code to a platform can be 
used to reduce a GUI’s memory footprint.  On the other hand, the 
EventFidget  mixin implements all event handling for all 
widgets, which makes adding event support a simple matter of 
specifying one layer for any device.  Events that never occur on a 
device are never handled.     

The choice in mixin layer granularity is analogous to the choice 
in method granularity that class designers make.  For mixins, just 
as for methods, it is sometimes desirable to support multiple 
granularities at once.  In such situations, code replication can be 
avoided if the fine-grained implementation can be used to build 
the coarse-grained implementation.  For methods, coarse-grained 
implementations can be built by creating new methods that 
bundle calls to existing fine-grained methods.  For mixins, 
coarse-grained implementations can be built by creating new 
mixins from compositions of existing fine-grained mixins.  These 
compositions do not have all their actual type parameters 
specified, so they represent a partial application of parameterized 
types.  JL does not support such compositions, though a previous 
version of the language included a layerdef construct [15], which 
achieved the desired effect through macro expansion. 

6.3 Defining the Sibling Pattern 
One of the contributions of this paper is the recognition that the 
inheritance relationship between nested classes described in 
Section 4.3 is a design pattern.  The Sibling pattern is 
noteworthy because of the way it uses nested classes, layering, 
and the most specialized type in a hierarchy.  The pattern is 
useful because in a deeply conforming mixin layer, changes to a 
nested class can be inherited by its sibling classes.       

The Sibling pattern’s inheritance relationship has been observed 
in other applications [4][28], which supports the idea that the 
pattern should be cataloged.  The intent, motivation, use and 
structure of the Sibling pattern have already been described.  In 
this section, we briefly comment on its applicability and enabling 
language features.  A formal description of the Sibling pattern is 
also available [10].  

The Sibling pattern is most applicable when (1) nested classes 
are supported and (2) class hierarchies can be changed without 
changing class definitions.  Though the pattern can be 
implemented in non-parametric Java, Java’s fixed class 
hierarchies discourage the use of layers of nested classes for 
implementing crosscutting features, so the pattern is rarely seen.  
When mixin layers or similar constructs are available, the 
Sibling pattern allows a parent class and its children classes to 
be refined simultaneously.  This capability makes stepwise 
program refinement even more powerful.  

The Sibling pattern requires that the type of the leaf class in a 
hierarchy be available in classes that make up the hierarchy.  In 
Section 4.3, we saw that though a simple naming convention is 
sufficient to meet this requirement, JL’s This type parameter 
provides more flexibility.  The Sibling pattern could also be 
implemented using virtual types [38]. 

6.4 Future Work 
The goal of Java Layers research is to harness the flexibility of 
mixins to lower the cost of developing and maintaining quality 
software.  There are two topics related to mixin programming 
that are the subject of continuing JL research, and we briefly 
mention them here.  The first topic, which we noted in our 
discussion of deep conformance, concerns the need for higher 
level semantic checking to limit the way some mixins can be 
composed.  Restricting mixin composition becomes more 
important as the number of mixins—and the number of 
incompatible mixin combinations—grows.   

The second topic concerns performance, specifically the runtime 
consequences of generating deeply layered code through mixin 
instantiation.  At design time, we want the modularity of 
stepwise refinement; at runtime, we want fast code unimpeded 
by multiple layers of indirection.  By extending existing 
technology [39] that compresses class hierarchies, we believe the 
runtime effects of design time layering can be largely eliminated. 

7. RELATED WORK 
AspectJ [26][27] is an extension to the Java programming 
language in which concerns are encapsulated in a new construct 
called an aspect.  Aspects implement features that crosscut class 
boundaries, just as mixin layers do in JL.  Both aspects and 
mixin layers can add new methods to existing classes.  Aspects 
can weave code before or after the execution of a method, an 
effect JL achieves using method overriding and explicit calls to 
super.  Aspects can refine the behavior of any group of existing 
classes, while mixin layers can only refine the classes nested in 
their superclasses.  Thus, aspects are more expressive and can 
address more kinds of concerns than JL mixins.  On the other 
hand, aspects must express explicit ordering constraints, while 
the order of mixin application is implicit in their instantiations.  
Also, as generic classes, mixins are probably easier to integrate 
into existing type systems than aspects. 

