
1

Using Mixins to Build Flexible Widgets

Richard Cardone, Adam Brown, Sean McDirmid† and Calvin Lin
 Department of Computer Sciences †School of Computing

 University of Texas at Austin University of Utah

 Austin, TX 78712 USA Salt Lake City, UT 84112 USA

 {richcar, abrown, lin}@cs.utexas.edu mcdirmid@cs.utah.edu

ABSTRACT
When it comes to software that runs on devices as varied as cell
phones, PDAs and desktops, one size does not fit all. This paper
describes how mixin layers, a kind of nested generic type, can be
used to implement a graphical user interface library that can be
configured to run on platforms with widely dissimilar
capabilities. We describe the language support needed to
incrementally build software in layers, and we describe how
crosscutting concerns can be encapsulated within a layer. We
then show how layers can be reconfigured to meet changing
requirements. We also show how a new design pattern, the
Sibling pattern, can be used with mixin layers to coordinate
changes to multiple classes in the same inheritance hierarchy.
When used appropriately, the Sibling pattern increases our
ability to separate design concerns and to reuse code.

Keywords
Parametric polymorphism, mixin, layers, design pattern, GUI,
embedded software.

1. INTRODUCTION
For many years, software portability meant running software on
different general-purpose computers, each with its own operating
system and architecture. Software developers minimized the cost
of supporting multiple platforms by reusing the same code,
design, and programming tools wherever possible. Today,
miniaturization has led to a wide diversity of computing devices,
including embedded systems, cell phones, PDAs, set-top boxes,
consumer appliances, and PCs. Though these devices are
dissimilar in hardware configuration, purpose and capability, the
same economic forces that necessitated software reuse among
general-purpose computers are now encouraging reuse across
these different classes of devices.

To make it easier to reuse code across devices, a number of
standardization efforts are defining new Java [2] runtime

environments [23]. These environments are customized for
various classes of devices while they still remain as compatible
as possible with the Java language, JVM, and existing libraries.
For example, Sun’s KVM [32][34] virtual machine, which is
designed to run on devices with as little as 128K of memory, has
removed a number of Java language features, including floating
point numbers and class finalization, and a number of JVM
features, such as native methods and reflection. In addition, the
runtime libraries and their capabilities have also been reduced to
accommodate limited memory devices. This redesign of the Java
libraries leads to two questions that directly concern code reuse
and the ability to support crosscutting concerns:

� How do we scale an API to accommodate different device
capabilities?

� How do we reuse the same library code across different
devices?

This paper explores the above questions by designing and
implementing a graphical user interface (GUI) that works on cell
phones, Palm OS™ devices [29], and PCs. The challenge is to
provide a single GUI code-base that runs on all these devices yet
accommodates the input, output, and processing capabilities of
each device. For example, a device may or may not support a
color display, so in building our libraries we would like to be
able to easily include or exclude color support. Thus, we need a
way to encapsulate features that crosscut multiple classes, such
as support for color, to a degree that is not possible with standard
programming technologies. Our solution uses mixins [8] and
mixin layers [31], along with language support for their use.

The goal of this paper is to test the hypothesis that mixins and
mixin layers provide a convenient mechanism for encapsulating
crosscutting concerns. We test this hypothesis by building
Fidget, a flexible widget library, and showing that its design and
implementation are effective. We show that Fidget can be easily
customized for various execution environments and that Fidget
libraries are easy to use. The main contributions of this paper
are as follows:

1. We demonstrate how mixins, supplemented by a number of
supporting language features, can be used to build
customizable software capable of running on disparate
platforms.

2. We define the Sibling design pattern and demonstrate how
it can increase code modularity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 2002, Enschede, The Netherlands.
Copyright 2002 ACM 1-58113-469-X/02/0004…$5.00.

2

3. We add to the growing body of evidence that mixins, mixin
layers, and the programming model of layered refinement
[5] are effective in increasing code reuse.

This paper proceeds as follows. Section 2 defines the problem in
more detail. Section 3 describes our language support for
mixins. Section 4 discusses the design of the Fidget library and
the components from which it’s built. Section 5 describes how
Fidget libraries are built and used. Section 6 discusses our
approach to component software design. Finally, we present
related work and conclusions.

2. THE PROBLEM
This section describes the problem of code reuse in more detail,
sketches our solution, and explains how we will evaluate our
solution.

In building a graphics library that accommodates dissimilar
devices, we would like to mix and match features depending on
the target execution environment, where a feature is some
characteristic or attribute of a GUI such as color support. This
goal of flexible feature selection highlights two requirements of
reusable code: (1) modularity and (2) easy composition.
Specifically, the code for a feature should be completely
encapsulated in a module, and these modules should be easy to
compose with one another.

Unfortunately, current programming technologies do not achieve
the first goal of completely encapsulating feature
implementations. In object-oriented languages like Java, the
basic unit of encapsulation and reuse is the class. Once the
organization of classes in a program is fixed, it is always possible
to define new features whose implementations crosscut the
existing set of classes [26][37]. For example, it is common for
features that add global properties to a program, such as security,
thread safety, fault tolerance, or performance constraints, to
affect the code in multiple classes. Generally speaking, object-
oriented programs consist of sets of collaborating classes [19],
and changes to one class often require coordinated changes to
other classes.

In Fidget, for example, color support is an optional crosscutting
feature that would break encapsulation and limit reuse if
standard object-oriented techniques were used. There are two
reasons for this. First, color support cannot simply be inherited
from a superclass because individual widgets, implemented in
their own classes, provide specialized color processing. Thus,
the code implementing color support is scattered [21] among
multiple widget classes, making the code difficult to reuse and
difficult to remove. Second, widget classes commingle code for
color support with that of other features. This tangling [21] of
feature code in a class makes the class more complex, more
interdependent with other classes and, ultimately, more difficult
to reuse.

