
Copyright

by

Ashay Rane

2019

The Dissertation Committee for Ashay Rane
certifies that this is the approved version of the following dissertation:

Broad-Based Side-Channel Defenses

for Modern Microprocessors

Committee:

Calvin Lin, Supervisor

Mohit Tiwari, Co-Supervisor

Işil Dillig

Emmett Witchel

David Evans

Broad-Based Side-Channel Defenses

for Modern Microprocessors

by

Ashay Rane

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2019

Acknowledgments

Had it not been for the heroic efforts of Professor Dan Stanzione, Pro-

fessor Jim Browne, and Professor Keshav Pingali in enabling me to come to UT

Austin, I would never have been able to enroll as a PhD student and, therefore,

work on this dissertation. Professor Browne and my PhD supervisor, Profes-

sor Calvin Lin, were both instrumental in helping me become acclimatized to

the research environment. By virtue of the enthusiastic guidance of Professor

Browne, Professor Lin, and my co-supervisor, Professor Mohit Tiwari, I have

learned a great deal about various aspects of research, including skills such

as picking the right research problems, being thorough with my work, and

writing and presenting well. My committee members, Professor Işil Dillig,

Professor Emmett Witchel, and Professor David Evans, have also been crucial

in improving this dissertation.

Various colleagues have tirelessly provided feedback on my research,

and I want to thank them for their contribution. The Spark lab members

(Austin, Aydin, Casen, Mikhail, Pranav, Prateek, Riley, Rohith, Shijia, and

Willy) and members from Professor Lin’s research group (Akanksha, Anjana,

Chirag, Curtis, Hao, Jia, Kai, Matthew, Molly, Pawan, and Zhan) have offered

both valuable insights and technical assistance at various times throughout my

term as a graduate student. Several fellow PhD students including Arthur,

iv

John, Rasheed, Roshan, Shilpi, Tyler, and Vance have provided both intellec-

tual stimulation as well as social support through various times. I also thank

Greg, Joshua, Raymond, and Varun for opting to work with me towards their

Honors thesis.

Finally, and also most importantly, the contributions of my family and

friends are invaluable. Without their support and their frequent reminders to

stay sane and healthy, none of this work would have seen the light of the day.

v

Broad-Based Side-Channel Defenses

for Modern Microprocessors

Publication No.

Ashay Rane, Ph.D.

The University of Texas at Austin, 2019

Supervisors: Calvin Lin
Mohit Tiwari

Private or confidential information is used in a wide variety of applica-

tions, not just including implementations of cryptographic algorithms but also

including machine-learning libraries, databases, and parsers. However, even

after using techniques such as encryption, authentication, and isolation, it is

difficult to maintain the privacy or confidentiality of such information due to

so-called side channels, with which attackers can infer sensitive information by

monitoring program execution. Various side channels exist such as execution

time, power consumption, exceptions, or micro-architectural components such

as caches and branch predictors, and such side channels have been used to

steal intellectual property, financial information, and sensitive document con-

tents. Although numerous solutions exist for closing side channels, they are

point solutions, since each solution closes an isolated set of side channels.

vi

In this dissertation, we present three compiler-based solutions—Raccoon,

Escort, and Vantage—for closing digital side channels (such as the cache, ad-

dress trace, and branch predictor side channels) that carry information over

discrete bits, and for mitigating the a non-digital side channel, specifically, the

power side channel. Additionally, our compilers are customizable, since they

permit the defense to be tailored to the threat model, to the program, and to

the microarchitecture.

More broadly, our solutions augment the compiler with information

about the lower layers of the computing stack, so that the compiler is aware

of potential side channels and so that the compiler can rewrite programs to

avoid leaking information through those side channels. In doing so, our so-

lutions define new abstractions that enable the compiler to reason about the

program’s impact on timing, power consumption, and other similar side chan-

nels. Through such abstractions, our compilers detect and prevent a broad set

of digital and non-digital leakage on modern microarchitectures.

vii

Table of Contents

Acknowledgments iv

Abstract vi

List of Tables xii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Inadequacy of Prior Solutions 3