Hyper/J [22] provides Java support for multi-dimensional 
separation of concerns [37].  This approach to software 
development is more general than that of JL because it addresses 
the evolution of all software artifacts, including documentation, 
test cases, and design, as well as code.  Hyper/J focuses on the 
adaptation, integration and on-demand remodularation of Java 
code.  Like JL, encapsulated feature implementations, called 
hyperslices in Hyper/J, can be mixed and matched to create 
customized applications.  Unlike JL, Hyper/J can extract and, 
possibly, reuse feature code not originally separated into 
hyperslices.  That is, Hyper/J supports the unplanned re-
factorization of code to untangle feature implementations.  While 
JL generalizes current OO technology, Hyper/J represents a more 
radical shift in thinking that also requires the development of 
new composition techniques.   

Jiazzi [28] also encapsulates crosscutting features into 
components.  In Jiazzi, mixin constructions can be expressed that 
are similar to JL mixins; classes in parameterized components 
can subclass their component’s parameters.  Jiazzi components 
can also implement the open class pattern, which incorporates 
the Sibling pattern described in this paper.  The open class 
pattern is a way for Jiazzi to simulate open classes [16], which 
allow existing classes to be updated with new methods without 



9 

updating the classes’ source code.  The open class pattern 
supports separately type checked compilation units, a capability 
not investigated in JL. 

GenVoca [3][4][5][6][30][31] research provides the foundation 
for JL.  JL departs from prior work by concentrating on language 
support that makes programming with mixins more convenient in 
current OO languages.  Many ideas in JL have precursors in 
GenVoca implementations.  For example, in JTS [4], the Sibling 
pattern is implemented using well-known names or a less general 
form of the JL’s This type parameter.         

Dynamic approaches to feature composition exist, including 
Composition Filters [7] and the use of design patterns such as 
Decorator and Chain of Responsibility [19].  These approaches 
are flexible because they compose objects at runtime.  JL’s static 
approach to composition, however, allows for off-line constraint 
checking and optimization, which can reduce the amount of 
indirection in the code and improve performance.  

JL’s implicit This type parameter combines aspects of both 
Bruce’s ThisType [11] and Thorup’s virtual types for Java [38].  
Both of these approaches require changes to Java’s type system 
and, in the Thorup proposal, increased dynamic type checking.  
JL’s This, though less expressive, avoids these complications by 
limiting its use to parameterized types.  

Eisenecker, Blinn and Czarnecki [18] generate customized 
constructors for C++ mixin classes using generative 
programming techniques [17].  Their approach uses auxiliary 
data structures (configuration repositories) and programs 
(configuration generators). This auxiliary code requires 
maintenance when mixins with constructor parameters are 
composed in new ways or when mixin constructor parameters are 
changed.  JL avoids the cost of maintaining of auxiliary code by 
providing custom language support. 

8. CONCLUSION 
This paper provides empirical evidence that an important domain 
like GUIs can be decomposed into feature-encapsulating 
components using mixin layers, and that these components can 
be combined into custom libraries using stepwise refinement.  
From a single code-base, we generated different GUIs for cell 
phones, Palm devices and PCs.  These generated GUIs present 
conventional programming interfaces to applications and contain 
only the APIs appropriate for their target devices. 

We have also shown that novel language support in Java Layers, 
including deep conformance, constructor propagation and the 
implicit This type parameter, increases the effectiveness of 
programming with mixins.  This effectiveness is reflected in a 
number of ways, including improved constraint checking and less 
programmer-written code.  Another measure of this effectiveness 
is JL’s ability to easily implement the Sibling pattern.   

The Sibling pattern, which incorporates both type nesting and 
type inheritance, may at first seem complicated, but we have 
shown that the pattern supports a simple semantic:  In a deeply 
conforming mixin layer, changes to a nested class can be 
inherited by its sibling classes.  This semantic extends standard 
OO inheritance semantics to mixin layers.  Using the pattern, a 
base class establishes parent/child relationships between nested 
sibling classes.  Those relationships are then extended to the 

nested classes in all mixin layers that inherit from the base class.  
Finally, we have seen how the Sibling pattern can be used to 
increase code modularity. 
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