Current object-oriented programming languages such as Java also
do not achieve the second goal of making features easy to
compose. Java’s support for variation depends primarily on
single inheritance and subtype polymorphism, which do not scale
well when there are a large number of optional features. To
understand this shortcoming, consider the possible features that a
text field widget might have: the ability to query or change the

font; to echo input; to choose the echo character set; to allow for
selection, cut, paste, drag and drop; to support resizing; and to
support different styles of event handling—the list goes on. By
encapsulating each optional feature in its own class, we could
build a text field widget by creating a class hierarchy that
contains a base class and selected feature classes in linear order.
The result would be a fixed class hierarchy that supports the
selected text field features. However, different combinations of
features would require different hierarchies. In some cases these
new hierarchies would require existing feature classes to have
different superclasses, which would lead to a replication of code
that quickly becomes unmanageable as the number of different
feature combinations increases [6].

2.1 Our Solution
In our solution, Fidget GUIs are constructed by plugging together
large-scale components, where each component represents the
implementation of a single feature and where each component
may contain code for multiple classes. The language we use,
Java Layers [13][25], extends the compositional capability of
Java to better support large-scale component programming.

Java Layers (JL) extends Java by supporting constrained
parametric polymorphism [12] and mixins [8]. Parametric
polymorphism enhances reuse by allowing the same generic
algorithm to be applied to different types. As with most
proposals [1][9][24] for adding generic types to Java, JL’s
implementation of parametric polymorphism differs from C++’s
templates [35] by allowing type parameters to be constrained.

Mixins are types whose supertypes are specified parametrically.
Mixins further enhance reuse over parametric polymorphism by
allowing the same subtype specialization to be applied to
different types. In Section 3, we describe JL’s support for mixins
and its language features that make programming with mixins
more convenient.

Mixin layers [30][31] are a special form of mixins that can be
used to coordinate changes to multiple collaborating classes.
Mixin layers are mixins that contain nested types, which can
themselves be mixins. We describe mixin layers in more detail
in the next section. In Section 4, we describe Fidget’s mixin
layers and how they are used to implement the Sibling design
pattern, which coordinates changes among collaborating classes
and their superclasses.

2.2 Methodology
We evaluate our approach by using mixins in JL to design and
implement a number of graphics library features. We then
compose these features to generate specialized instances of
Fidget libraries for various devices. The generated graphics
libraries are not complete GUIs but are prototypes used to
validate our design approach. So, for example, we provide some
basic look-and-feel options and describe how a complete
platform-specific skin would be implemented using our design,
but we do not provide the complete implementation.

We also demonstrate that Fidget libraries can be easily
configured for cell phones, Palm OS devices, and PCs. We use
the Fidget libraries to implement simple applications, and we
compare application development using Fidget against the use of
a more conventional GUI library. Since our goal is to evaluate

3

the usefulness of Java Layers for library and application
development, we do not write low-level graphics code to
interface directly with each device’s operating system. Instead,
we scaffold our code on top of a small subset of the Java graphics
library present on each device.

Our target PC environment is standard edition Java 1.3.1 and its
development kit (SDK) [33]. We use the Java 2 Micro Edition
(J2ME) Wireless Toolkit 1.0.3 Beta [23] for our cell phone and
Palm environments. Our Palm OS tests are run on the Palm OS
Emulator version 3.2 [29].

3. SUPPORT FOR MIXINS
To provide background for the subsequent discussion, this
section explains the benefits of programming with mixins,
describes the stepwise refinement programming methodology,
and describes how Java Layers provides language support for
stepwise program refinement.

3.1 Mixins
Mixins are useful because they allow multiple classes to be
specialized in the same manner, with the specializing code
residing in a single reusable class. For example, suppose we
wish to extend three unrelated classes–Car , Box and House—to
have a "locked" state by adding two methods, lock() and
unlock() . Without mixins, we would define subclasses of
Car , Box, and House that each extended their respective
superclasses with the lock() and unlock() methods. The
lock code would be replicated in three places. With mixins, we
would instead write a single class called Lockable that could
extend any superclass, and we would instantiate the Lockable
class with Car , Box, and House . The lock() and
unlock() methods would only be defined once. In JL syntax,
the Lockable mixin would be defined as follows:

class Lockable<T> extends T {
 private boolean _locked;
 public lock(){_locked = true;}
 public unlock(){_locked = false;} }

Mixins are parametric types whose instantiations generate new
class hierarchies. For example, Lockable<Box> generates
the following hierarchy:

In its current form, Lockable ’s capabilities are limited because
nothing can be presumed about the type that gets bound to the
type parameter T. However, constrained parametric
polymorphism restricts the types used in instantiations. For
example, the redefinition of Lockable below guarantees that
T’s binding implements the physical object interface (not
shown), which means members of that interface can be used
within Lockable in a type-safe manner. Similar constraints
can be specified using an extends clause [25].

class Lockable<T implements PhysicalObject>
 extends T {…}

3.2 Stepwise Refinement
The Fidget design is based on the GenVoca software component
model [5]. This model encourages a programming methodology
of stepwise refinement in which types are built incrementally in
layers. The key to stepwise refinement is the use of components,
which we call layers, that encapsulate the complete
implementation of a single feature. Stepwise refinement allows
custom applications to be built by mixing and matching the
features they need.