1.2 Key Contributions of Our Research 6

1.3 Key Insight Used in Our Research 7

1.4 Organization of This Dissertation 8

Chapter 2. Overview of This Dissertation 9

2.1 Key Ideas . 9

2.2 Threat Model . 13

2.3 Limitations of Our Approach 16

2.4 Related Work . 18

2.4.1 Digital Side Channels 18

2.4.2 Power Side Channel . 21

Chapter 3. Closing Side Channels due to Source-Level Behavior 24

3.1 Background: Memory Trace Obliviousness 27

3.2 System Guarantees . 28

3.3 Raccoon Design . 29

3.3.1 Key Properties of Our Solution 30

3.3.2 Oblivious Store Operation 32

3.3.3 Taint Analysis . 33

viii

3.3.4 Transaction Management 33

3.3.5 Control-Flow Obfuscation 33

3.3.6 Software Path ORAM 36

3.3.7 Limiting Termination Channel Leaks 37

3.3.8 Putting It All Together 38

3.4 Security Evaluation . 41

3.4.1 Security of Obfuscated Code 41

3.4.2 Security of Obfuscation Code 45

3.4.3 Termination Leaks . 49

3.4.4 Defense Against Side-Channel Attacks 50

3.5 Performance Evaluation . 52

3.5.1 Obfuscation Overhead 55

3.5.2 Comparison with GhostRider 55

3.5.3 Software Path ORAM 58

3.6 Discussion . 60

3.7 Conclusions . 61

Chapter 4. Closing Side Channels due to Floating-Point In-
structions 63

4.1 Escort’s Guarantees . 67

4.2 Background . 68

4.2.1 Subnormal Numbers . 68

4.2.2 Floating-Point Error Measurement 70

4.3 Our Solution: Escort . 70

4.3.1 Elementary Operations 71

4.3.2 Compiling Higher-Level Operations 74

4.3.2.1 Step 1: Using Secure Elementary Operations . . 74

4.3.2.2 Step 2: Predicating Basic Blocks 77

4.3.2.3 Step 3: Linearizing Basic Blocks 77

4.3.2.4 Step 4: Controlling Side Effects 77

4.3.2.5 Step 5: Transforming Array Accesses 80

4.3.2.6 Step 6: Transforming Loops 81

4.3.3 Example Transformation: exp10f 81

ix

4.4 Security Evaluation . 85

4.4.1 Experimental Setup . 85

4.4.1.1 Outlier Elimination 86

4.4.2 Timing Assurance of Elementary Operations 87

4.4.3 Timing Assurance of Higher-Level Operations 91

4.4.4 Side-Channel Defense in Firefox 93

4.4.5 Control- and Data-Flow Assurance 93

4.4.5.1 Non-Interference Using Inference Rules 95

4.4.5.2 Defense Against Machine-Learning Attack . . . 96

4.5 Precision Evaluation . 97

4.5.1 Comparison Using Unit of Least Precision 97

4.5.2 Comparison of Program Output 98

4.6 Performance Evaluation . 100

4.6.1 Impact of Floating-Point Library 100

4.6.2 Impact of Control Flow Obfuscation 102

4.7 Conclusions . 104

Chapter 5. Mitigating Non-Digital Side Channels 106

5.1 Motivation . 110

5.2 Open-Source Power Model: McPAT 112

5.2.1 Analysis of McPAT . 112

5.2.2 Our Findings . 113

5.2.3 Validation of the Analysis Results 115

5.2.4 Design of the Vantage Compiler 116

5.3 Closed-Source Power Model: RAPL 122

5.3.1 A Regression Model that Approximates RAPL 123

5.3.2 Validation of the Analysis Results 127

5.3.3 Design of the Vantage Compiler for Intel RAPL 127

5.4 Evaluation . 128

5.4.1 Experimental Setup . 129

5.4.2 Performance of Microbenchmarks 129

5.4.3 Benchmark Applications 130

x

5.4.3.1 Security Evaluation 133

5.4.3.2 Performance Evaluation 135

5.5 Discussion . 137

5.6 Conclusion and Future Work 138

Chapter 6. Conclusion and Future Work 139

6.1 Future Work . 140

Bibliography 142

xi

List of Tables

3.1 Entry-points of Raccoon’s library. 45

3.2 Categorized list of x86 hardware exceptions. 49

3.3 Benchmark programs used for performance evaluation of Rac-
coon. The bottom eight programs are also used to evaluate
GhostRider. The remaining seven programs cannot be trans-
formed by GhostRider because these programs use pointers and
invoke functions in the secret context. 52

4.1 Latency (in cycles) of the SQRTSS instruction for various operands. 64

4.2 Predicates per line for function in Figure 4.8b. 83

4.3 Number of discarded outliers from 100 million double-precision
square-root operations. The results indicate that our outlier
elimination process is statistically independent of the input operand
values. 87

4.4 Comparison of standard deviation of running times of elemen-
tary operations across six types of values (zero, normal, sub-
normal, +∞, −∞, and not-a-number). Numbers in parenthesis
show the standard deviation as a percentage of the mean. The
-sp suffix identifies single-precision operations while the -dp
suffix identifies double-precision operations. Compared to SSE
operations, Escort exhibits negligible variation in running times. 89

4.5 Standard deviation of 10 million measurements for each type
of value (normal, subnormal, and not-a-number). All standard
deviation values are within 3.1% of the mean. Furthermore, the
mean of these 10,000,000 measurements is always within 2.7%
of the representative measurement. 90

4.6 Inference rules for verifying the security of Escort’s higher-level
operations. 94

4.7 Floating-point difference for 10,000 operations on random in-
puts in terms of Unit of Least Precision (ULP) in FTFP versus
Musl C library. Since we observe zero ULP distance between
Escort’s results and Musl’s results, this table omits Escort’s re-
sults. 97

xii

4.8 Distribution of differences in answers produced by Minpack-
FTFP and Minpack-C. In all, 321 values differ between the
outputs of the two programs. 99

4.9 Overhead of SPEC-Escort (SPECfp2006 using Escort oper-
ations) relative to SPEC-Libc (SPECfp2006 using libc). . . . 100

4.10 Overhead of Escort on SVMlight program. 101

4.11 Performance comparison of benchmarks compiled using Rac-
coon and Escort. We only compare the control flow obfuscation
overhead, since both Raccoon and Escort use the same tech-
nique for data access obfuscation. 103

5.1 Energy consumption (measured using Intel RAPL) while run-
ning the LibSVM classifier [20] that labels data from the KDD
Cup dataset [10]. We observe that energy consumption is a
reasonable indicator of the label of the input data. 110

5.2 x64 instructions whose operand values trigger variable number
of microcode operations. 114

5.3 The 21 chosen performance events for computing the regression
between microarchitectural events and energy consumption and
their corresponding coefficients (after rounding to one decimal). 125

5.4 Accuracy of the new regression models based on 100 ms mea-
surements of a subset of the PARSEC benchmarks using Intel
RAPL. The remaining benchmarks failed to either compile or
run on our platform. 128

5.5 Mean Area Under the Curve (AUC) and standard deviation for
ROC curves corresponding to non-secure and secure (Vantage)
execution over 500 summaries. We observe that six benchmark
applications are vulnerable to power channel attacks, and Van-
tage thwarts the attack in the transformed (Vantage) execu-
tion. 134

xiii

List of Figures

1.1 Code fragment to demonstrate side channels. 2

1.2 In a point solution that adds dummy NOP instructions to ensure
that the instruction count does not leak information, the execu-
tion time can still leak information. A different point solution
that adds NOP instructions to balance the execution time will
need to add many more NOP instructions in the else path, thus
breaking the security guarantee of the former defense. 3

1.3 A point solution that adds a dummy load instruction (to hide
variations in the number of runtime load instructions) is suscep-
tible to compiler optimizations (like Dead Code Elimination)
which will break the solution’s security guarantees. 4

2.1 Our compilers map various programming constructs to instruc-
tions of an abstract machine. We derive the abstract machine
by analyzing various ISAs and microarchitectures. 10

2.2 If the input set can be partitioned based on the distinct side-
channel observations, then we can evaluate the user’s compu-
tation on only one input per partition instead of evaluating it
once for each input, thus reducing the performance impact. . . 12

2.3 Illustration of the leakage function of a computation whose in-
puts result in an identical side-channel observation. 13

3.1 Illustrating the importance of Property 2. This code fragment
shows how solutions that do not update memory along decoy
paths may leak information. If the decoy path is not allowed
to update memory, then the dereferenced pointer in line 7 will
access a instead of accessing b, which reveals that the statement
was part of a decoy path. 30

3.2 Source code to compute ms mod n. 31

3.3 CMOV wrapper . 32

3.4 Pseudocode for transaction buffer accesses. Equality checks are
implemented using XOR operation to prevent the compiler from
introducing an explicit branch instruction. 34

3.5 Sample code and transformed pseudocode. 39

xiv

3.6 Typing rules and supporting functions that check security of
Raccoon’s code. 46

3.7 Confusion matrices for ip-resolv, find-max and tax. The
top matrices describe original execution. The bottom matrices
describe obfuscated execution. 51

3.8 Sources of obfuscation overhead. 54

3.9 Overhead comparison on GhostRider’s benchmarks. Even when
we generously underestimate GhostRider’s overhead, GhostRider
sees an average overhead of 195×, while Raccoon’s overhead is
21.8×. 54

3.10 Software ORAM performance. 58

4.1 Impact of allowing subnormal numbers. Without subnormal
values, there exists a much larger gap between zero and the
smallest positive number than between the first two smallest
positive numbers. With subnormal numbers, the values are
more equally spaced. (The figure is not drawn to scale.) 68

4.2 The key idea behind Escort’s secure elementary operations. The
operation is forced to exhibit a fixed latency by executing a
fixed-latency long-running operation in a spare SIMD lane. . . 71

4.3 Escort’s implementation of double-precision multiplication, us-
ing the AT&T syntax. 72

4.4 Code for conditional data copy operation that does not leak
information over digital side channels. This function returns
t val if pred is true; otherwise it returns f val. The assembly
code uses AT&T syntax. 73

4.5 Percentage of instructions that are left uninstrumented (without
sacrificing security) after consulting the SMT solver. 74

4.6 Algorithm for predicating basic blocks. 76

4.7 The use of pointers can leak information. If store instructions
are not allowed to access memory when the basic block’s predi-
cate is false, then pointer p will dereference the address for a
instead of b, thus revealing that secret is true. 78

4.8 Escort’s transformation of exp10f(). 82

4.9 Control flow graph with labeled statements for the code in Fig-
ure 4.8b. A, B, D, E, C, F is one possible sequence of basic blocks
when linearized by the Escort compiler. 84

xv

4.10 Comparison of running times of elementary operations. sp iden-
tifies Escort’s single-precision operations, dp identifies Escort’s
double-precision operations, and fix identifies FTFP’s fixed-
point operations. Numbers at the top of the bars show the total
cycle count. We see that Escort’s execution times are dominated
by the cost of subnormal operations, and we see that FTFP’s
overheads are significantly greater than Escort’s. 88

4.11 Comparison of running times of commonly used higher-level
functions. Error bars (visible for only a few functions) show the
maximum variation in running time for different kinds of input
values. 91

4.12 Performance breakdown of Escort’s commonly used higher-level
functions. The baseline (non-secure) execution and exception
handling together cost less than 250 cycles for each function,
making them too small to be clearly visible in the above plot. 92

4.13 Results of attack and defense on a vulnerable Firefox browser
using timing-channel information leaks arising from the use of
subnormal floating-point numbers. 92

5.1 Relative comparison of power side-channel defenses. Our solu-
tion, Vantage, enables protection for a broad class of applica-
tions running on modern microprocessors, by building on exist-
ing techniques like Computational Blinking or Custom Transis-
tors. 107

5.2 Power consumption of the LibSVM classifier before and after
using our solution (measured using McPAT). The non-secure
executions (shown in red and orange), produce a visually dis-
tinct profile of power consumption, whereas after using our so-
lution, for all secrets, the power profiles are identical (shown as
a single line in blue), effectively mitigating the power channel
attack. 111

5.3 Dependences among runtime components for compiling pro-
grams using Vantage. 117

5.4 Conditional move operation for x64, ARM 32, and ARM 64.
The code does not leak the secret condition through power con-
sumption. 119