Continuing with our previous example, suppose we define the
Colorable and Ownable mixins in the same way that we
defined the Lockable mixin. Colorable manages a
physical object’s color and Ownable manages ownership
properties. We can now create a variety of physical objects that
support various combinations of features:

Colorable<Ownable<Car>>
Colorable<Lockable<Box>>
Lockable<Ownable<Colorable<House>>>

We can think of each of the above instantiations as starting with
the capabilities of some base class, Car , Box or House , and
refining those capabilities with the addition of each new feature.
In the end, a customized type supporting all the required features
is produced. Mixins can be used in this way to provide some of
the flexibility of multiple inheritance while avoiding its pitfalls
[36].

3.3 Mixin Layers
Mixin layers are mixins that contain nested types. A single
mixin layer can implement a feature that crosscuts multiple
classes. To see how this works, consider a simplified version of
the basic Fidget class and the mixin layer that adds color support:

class BaseFidget<> {
 public class Button {…}
 public class CheckBox {…} …}

class ColorFidget<T> extends T {
 public class Button extends T.Button {…}
 public class CheckBox
 extends T.CheckBox {…} …}

BaseFidget takes no explicit type parameters and contains
two nested classes. In Section 4.3, we explain why some
parameterized classes don’t have explicit type parameters. The
main point here, however, is that upon instantiation, the behavior
of each of the nested classes in BaseFidget is extended by its
corresponding class in ColorFidget . In this way, feature
code scattered across multiple classes is encapsulated in a single
mixin layer.

3.4 Java Layers
Mixins provide a powerful way to compose software, but to avoid
composing incompatible features, mechanisms are needed to
restrict their use. Type parameter constraints are one mechanism
for restricting the use of mixins to avoid incompatibilities. To
better support mixin programming, JL extends the semantics of
constrained type parameters to work with mixin layers, which we
now describe.

JL’s notion of deep conformance extends Java’s idea of interface
constraints to include nested interfaces. Normally, a Java class

Box

Lockable<Box>

4

that implements an interface is not required to implement the
interface’s nested interfaces. In Figure 1, the use of the deeply
modifier in JL enforces the condition that for each nested
interface in FidgetTkIfc , the revised BaseFidget must
define a public nested class with the same name, and that nested
class must implement the corresponding interface. Thus,
BaseFidget.Button implements Fidget-
TkIfc.Button .

When deeply is used in a mixin class’s extends clause, the
superclass’s public structure is preserved in the instantiated
subclass. By preserved, we mean that if a class nested in a mixin
has the same name as a public class nested in the superclass,
then the mixin’s nested class inherits from the superclass’s
nested class. In the ColorFidget mixin in Figure 1, Button
and CheckBox must subclass their respective superclass
members because (1) ColorFidget deeply extends its
superclass and, (2) any actual superclass must contain public
Button and CheckBox classes due to the constraint on type
parameter T.

interface FidgetTkIfc {
 interface Button {…}
 interface CheckBox {…} …}

class BaseFidget<>
 implements FidgetTkIfc deeply {
 public class Button
 implements FidgetTkIfc.Button {…}
 public class CheckBox
 implements FidgetTkIfc.CheckBox {…} …}

class ColorFidget
 <T implements FidgetTkIfc deeply>
 extends T deeply {
 public class Button extends T.Button {…}
 public class CheckBox
 extends T.CheckBox {…} …}

Figure 1 – Deep Conformance

Deep conformance was originally defined by Smaragdakis [30],
and the details of its JL implementation are available elsewhere
[25]. The actual ColorFidget mixin layer contains code for
multiple classes and completely implements Fidget’s color
display support. Deep conformance facilitates Fidget code
composition by guaranteeing that a library’s nested structure is
preserved as new features are added.

Type constraints alone, however, cannot restrict all undesirable
mixin compositions. The ability to restrict how mixins are
ordered, or how many times a mixin can appear in an
instantiation, requires a higher level of checking than is possible
using OO type systems. We call this extended capability
semantic checking. JL’s support for semantic checking is part of
our ongoing research and is outside the scope of this paper
[13][25].

This ends our background discussion of JL. We will describe
other JL features as they are encountered during our discussion
of Fidget’s design.

4. FIDGET DESIGN
This section describes how the Sibling design pattern is
implemented using mixin layers and how the notion of

constructor propagation is useful. To provide context for this
discussion, we first discuss Fidget’s architecture and its
component design.

4.1 Architecture
Fidget is structured as a stack of the three architectural layers
highlighted in Figure 2: the hardware abstraction layer, the
kernel layer, and the user layer. On the bottom, the hardware
abstraction layer (HAL) interacts with the underlying device’s
graphics system and is the only Fidget code that is device
dependent. On top, the user layer is a thin veneer that provides a
familiar, non-nested, class interface to application programmers.
Our discussion focuses on the kernel layer in the middle.

Figure 2 – Fidget's Architecture

The kernel layer defines all widgets and all optional widget
features. The kernel sits on top of the HAL and uses the HAL’s
drawing and event handling capabilities to create displayable
widgets. Fidget widgets are modeled after those of Java’s AWT
[20][33], so widget classes such as Window, Button and
TextField serve the same purpose in Fidget as their analogs do in
AWT. The kernel implements nine such widgets, which is
sufficient for our prototyping purposes. Even though some
optional features cannot be used with all devices, there is only
one kernel code-base.

The Fidget kernel uses a lightweight implementation [20] to
accommodate devices with constrained memory resources.
Lightweight widgets do not have associated peer widgets in the
underlying graphics system, which for Fidget is either the SDK
or J2ME. Thus, a Fidget window that displays two buttons and a
text field creates only one widget, a window, in the underlying
Java system. Fidget then draws its own buttons and text field on
this underlying window.

4.2 Components
We now describe the design of the Fidget kernel classes, which
provide the foundation and optional features for all Fidget GUIs.
The design is based on the BaseFidget class introduced in
Section 3.4, which provides the minimal implementation for each
widget in a nested class. The nested widget classes are
Button , CheckBox , CheckBoxGroup , Label , Panel ,
TextArea , TextComponent , TextField , and Window.

Optional features are implemented in mixin layers that deeply
conform to BaseFidget . These mixin layers can contain code
for one widget class, or they can implement crosscutting features
and contain code for more than one widget class. For example,
the TextFieldSetLabel layer affects only one class by
adding the setLabel() method to TextField . Conversely,
the LightWeightFidget layer implements lightweight

Applications

User

Kernel

HAL

Graphics System

Fidget Code

5

widget support and contains code for most widgets. Fidget’s
features are listed below.

Non-Crosscutting Kernel Mixins
ButtonSetLabel – Re-settable Button label
BorderFidget – Draws container borders
CheckboxSetLabel – Re-settable Checkbox label
TextComponentSetFont – Changeable fonts
TextFieldSetLabel – Re-settable TextField Label

Crosscutting Kernel Mixins
AltLook – Alternative look and feel
ColorFidget – Color display support
EventBase – Basic event listeners
EventFidget – All event listeners/handlers
EventFocus – Focus event handling
EventKey – Key event handling
EventMouse – Mouse event handling
LightWeightFidget – Lightweight support

BaseFidget also contains two nested classes that serve as
superclasses for the nested widget classes. Component
implements common widget function and is a superclass of all
widgets. Container , a subclass of Component , allows
widgets to contain other widgets. Window is an example of a
container widget. Defining these superclasses in BaseFidget
has important design consequences, which we now explore.

4.3 The Sibling Pattern
To enhance code modularity, the Sibling design pattern uses
inheritance relationships between classes that are nested in the
same class. The pattern itself can be implemented in Java, but
mixin layers make it more convenient to use. We begin our
discussion of this pattern by looking at a problem that occurs
when certain crosscutting features are implemented with mixin
layers. We then show how the Sibling pattern solves this
problem and how JL language support simplifies the solution.

class BaseFidget<>
 implements FidgetTkIfc deeply {
 public abstract class Component {
 implements FidgetTkIfc.Component {…}
 public class Button
 extends Component
 implements FidgetTkIfc.Button {…}

class ColorFidget
 <T implements FidgetTkIfc deeply>
 extends T deeply {
 public class Component
 extends T.Component {…}
 public class Button
 extends T.Button {…} …}

ColorFidget<LightWeightFidget<BaseFidget>>

Figure 3 – Incorrect BaseFidget

The advantage of nesting Component , Container and all
widget classes inside of BaseFidget is that a single mixin
layer can affect all these classes. We re-introduce
BaseFidget in Figure 3 above, this time showing the widget
Button and its superclass Component . In Fidget, features
like support for color modify the behavior of Component as
well as its widget subclasses.

There is, however, a potential pitfall when parent and child
classes are nested in the same class. To see the problem, Figure
3 also depicts the ColorFidget mixin and an instantiation of
a Fidget GUI with color support. The instantiation includes the
LightWeightFidget mixin (code not shown), which is
structured the same as ColorFidget .

The class hierarchies generated by the instantiation are shown in
Figure 4. The enclosing classes form a class hierarchy, as do
like-named nested classes. In addition, Button inherits from
Component in BaseFidget . Notice that
ColorFidget.Button does not inherit from
ColorFidget.Component , which means that the color
support in the latter class is never used. As a matter of fact, it
would be useless for any mixin layer to extend Component
because no widget will ever inherit from it.

The inheritance relationship we really want is shown in Figure 5,
where ColorFidget.Button inherits from all the Button
classes and from all the Component classes in the mixin-
generated hierarchy. We call this the Sibling pattern, which we
define as the inheritance pattern in which a nested class inherits
from the most specialized subclass of one of its siblings. In
Figure 5, BaseFidget.Button inherits from the most
specialized subclass (ColorFidget.Component) of its
sibling (BaseFidget.Component).

BaseFidget

LightWeightFidget

ColorFidget

Button Component

Button Component

Button Component

Figure 4 - Incorrect Hierarchy

Figure 5 – Sibling Pattern Hierarchy

BaseFidget

LightWeightFidget

ColorFidget

Button Component

Button Component

Button Component

6

The Sibling pattern can be implemented in Java by using a
distinguished name for the leaf class of all mixin-generated
hierarchies. Once this well-known, predetermined name is
established by programming convention, it can be used in any
class or mixin in the application. This solution, however, limits
flexibility and can lead to name conflicts when different
instantiations are specified in the same package.

JL provides a better way to express the Sibling pattern using its
implicit This type parameter [14]. Parameterized types in JL
have one implicit type parameter and zero or more explicitly
declared type parameters. This is automatically bound to the
leaf class type in a mixin-generated hierarchy, which provides JL
with a limited, static, virtual typing [38] capability.