5.5 C Code for bit scan forward operation that is later transformed
using the Vantage compiler. 120

5.6 C Code for unsigned integer division that is later transformed
using the Vantage compiler. We mark the numerator and the
denominator inputs as secret. 121

xvi

5.7 Not-equals comparison without causing power variations. . . . 122

5.8 Unsigned greater-than comparison without causing power vari-
ations. 123

5.9 The prediction error increases as λ increases beyond λmin, which
produces the smallest prediction error. We are interested in the
value of λ for which the prediction error is close to the smallest
prediction error. Digits on the curve indicate the number of
non-zero coefficients for the corresponding values of λ. 126

5.10 Performance overhead of transformed 32-bit division, remain-
der, and bit scan code on the x64 target. 130

5.11 Performance overhead of transformed 32-bit division, remain-
der, and comparison on ARM 32 target. 131

5.12 Performance overhead of Vantage on x64, ARM 32, and ARM 64
targets. 132

5.13 Performance overhead of Vantage-RAPL. 135

xvii

Chapter 1

Introduction

Private or confidential information is used by a wide variety of appli-

cations including machine-learning libraries, which analyze personal browsing

histories to recommend products [60], social networking tools, which analyze

graphs that represent connections between persons [82], and cloud services

(such as online maps), which provide directions based on the location of their

users [74]. Unfortunately, it is difficult to keep all of this sensitive information

private, because although there exist many techniques such as encryption, ac-

cess control, and isolation to prevent the accidental disclosure or leakage of

sensitive information, these techniques are not sufficient. In particular, attack-

ers can steal sensitive information through so-called side channels, which are

means by which an attacker can monitor program execution to reveal sensitive

information in the program.

To understand side channels, consider the program shown in Figure 1.1,

where the code emits a sound ping if secret is zero and it emits a sound pong

otherwise. Given such a program, an attacker who hears the sound ping knows

that secret must be equal to zero. Similarly, if the attacker hears the sound

pong, then she knows that the secret must be not equal to zero. Thus the

1

 if (secret == 0) {

 } else {

 }

PING

PONG

Figure 1.1: Code fragment to demonstrate side channels.

presence or absence of the ping or pong sounds inadvertently leaks the value

of the secret variable, and hence the audible sounds become side channels.

Although programs do not typically emit audible sounds, they usually exhibit

many kinds of variations that produce the same effect of leaking sensitive

information.

More formally, a side channel is any variation in a system’s behavior,

such that the variation is (1) is visible to an attacker and (2) dependent on sen-

sitive information. Thus, the variations reveal sensitive values, thus becoming

side channels of sensitive information.

Numerous side channels exist, including execution time, memory access,

instruction count, cache behavior, DRAM address trace, power consumption,

and electromagnetic radiation. Side-channel attacks are significant because

attackers have used side channels to break AES [80] and RSA [83] encryption

schemes, to break the Diffie-Hellman key exchange [50], to fingerprint software

libraries [123], and to reverse-engineer commercial processors [53].

2

 if (secret == 0) {
 x <- load ptr_1 // 5 cycles
 y <- load ptr_2 // 5 cycles
 } else {
 NOP // 1 cycle
 NOP // 1 cycle
 }

10
then

2
else

Figure 1.2: In a point solution that adds dummy NOP instructions to ensure
that the instruction count does not leak information, the execution time can
still leak information. A different point solution that adds NOP instructions to
balance the execution time will need to add many more NOP instructions in
the else path, thus breaking the security guarantee of the former defense.

1.1 Inadequacy of Prior Solutions

Numerous solutions exist for closing side channels [33, 34, 49, 61, 62, 65,

66, 73, 93, 96, 97, 99, 105, 108, 111, 112, 117–119], and we compare our solutions

against them in Section 2.4 (Related Work). However, the common charac-

teristic across these prior solutions is that they are point solutions, since they

each close an isolated set of side channels. Consequently, there exist separate

solutions for closing the execution time side channel [66, 73, 94], separate solu-

tions for the branch predictor side channel [25, 56, 73], for the DRAM address

trace side channel [4, 8, 61, 62], and so on.

Point solutions suffer from two major drawbacks, which we describe

below.

Lack of Composability. Point solutions do not always compose with each

3

 if (secret == 0) {
 x <- load ptr_1
 y <- load ptr_2
 } else {
 z <- load ptr_3
 d <- load dummy
 }

Figure 1.3: A point solution that adds a dummy load instruction (to hide
variations in the number of runtime load instructions) is susceptible to compiler
optimizations (like Dead Code Elimination) which will break the solution’s
security guarantees.

other. More precisely, the use of one point solution can break the security

guarantees of another point solution. Moreover, arguing about security

can be difficult when multiple point solutions are combined. For instance,

consider a cache side-channel defense that randomly evicts cache lines so

as to confuse an adversary monitoring the cache usage [63, 111]. Such a

defense cannot be easily and securely composed with a DRAM address

trace side-channel defense which expects a predictable stream of memory

requests from the CPU [61]. As another example, Figure 1.2 shows

how a defense for the instruction count side channel breaks the security

guarantee of a defense for the execution time side channel.

Disabled Optimizations. Since optimizations can break the security guar-

antees of point solutions, the use of point solutions can force us to signif-

icantly re-engineer compilers and microarchitectures. For instance, con-

sider a solution that adds dummy load instructions to hide variations in

4

the load instruction count [61], as shown in Figure 1.3. Unfortunately,

common compiler optimizations such as Dead Code Elimination, Loop

Invariant Code Motion, and Instruction Combining interfere with the

desired security guarantees so such a point solution is forced to disable

many compiler optimizations. The same point solution is also vulnera-

ble to microarchitectural optimizations such as caches, since a dummy

load instruction could consume a different execution time than a real

load instruction. Several other microarchitectural optimizations such

as prefetchers, branch prediction, and variable-latency instructions also

break the security guarantee of this point solution. Consequently, the

use of point solutions can require hardware vendors to design new sig-

nificantly slower hardware to support these side-channel defenses.