Figure 6 shows how BaseFidget , which declares no type
parameters explicitly, uses its implicit This parameter to
implement the Sibling pattern. JL binds This to the leaf class in
the generated hierarchy, which in our example is
ColorFidget . The redefined Button class below now
inherits from ColorFidget.Component .

class BaseFidget<>
 implements FidgetTkIfc deeply {
 public abstract class Component
 implements FidgetTkIfc.Component {…}
 public class Button
 extends This.Component
 implements FidgetTkIfc.Button {…} …}

Figure 6 - Correct BaseFidget

The Sibling pattern allows a Fidget layer to extend individual
widget classes and their common superclass simultaneously. In
this way, established object-oriented methods of class
decomposition, in which common function is placed in
superclasses, are extended to work with mixins layers. In
Fidget’s mixin layers, refinements to Component are inherited
by all widget classes in all layers. This brings us to the last topic
in our design discussion, the use of constructors with stepwise
refinement.

4.4 Constructor Propagation
Since a superclass does not typically know how to initialize its
subclasses, constructors are not inherited in Java and other OO
languages. JL, however, encourages the use of small mixin
classes that incrementally add function to an application. These
mixins often do not require any special initialization, but they do
need to initialize their superclasses with the arguments that the
superclasses require. In Fidget, for example, the TextField
class in BaseFidget declares four constructors, but no mixin
layer that refines BaseFidget needs its own initialization for
TextField . Unfortunately, all layers have to replicate the four
TextField constructors to make them available at the leaf
class. This replication puts a burden on mixin programmers and
discourages the use of constructors.

To make constructors convenient to use with mixins, JL
introduces the propagate modifier for constructors. Constructors
are propagated from parent to child class, with constructors
marked propagate in the parent only able to affect constructors
marked propagate in the child. (The default constructor in a
child class is also considered propagatable.) Constructor
propagation is more than the simple inheritance of constructors

because constructor signatures and bodies can change in child
classes [13].

In Fidget, one measure of the effectiveness of automatic
constructor propagation is that many constructors do not need to
be hand-coded. In BaseFidget , 20 constructors are declared
with propagate. On average, the thirteen kernel layers that
extend BaseFidget declare just over one constructor each,
which indicates that automatic constructor generation is
sufficient in most cases.

5. USING FIGDET
In the section, we describe how to generate and use customized
Fidget libraries. We first look at how custom Fidget libraries are
specified. We then discuss how applications use a Fidget library
in place of the AWT library. Finally, we give details about the
Converter application, which uses Fidget libraries on three
different platforms.

5.1 Building Fidget Libraries
To build a Fidget library, we first select the SDK or J2ME
hardware abstraction layer based on the target device’s Java
support. This layer, which corresponds to the HAL in Figure 2,
provides a small set of line and curve drawing primitives that is
consistent across all platforms.

Next, we specify and compile the features we need in our library.
The code implementing the different features resides in mixin
layers in the kernel package, which corresponds to the kernel
layer in Figure 2. The actual Fidget libraries are assembled in
the user layer, which we implement in the in the widget
package. The code below shows the feature selection for two
different libraries.

package widget;

class Fidget extends AltLook<EventFidget<
 LightWeightFidget<BaseFidget<>>>> {}

class Fidget extends ColorFidget<
 ButtonSetLabel<EventKey<EventMouse<
 EventBase<LightWeightFidget<
 BaseFidget<>>>>>>> {}

Both of the above libraries are lightweight implementations, the
only kind currently available in Fidget. The first library supports
all events and, by overriding the drawing methods in
LightWeightFidget , provides an alternative look and feel.
The second library supports color displays, re-settable labels, and
key and mouse event handling. If a library feature is not
supported by device it runs on, then executing the feature code
either has no effect or throws an exception.

In addition to the Fidget class, the user layer contains wrapper
classes for each widget. These classes allow Fidget widgets to
replace AWT widgets in application code. Below we show the
definitions for the Button and Window wrapper classes.

public class Button extends Fidget.Button{}
public class Window extends Fidget.Window{}

To use a Fidget library, application code simply imports
widget.* and uses the Fidget widgets in the same way that
AWT widgets are used. The following sample code functions in
a similar way using either Fidget or AWT. The code creates a

7

window with a single button. The button’s label is set to
“ButtonLabel” and then the window is displayed on the screen.

// import widget.* or java.awt.*
public class Sample {
 public static void main(String[] args) {
 Window win = new Window(…);
 Button b = new Button(“ButtonLabel”);
 win.add(b);
 win.setVisible(true)
 } }

5.2 The Converter Application
As part of the evaluation of Fidget, a simple application named
Converter was built on three target devices: JDK 1.3 on Linux,
J2ME on Palm OS, and J2ME on a cell phone emulator. Each
device has its own version of Converter, which converts between
metric and US lengths.

In all versions, the Converter class drives the application by
creating two ConversionPanels , one with metric units and
one with US units. These two ConversionPanels are added
to the main window of the application, and then the window is
made visible.

The Converter application code is not exactly the same across
devices. This variation reflects the need for platform specific
code, which adds to the porting effort. The important point,
however, is that the same Fidget code-base, which is
implemented in mixin layers in the kernel package, is used on
all three platforms to control screen I/O. To understand the
nature of the platform dependencies, we now describe the three
versions of Converter.

Among the three versions of the Converter application, the
Converter class varies in two ways. First, the precision of the
converter is limited in J2ME environments because floating-
point numbers are not available. In the JDK version, conversion
results are computed and displayed as floating point numbers. In
the J2ME versions, the results are computed and displayed as
integers.

The second way in which the Converter class varies involves
application startup. In the JDK version, a main() method in
Converter allows the application to be run from the command
line. In the J2ME versions, a J2MEConverter class wraps the
Converter class and implements the application interface
required by J2ME.

The ConversionPanel class also differs across platforms.
Again, the variation does not extend into the Fidget library, but
is contained at the application level. In the cell phone version of
the application, text fields are made smaller and certain input
buttons are removed due to the physical limitations of the device.
These changes are localized to the ConversionPanel class.

The Converter application demonstrates that (1) GUI library
support can be easily configured for disparate devices using a
single code-base, and (2) Fidget libraries are as easy to use as
conventional GUI libraries. Once the JDK-specific version of
Converter was written, porting the application to the other
platforms was not difficult.

6. DISCUSSION
In this section, we discuss the rationale, advantages and
alternatives for Fidget’s design. We begin by describing two
characteristics of mixin code that impact flexibility and usability,
layer width and feature granularity.

6.1 Layer Width
When a mixin layer, or a class like BaseFidget that mixin
layers extend, contains many nested classes, we say the layer is
wide; otherwise, we say the layer is narrow. In general, wide
layers have a greater ability to implement crosscutting features.
However, wide layers can lead to larger, more complex classes
because they can contain the code for many nested classes.

In Fidget, we define all widgets and their superclasses as sibling
nested classes to increase code modularity. This organization
encapsulates feature implementations that can refine any number
of widgets, as the crosscutting mixin layers listed in Section 4
illustrate. The ability to write wide layers in Fidget, however,
does not require that all layers be wide: Layers that extend a
single widget only contain code for that widget. Wide layers,
and the modularity they afford, allow Fidget to achieve its
compositional flexibility.

In general, deciding what classes to nest in an application’s
layers requires careful planning. Once the decision is made, only
features that crosscut the chosen nested classes can be
encapsulated in a mixin layer. For example, an alternate Fidget
design, which is actually the first design we tried, defines two
kinds of kernel layers. The first kind is narrow and contains only
the Component and Container classes. The second kind
contains all the widget classes. Using this design, refinements to
widgets and refinements to their superclasses would be applied
separately using different sets of layers. The idea is to first
select features for Component and Container , generate
those classes, and then use those classes as pre-packaged
superclasses for generating customized widgets.

Unfortunately, features like support for color crosscut both
widgets and their superclasses. In the alternate design, color
support requires that two layers, one that refines widgets and one
that refines their superclasses, be used in conjunction. Fidget,
however, nests all classes in the same layers, which allows us to
implement color in one mixin layer.

The important design point here is that when coordinated
changes need to be made to a group of classes, the classes
usually should be nested in the same layers. Applications can
certainly contain mixin layers that deeply conform to different
interfaces. Only those layers, however, that deeply conform to
the same interface are interchangeable, and only those layers that
contain all of a feature’s collaborating classes can implement that
feature.

6.2 Feature Granularity
The choice between fine-grained and coarse-grained layers leads
to a tradeoff between incrementality and compositional
complexity. In Fidget, we implemented event handling using
two levels of granularity to compare each approach. Fidget
supports focus, key and mouse events. The EventBase,
EventFocus, EventKey and EventMouse mixins
implement the fine-grained approach, which allows incremental

8

customization based on the type of event. For devices that don’t
support all types of input, this approach allows more precise
customization. This ability to tailor code to a platform can be
used to reduce a GUI’s memory footprint. On the other hand, the
EventFidget mixin implements all event handling for all
widgets, which makes adding event support a simple matter of
specifying one layer for any device. Events that never occur on a
device are never handled.

The choice in mixin layer granularity is analogous to the choice
in method granularity that class designers make. For mixins, just
as for methods, it is sometimes desirable to support multiple
granularities at once. In such situations, code replication can be
avoided if the fine-grained implementation can be used to build
the coarse-grained implementation. For methods, coarse-grained
implementations can be built by creating new methods that
bundle calls to existing fine-grained methods. For mixins,
coarse-grained implementations can be built by creating new
mixins from compositions of existing fine-grained mixins. These
compositions do not have all their actual type parameters
specified, so they represent a partial application of parameterized
types. JL does not support such compositions, though a previous
version of the language included a layerdef construct [15], which
achieved the desired effect through macro expansion.

6.3 Defining the Sibling Pattern
One of the contributions of this paper is the recognition that the
inheritance relationship between nested classes described in
Section 4.3 is a design pattern. The Sibling pattern is
noteworthy because of the way it uses nested classes, layering,
and the most specialized type in a hierarchy. The pattern is
useful because in a deeply conforming mixin layer, changes to a
nested class can be inherited by its sibling classes.

The Sibling pattern’s inheritance relationship has been observed
in other applications [4][28], which supports the idea that the
pattern should be cataloged. The intent, motivation, use and
structure of the Sibling pattern have already been described. In
this section, we briefly comment on its applicability and enabling
language features. A formal description of the Sibling pattern is
also available [10].

The Sibling pattern is most applicable when (1) nested classes
are supported and (2) class hierarchies can be changed without
changing class definitions. Though the pattern can be
implemented in non-parametric Java, Java’s fixed class
hierarchies discourage the use of layers of nested classes for
implementing crosscutting features, so the pattern is rarely seen.
When mixin layers or similar constructs are available, the
Sibling pattern allows a parent class and its children classes to
be refined simultaneously. This capability makes stepwise
program refinement even more powerful.

The Sibling pattern requires that the type of the leaf class in a
hierarchy be available in classes that make up the hierarchy. In
Section 4.3, we saw that though a simple naming convention is
sufficient to meet this requirement, JL’s This type parameter
provides more flexibility. The Sibling pattern could also be
implemented using virtual types [38].