Ultimately, point solutions represent a patchwork approach, whose se-

curity is difficult to assert in the presence of other point solutions and in

the presence of common optimizations. Consequently, point solutions are ex-

tremely limited in not just the number of side channels that they can close,

but also in the kinds of programs and the kinds of microarchitectures that

they can protect. Perhaps unsurprisingly, a number of point solutions have

been evaluated using only small cryptographic kernels [56, 63, 100, 114, 121],

such as implementations of Advanced Encryption Standard (AES), or on pro-

grams using only simple control flow [7, 61, 62, 79], thus ruling out loops and

floating-point arithmetic operations.

5

1.2 Key Contributions of Our Research

In this dissertation, we present three compiler-based solutions—Raccoon [87],

Escort [88], and Vantage [89]—for closing a broad class of side channels. Al-

though our solutions cannot close speculation-based side channels, our Rac-

coon and Escort compilers close digital side channels, which are side channels

that carry information over discrete bits (e.g. cache, address trace, branch

predictor, instruction count, etc.), and our Vantage compiler augments ex-

isting solutions for closing non-digital side channels, specifically, the power side

channel, to protect a more diverse set of applications compared to prior work.

Our solutions are compatible with microarchitectural optimizations such as

caching, prefetching, branch prediction, and out-of-order execution, and our

solutions leverage the flexibility of software (i.e. the compiler) for tailoring

the defense according to the program, the microarchitecture, and the threat

model.

At a high level, our solutions assume that the attacker cannot bypass

the memory and register-level isolation that is typically expected to be en-

forced by the underlying hardware (either through the Memory Management

Unit or through enclaves such as Intel Software Guard Extensions [71]), and

our solutions assume that the memory contents are encrypted. Since our solu-

tions are built in the compiler, they assume that the source code is available.

Consequently, our solutions cannot transform code fragments that contain sys-

tem calls or library calls, since their definition is outside the purview of the

compiler. We describe the assumptions made by our solutions in greater detail

6

in the following chapters.

1.3 Key Insight Used in Our Research

In our solutions, we use our insight that a broad class of side chan-

nels are caused due to variations in the source-level behavior of the program.

For instance, the branch predictor and branch target buffer side channels are

caused by differences in the outcome of conditional branches in the program.

Similarly, the cache, TLB, and DRAM address trace side channels are caused

due to differences in pointer dereferences in the program.

Since such source-level variations can be summarized in terms of con-

trol flows and data flows, our solutions eliminate a broad class of side channels

by making the program’s control flows and data flows independent of the pro-

gram’s sensitive information. Conceptually, our solutions execute all paths

and access all memory locations in the program. For instance, for the code

fragment shown in Figure 1.1, our solutions force the evaluation of both the

then path as well as the else path of the branch, so that the adversary’s view

in terms of different side channels in always the same regardless of the value

of the secret variable. Our solutions prevent an explosion in the number of

executed paths and accessed memory locations by (1) identifying the instruc-

tions that are common to various paths and executing them only once and

(2) by limiting our focus to only those parts of the program that potentially

leak sensitive information.

Of course, side channels can also exist in the execution of individual as-

7

sembly instructions, so a program whose control flows and data flows are inde-

pendent of sensitive information could still leak information. To prevent such

leakage, our solutions rewrite the operation of specific assembly instruction us-

ing other (safe) assembly instructions. We generate such rewritten operations

either manually or by leveraging results from an existing superoptimizer.

1.4 Organization of This Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we

describe an overview of our approach, our threat model, the limitations of

our approach, and related work. In Chapter 3, we explain our solution for

closing side channels caused due to differences in the source-level behavior

of the application. Chapter 4 describes our approach for closing side chan-

nels arising from the use of variable-latency floating-point operations, along

with an optimized technique for preventing information leakage due to control

flows. In Chapter 5, we describe our technique for enabling the compiler to

mitigate analog side channels, specifically the power side channel, in diverse

applications. Finally, Chapter 6 concludes before highlighting potential future

work.

8

Chapter 2

Overview of This Dissertation

This chapter describes the key ideas used in this dissertation, the threat

model, limitations of our approach, and related work.

2.1 Key Ideas

Broadly, our solutions build abstractions from compiler-level instruc-

tions to side-channel observations, thus enabling the compiler to reason about

potential information leakage in the program through side channels. We build

such abstractions by analyzing the underlying layers of the computing stack

(i.e. the ISA, the microarchitecture, and the physical hardware). Specifically,

we apply information flow analysis to determine how sensitive information in

registers and memory locations can leak through metrics such as timing, ex-

ceptions, power, etc. Using such abstractions from compiler-level instructions

to side-channel observations, our solutions both identify potential leakage and

transform programs to prevent the adversary from inferring sensitive informa-

tion despite the existence of side channels.

9

Escort
Compiler

Abstract Machine
(int ops, cmov)

Abstract Machine
(int ops, SIMD, cmov)

Abstract Machine
(int ops, cmov,
power model)

Vantage
Compiler

Raccoon
Compiler

Concrete Machine
(Out-of-Order Core with
caches, prefetchers, etc.)

Figure 2.1: Our compilers map various programming constructs to instructions
of an abstract machine. We derive the abstract machine by analyzing various
ISAs and microarchitectures.