6.4 Future Work
The goal of Java Layers research is to harness the flexibility of
mixins to lower the cost of developing and maintaining quality
software. There are two topics related to mixin programming
that are the subject of continuing JL research, and we briefly
mention them here. The first topic, which we noted in our
discussion of deep conformance, concerns the need for higher
level semantic checking to limit the way some mixins can be
composed. Restricting mixin composition becomes more
important as the number of mixins—and the number of
incompatible mixin combinations—grows.

The second topic concerns performance, specifically the runtime
consequences of generating deeply layered code through mixin
instantiation. At design time, we want the modularity of
stepwise refinement; at runtime, we want fast code unimpeded
by multiple layers of indirection. By extending existing
technology [39] that compresses class hierarchies, we believe the
runtime effects of design time layering can be largely eliminated.

7. RELATED WORK
AspectJ [26][27] is an extension to the Java programming
language in which concerns are encapsulated in a new construct
called an aspect. Aspects implement features that crosscut class
boundaries, just as mixin layers do in JL. Both aspects and
mixin layers can add new methods to existing classes. Aspects
can weave code before or after the execution of a method, an
effect JL achieves using method overriding and explicit calls to
super. Aspects can refine the behavior of any group of existing
classes, while mixin layers can only refine the classes nested in
their superclasses. Thus, aspects are more expressive and can
address more kinds of concerns than JL mixins. On the other
hand, aspects must express explicit ordering constraints, while
the order of mixin application is implicit in their instantiations.
Also, as generic classes, mixins are probably easier to integrate
into existing type systems than aspects.

Hyper/J [22] provides Java support for multi-dimensional
separation of concerns [37]. This approach to software
development is more general than that of JL because it addresses
the evolution of all software artifacts, including documentation,
test cases, and design, as well as code. Hyper/J focuses on the
adaptation, integration and on-demand remodularation of Java
code. Like JL, encapsulated feature implementations, called
hyperslices in Hyper/J, can be mixed and matched to create
customized applications. Unlike JL, Hyper/J can extract and,
possibly, reuse feature code not originally separated into
hyperslices. That is, Hyper/J supports the unplanned re-
factorization of code to untangle feature implementations. While
JL generalizes current OO technology, Hyper/J represents a more
radical shift in thinking that also requires the development of
new composition techniques.

Jiazzi [28] also encapsulates crosscutting features into
components. In Jiazzi, mixin constructions can be expressed that
are similar to JL mixins; classes in parameterized components
can subclass their component’s parameters. Jiazzi components
can also implement the open class pattern, which incorporates
the Sibling pattern described in this paper. The open class
pattern is a way for Jiazzi to simulate open classes [16], which
allow existing classes to be updated with new methods without

9

updating the classes’ source code. The open class pattern
supports separately type checked compilation units, a capability
not investigated in JL.

GenVoca [3][4][5][6][30][31] research provides the foundation
for JL. JL departs from prior work by concentrating on language
support that makes programming with mixins more convenient in
current OO languages. Many ideas in JL have precursors in
GenVoca implementations. For example, in JTS [4], the Sibling
pattern is implemented using well-known names or a less general
form of the JL’s This type parameter.

Dynamic approaches to feature composition exist, including
Composition Filters [7] and the use of design patterns such as
Decorator and Chain of Responsibility [19]. These approaches
are flexible because they compose objects at runtime. JL’s static
approach to composition, however, allows for off-line constraint
checking and optimization, which can reduce the amount of
indirection in the code and improve performance.

JL’s implicit This type parameter combines aspects of both
Bruce’s ThisType [11] and Thorup’s virtual types for Java [38].
Both of these approaches require changes to Java’s type system
and, in the Thorup proposal, increased dynamic type checking.
JL’s This, though less expressive, avoids these complications by
limiting its use to parameterized types.

Eisenecker, Blinn and Czarnecki [18] generate customized
constructors for C++ mixin classes using generative
programming techniques [17]. Their approach uses auxiliary
data structures (configuration repositories) and programs
(configuration generators). This auxiliary code requires
maintenance when mixins with constructor parameters are
composed in new ways or when mixin constructor parameters are
changed. JL avoids the cost of maintaining of auxiliary code by
providing custom language support.

8. CONCLUSION
This paper provides empirical evidence that an important domain
like GUIs can be decomposed into feature-encapsulating
components using mixin layers, and that these components can
be combined into custom libraries using stepwise refinement.
From a single code-base, we generated different GUIs for cell
phones, Palm devices and PCs. These generated GUIs present
conventional programming interfaces to applications and contain
only the APIs appropriate for their target devices.

We have also shown that novel language support in Java Layers,
including deep conformance, constructor propagation and the
implicit This type parameter, increases the effectiveness of
programming with mixins. This effectiveness is reflected in a
number of ways, including improved constraint checking and less
programmer-written code. Another measure of this effectiveness
is JL’s ability to easily implement the Sibling pattern.

The Sibling pattern, which incorporates both type nesting and
type inheritance, may at first seem complicated, but we have
shown that the pattern supports a simple semantic: In a deeply
conforming mixin layer, changes to a nested class can be
inherited by its sibling classes. This semantic extends standard
OO inheritance semantics to mixin layers. Using the pattern, a
base class establishes parent/child relationships between nested
sibling classes. Those relationships are then extended to the

nested classes in all mixin layers that inherit from the base class.
Finally, we have seen how the Sibling pattern can be used to
increase code modularity.

9. ACKNOWLEDGMENTS
This work has been supported by NSF CAREER grant ACI-
9984660 and a grant from Tivoli. We also thank IBM for their
long-term support. We are grateful to Saurabh Boyed for his
early Fidget prototype and to the reviewers for their informative
and helpful comments.

10. REFERENCES
[1] Agesen, O., Freund, S., and Mitchell. Adding Type

Parameterization to the Java Language. OOPSLA 1997.

[2] Arnold, K., Gosling, J., and Holmes, D. The Java
Programming Language, 3rd ed. Addison-Wesley, 2000.

[3] Batory, D., Cardone, R. and Smaragdakis, Y. Object-
Oriented Frameworks and Product-Lines. First Software
Product-Line Conference, August 2000.

[4] Batory, D., Lofaso, B. and Smaragdakis, Y. JTS: Tools for
Implementing Domain-Specific Languages. ICSE, June
1998.

[5] Batory, D. and O’Malley, S. The Design and
Implementation of Hierarchical Software Systems with
Reusable Components. ACM Transactions on Software
Engineering and Methodology, October 1992.

[6] Batory, D., Singhal, V., Sirkin, M. and Thomas, J. Scalable
Software Libraries. Proceedings of the First ACM
Symposium on the Foundations of Software Engineering,
December, 1993.

[7] Bergmans, L. The Composition Filters Object Model. The
TRESE Group, CS Dept., University of Twente, 1994.

[8] Bracha, G., and Cook, W. Mixin-Based Inheritance.
OOPSLA-ECOOP 1990.

[9] Bracha G., Odersky, M., Stoutamire, D. and Wadler, P.
Making the future safe for the past: Adding Genericity to the
Java Programming Language. OOPSLA 1998.

[10] Brown, A., Cardone, R., McDirmid, S. and Lin, C. The
Specification of the Sibling Design Pattern. Technical
Report CS-TR-02-11, CS Dept., University of Texas at
Austin, 2002.

[11] Bruce, K., Odersky, M. and Wadler, P. A statically safe
alternative to virtual types. ECOOP 1998.

[12] Cardelli, L. and Wegner, P. On Understanding Types, Data
Abstraction and Polymorphism. ACM Computing Surveys
17, 4, December 1985.

[13] Cardone, R. and Lin, C. Comparing Frameworks and
Layered Refinement. ICSE 2001.

[14] Cardone, R. and Lin, C. Static Virtual Types in Java
Layers. Technical Report CS-TR-00-25, CS Dept.,
University of Texas at Austin, 2000.

10

[15] Cardone, R., Batory, D. and Lin, C. Java Layers: Extending
Java to Support Component-Based Programming. Technical
Report CS-TR-00-11, CS Dept., University of Texas at
Austin, 2000.

[16] Clifton, C., Leavens, G. and Chambers, C. MultiJava:
modular open classes and symmetric multiple dispatch for
Java. OOPSLA 2000.

[17] Czarnecki, K. and Eisenecker, U. Generative
Programming. Addison-Wesley, 2000.

[18] Eisenecker, U., Blinn, F., and Czarnecki, K. A Solution to
the Constructor Problem of Mixin-Based Programming in
C++. Generative and Component-Based Software.
Engineering, Workshop on C++ Template Programming,
Erfurt, Germany, October 2000. Also published in Dr.
Dobbs Journal, No. 320, January 2001.

[19] Gamma, E., Helm, R., Johnson R., and Vlissides, J. Design
Patterns. Addison-Wesley, 1995.

[20] Geary, D. Graphic Java, Mastering the JFC, 3rd ed., Sun
MicroSystems Press, 1999.

[21] Harrison, W. and Ossher, H. Subject-Oriented
Programming (A Critique of Pure Objects). OOPSLA 1993.

[22] Hyperspace home page at
http://www.research.ibm.com/hyperspace.

[23] Java 2 Micro Edition, http://java.sun.com/j2me.

[24] Java Community Process, JSR-14: Add Generic Types to the
Java Programming Language, http://www.jcp.org.

[25] Java Layers home page at
http://www.cs.utexas.edu/users/richcar/JavaLayers.html.

[26] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J. and Griswold, W. An Overview of AspectJ. ECOOP
2001.

[27] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J., and Irwin, J. Aspect-Oriented
Programming. ECOOP 1997.

[28] McDirmid, S., Flatt, M. and Hsieh, W. Jiazzi: New Age
Components for Old Fashioned Java. OOPSLA 2001.

[29] Palm Inc., http://www.palm.com.

[30] Smaragdakis, Y. Implementing Large-Scale Object-
Oriented Components. Ph.D. dissertation, CS Dept.,
University of Texas at Austin, December 1999.

[31] Smaragdakis, Y., and Batory, D. Implementing Layered
Designs with Mixin Layers. ECOOP 1998.

[32] Sun Microsystems, Inc. Connected, Limited Device
Configuration, specification 1.0a, May 19, 2000.

[33] Sun Microsystems, Inc., Java technology site,
http://java.sun.com.

[34] Sun Microsystems, Inc. Java 2 Platform Micro Edition
(J2ME) Technology for Creating Mobile Devices, white
paper, May 19, 2000.

[35] Stroustrup, B. The C++ Programming Language, 3rd
Edition. Addison-Wesley, 1997.

[36] Taivalsaari, A. On the Notion of Inheritance. ACM
Computing Surveys, Vol. 28, No. 3, Sept. 1998.

[37] Tarr, P., Ossher, H., Harrison, W., and Stanley, S. N
Degrees of Separation: Multi-Dimensional Separation of
Concerns. ICSE 1999.

[38] Thorup, K. Genericity in Java with Virtual Types. ECOOP
(1997).

[39] Tip, F., Laffra C., Sweeney P. and Streeter, D. Practical
Experience with an Application Extractor for Java.
OOPSLA (1999).