Abstract Models for Computational Non-Interferences. In this dis-

sertation, we construct and leverage three main abstract models for imple-

menting computational non-interference. First, our Raccoon compiler uses the

conditional move instruction in x86 ISAs to protect integer applications from

digital side channels. Effectively, the Raccoon compiler maps various program

constructs onto an abstract machine that supports a secure register-level con-

ditional move instruction. Consequently, Raccoon assumes that the concrete

machine’s microarchitectural implementation of the register-level conditional

move instruction does not leak information.

Our Escort compiler, which closes digital side channels arising in floating-

point applications, uses an extended abstract machine. Specifically, in addition

to assuming a secure implementation of the conditional move instruction, it

assumes that SIMD operations that use subnormal values execute in paral-

10

lel, so that dummy subnormal operations in spare lanes force floating-point

operations to consume a fixed, worst-case latency. Although our concrete ma-

chine (an Intel Sandy Bridge processor) exhibits a ∼1-cycle standard deviation

([88], Table 5) in execution latency despite the use of SIMD operations, this

variation is substantially lower than the ∼58-cycle standard deviation among

non-secure operations. On the other hand, if the concrete machine is built

to match the abstract machine’s specifications (i.e. the SIMD operations that

use subnormal values indeed execute in parallel), then the Escort compiler’s

guarantees are complete.

Finally, our Vantage compiler leverages an abstract machine in which

fine-grain power variations are eliminated using existing hardware techniques,

thus enabling the compiler to eliminate coarse-grain power variations.

Formal Notation. We illustrate our solutions’ generalized approaches for

code transformation in the context of a computation function f that we wish

to protect from side-channel leakage. Specifically, f : I → O, i.e. the function

f accepts inputs I and produces outputs O. By applying the previously-

derived abstraction, α (from the compiler-level instructions to the side-channel

observations), to each instruction inside the function f , we arrive at a leakage

function l which maps the program’s inputs to side-channel observations. More

precisely, l : I → S, i.e. the function l accepts inputs I and produces side-

channel observations S. The adversary’s goal is to infer the input based on

the side-channel observations, whereas our solutions’ goal is to rewrite the

11

I
inputs

S
side channel
observations

Figure 2.2: If the input set can be partitioned based on the distinct side-
channel observations, then we can evaluate the user’s computation on only one
input per partition instead of evaluating it once for each input, thus reducing
the performance impact.

function f so that the adversary’s inference is impossible.

We now describe the three broad approaches used by our solutions.

Iterating Over All Inputs. A naive solution to hide sensitive input despite

the occurrence of side channels is to evaluate the computation function f

on all inputs I, regardless of the desired sensitive input. By doing so, the

adversary’s view in terms of side channels is always identical regardless

of the actual input. Of course, if the set of inputs I is large, then this

approach is too expensive.

Iterating Over Partitioned Inputs. Depending on the abstraction α, it

may be possible to partition the set of inputs I such that inputs that

cause identical side-channel observations are grouped into the same par-

tition. Figure 2.2 illustrates this condition, where inputs are partitioned

into two sets based on the distinct side-channel observations. In such

12

I
inputs

S’
side channel
observations

Figure 2.3: Illustration of the leakage function of a computation whose inputs
result in an identical side-channel observation.

cases, our solutions evaluate the computation function f only once per

partition instead of once for each input, thus improving performance.

Rewriting to Eliminate Leakage. In some cases, it may also be possible to

transform the computation function f into another function f ′, such that

f ′ is functionally equivalent to f , but the side-channel observations of f ′

are always identical regardless of the input. In other words, f ′ : I → O

and l′ : I → S ′, where l′ is the leakage function for f ′ and |S ′| = 1.

Figure 2.3 illustrates this case. If it is possible to derive such a function f ′

(for example, using superoptimization), then our solutions simply replace

the computation function f with the function f ′, instead of evaluating

the computation multiple times.

2.2 Threat Model

This section describes our assumptions about the underlying hardware

and software. We assume that the adversary is either an external entity

13

that monitors observation-based side channels (e.g. time [50], memory address

trace [43], or the /proc pseudo-filesystem [44]) or a co-resident process/VM

that monitors contention-based side channels (e.g. cache [83] or branch predic-

tor state [2]).

Hardware Assumptions. Our Raccoon and Escort solutions assume that

the adversary can monitor and tamper with any digital signals on the pro-

cessor’s I/O pins. We also assume that the processor is a sealed chip [99].

We assume that the CPU encrypts data transferred to and from DRAM. All

components other than the processor are untrusted, and we assume that the

adversary can observe and tamper with any digital signal. Vantage prevents

an attacker from correlating secrets with the processor’s power consumption

over long sequences of instructions. We assume that the power model analyzed

using Vantage is at least as accurate as the power model that will be used by

the adversary, but Vantage is flexible enough to permit richer power models

as they get developed. The user of Vantage can select the relevant power

model depending on the measurement techniques available to the adversary,

such as physical oscilloscope probes used in the vicinity of the processor or

remotely measured energy-related performance events such as Intel RAPL.

Vantage prevents power and energy variations at the level of instructions

and microcode operations but not cycle-level power variations; we assume that

cycle-level power variations are eliminated using existing techniques such as

Computational Blinking [5, 107, 116] or using custom transistors that enforce

14

peak power consumption [28, 84, 86, 103, 104]. Vantage then removes vari-

ations in the power consumption at the level of instructions and microcode

operations, effectively complementing (instead of replacing) existing power

channel defenses. Vantage does not protect the DRAM from power channel

attacks. Our solutions assume that there is no speculative execution, since

our approach assumes that the processor executes only those instructions that

eventually commit.

Software Assumptions. We assume that the adversary can run malicious

applications on the same operating system and/or hardware as the victim’s

application. We allow malicious applications to probe the victim application’s

run-time statistics exposed by the operating system (e.g. the stack pointer in

/proc/pid/stat). We assume that the input program is free of errors, i.e.

(1) the program does not contain bugs that will induce application crashes,

(2) the program does not exhibit undefined behavior, and (3) if multi-threaded,

then the program is data-race free. We also assume that the program does not

contain irreducible control flow graphs. Under these assumptions, our solu-

tions do not introduce new termination-channel leaks, and they correctly ob-

fuscate multi-threaded programs. Our solutions statically transform the user

code into an obfuscated binary, so we assume that the adversary has access to

this transformed binary code and to any symbol table and debug information

that may be present. Our solutions do not support all features of the C99

15

standard. Specifically, our compilers cannot obfuscate I/O statements1 and

non-local goto statements. Our compilers cannot analyze libraries since their

source code is not available when compiling the end-user’s application. Our

solutions include static analyses that check if the input program contains these

unsupported language constructs. If such constructs are found in the input

program, the program is rejected. Unlike Escort and Vantage, Raccoon does

not prevent information leakage from loop trip counts, since näıvely obfuscat-

ing loop back-edges would create infinite loops. For the same reason, Raccoon

does not obfuscate branches that represent terminal cases of recursive function

calls. However, to address these issues, it is possible to adapt complementary

techniques designed to close timing channels [117], which can limit information

leaks from loop trip counts and recursive function calls. Finally, our solutions

assume that the programmer annotates variables that store sensitive input

values, so that the compiler can identify the parts of the program that need

protection.

2.3 Limitations of Our Approach

Of course, our solutions have limitations, which we now describe.

System Calls, I/O Operations, and Library Calls. Compiler-based so-

lutions cannot transform code that is outside the compiler’s purview.

1Various solutions have been proposed that allow limited use of “transactional” I/O
statements through runtime systems [19], operating systems [85], or the underlying hard-
ware [14].

16

Specifically, I/O operations, system calls, and library calls are outside

of the scope of the compiler. I/O operations are perhaps impossible

to hide using our approach. Thus, our solutions are largely limited to

computational kernels.

Programmer Annotations for Discovering Sensitive Inputs. Our approach

relies on the programmer to correctly identify the input variables that

store sensitive information. If the programmer fails to properly iden-

tify all sensitive inputs, then our solutions’ transformations will not

adquately prevent side-channel leakage. Although our solutions could

conservatively assume that all inputs to the program hold sensitive in-

formation, doing so will likely result in poor performance.

Side Channels Caused by Speculation. Speculation-based side channels

such as Spectre and Meltdown cannot be closed by our approach, since

our approach assumes that the processor executes only those instructions

that eventually commit.

Side Channels at the Lowest Levels of the Computing Stack. Although

compiler-based defenses can close side channels that are at the lowest lev-

els of the computing stack, such as power, electromagnetic radiation, and

heat, the efficiency of such solutions is limited, due to both the undecid-

ability of static analyses and also due to the limited interface exposed by

the ISA. For instance, a multiplier unit could leak information about its

operands through the power consumption, but the ISA does not permit

17

exerting control over the multiplier’s power consumption.

Design of Compiler Transformations. We manually design the code trans-

formations in our solutions’ compilers. However, given the variety of

threat models and microarchitectures, it is improbable to expect a hu-

man to design each code transformation.

2.4 Related Work

Side-channel attacks through the OS, the underlying hardware, or the

processor’s output pins have been a subject of vigorous research. Formulated

as the “confinement problem” by Lampson in 1973 [54], such attacks have

become relevant for both cloud infrastructures, where the adversary and victim

VMs can be co-resident [91], and for settings where adversaries have physical

access to the processor [65, 123]. We first describe the related work in digital

side channels, before focusing our attention on the power side channel.

2.4.1 Digital Side Channels

Side-Channels through OS and Microarchitecture. Some application-

level information leaks are beyond the application’s control, for example, an

adversary reading a victim’s secrets through the /proc filesystem [44], or a

victim’s floating point registers that are not cleared on a context switch [3].

In addition to such explicit information leaks, implicit flows rely on contention

for shared resources, as observed by Wang and Lee [111] for cache channels

and extended by Hunger et al. [105] to all microarchitectural channels.

18

Physical Access Attacks and Secure Processors. Execute-only Mem-

ory (XOM) [101] encrypts portions of memory to prevent the adversary from

reading secret data or instructions from memory. The AEGIS [99] secure pro-

cessor provides the notion of tamper-evident execution (recognizing integrity

violations using a merkle tree) and tamper-resistant computing (preventing an

adversary from learning secret data using memory encryption). Intel’s Soft-

ware Guard Extensions (SGX) [72] create “enclaves” in memory and limit

accesses to these enclaves. Both XOM and SGX are only partially successful

in prevent the adversary from accessing code because an adversary can still

disassemble the program binary that is stored on the disk. In contrast, our

solutions permit release of the transformed code to the adversary. Hence our

solutions never need to encrypt code memory.

Side-Channel Defenses. Decades of prior research have produced numer-

ous defenses against side channels, the vast majority of which close only a

limited number of side channels with a single solution. For instance, numer-

ous solutions exist that close only the cache side channel [27, 52, 111, 112, 119]

or only the address-trace side channel [65, 90, 96, 97]. Raccoon [87] is the first

solution that closes a broad class of side channels—in particular, the set of

digital side channels—with a single solution. Similar to Raccoon, Escort [88]

also closes digital side channels with a single solution, but unlike Raccoon,

Escort focuses on closing floating-point digital side channels, which can arise

from variable latency floating-point instructions and from software implemen-

19

tations of floating-point libraries, in which points-to set sizes are typically

small. Given Escort’s narrower focus on floating-point computations, Escort

is faster than Raccoon by an order of magnitude.

Timing Side-Channel Defenses. Prior defenses against timing side-channel

attacks utilize new algorithms [94], compilers [73], runtime systems [66], or se-

cure processors [61]. However, these solutions only address one source of tim-

ing variations—either those that stem from the choice of the algorithm [95] or

those that stem from the microarchitectural design [37]. By contrast, Raccoon

and Escort close timing variations from both sources.

Floating-Point Side-Channel Defenses. Andrysco et al. [7] present

libfixedtimefixedpoint (FTFP), the first software solution for closing the

floating-point timing channel. FTFP has some weaknesses, as we now discuss,

but the main contribution of their paper is the demonstration of the signifi-

cance of this side channel, as they use variable-latency floating-point opera-

tions to break a browser’s same-origin policy and to break differential privacy

guarantees of remote databases. FTFP is a fixed-point library that consists

of 19 hand-written functions that each operates in fixed time, independent

of its inputs. FTFP is slow and imprecise. Cleemput et al. [23] introduce

compiler transformations that convert variable-timing code into fixed-timing

code. Their technique requires extensive manual intervention, applies only to

the division operation, and provides weak security guarantees. Both solutions

20

require manual construction of fixed-time code—a cumbersome process that

makes it difficult to support a large number of operations. By contrast, Escort

implements a fixed-time floating-point library, while preventing information

leaks through timing as well as digital side channels. Escort includes a com-

piler that we have used to automate the transformation of 112 floating-point

functions in the Musl standard C library, a POSIX-compliant C library. Escort

also provides precision identical to the standard C library.

2.4.2 Power Side Channel

We now compare our work to prior attempts in closing or mitigating

the power channel.

Transistor-Level Solutions. Sub-cycle power variations in any circuit can

be eliminated at the level of transistors by either normalizing [28, 86, 103, 104]

or randomizing [84] power consumption. Unfortunately, these solutions do not

protect from power variations occurring due to microarchitectural optimiza-

tions including caching, prefetching, variable-latency instructions, and pred-

ication. These solutions also cannot be selectively turned off, so non-secret

programs execute with the same overhead as secret programs. By contrast,

Vantage [89] is a compiler-based solution for eliminating power variations

over long sequences of instructions running on modern processors, and Van-

tage selectively transforms portions of programs based on the programs’ se-

curity requirements. Vantage complements existing transistor-level solutions

21

so that a broad-class of programs can be protected from power-channel attacks.

Code Modifications. Several solutions [16, 26, 36, 45, 46, 59] eliminate cycle-

level power variations by manually changing the source code of vulnerable

programs, but they only support programs that execute a fixed sequence of

instructions and which access a fixed set of memory locations in a pre-defined

sequence. Virtual Secure Circuits (VSCs) [22] execute the original program

concurrently with a so-called shadow program comprising of instructions that

are complementary to the original program in such a way that the original

and complementary instructions exercise different paths of logic circuits. Un-

fortunately, VSCs assume tight synchronization between programs running on

separate cores, they require caches and branch predictors to be disabled, and

VSCs are difficult to use with programs containing branches, function calls,

and floating-point arithmetic. Due to these limitations VSCs cannot be run

on modern processors and with a broad class a programs.

Microarchitectural Solutions. Yang [115], Ambrose [6], and May [68, 69]

suggest closing the power channel by adding noise using dynamic voltage and

frequency scaling, out-of-order execution, register renaming, or by randomly

inserting random instructions. Unfortunately, these approaches merely fix

the symptoms of the problem, and they provide weak guarantees for closing

the power channel, since the running time of programs can vary more than

the noise introduced by perturbations. In comparison, our approach removes

22

variations in the source code and our evaluation is stronger than the evaluation

used in the above approaches.

Masking or Blinding Secrets. Secrets can be hidden or “blinded”, either

manually [78, 81] or semi-automatically using a compiler [11, 75], by XOR-ing

them with a randomly-generated bit mask. The blinding process effectively

randomizes the power consumption. However, blinding schemes are inherently

limited to a restricted class of application programs, since blinding relies on

specific mathematical properties of the computations. Vantage protects ap-

plications that use conditional branches and floating-point operations using

code transformations. In our approach, we rely on the processor’s ability to

encrypt off-chip communication, thus obviating the need for blinding off-chip

communication.

Analysis of Power Models. Several models [17, 48, 58, 92, 102, 120] of the

processor’s power consumption exist but these models focus on characterizing

the execution of programs for efficiency, whereas in this work, we devise a

technique to eliminate variations in power consumption. More specifically,

we augment the compiler with information about power consumption, so that

the compiler can generate code that consumes constant power regardless of

application secrets. Unlike the regression model by McCann et al. [70], which

models power consumption of instructions, Vantage’s regression model is

based on microarchitectural events, which are more generic than instructions.

23

Chapter 3

Closing Side Channels due to Source-Level

Behavior

In this chapter, we describe our solution for closing side channels that

arise due to differences in the source-level behavior of the program. Specifi-

cally, our solution closes digital side channels, which we define as side channels

that carry information over discrete bits. These side channels are visible to

the adversary at the level of both the program state and the instruction set

architecture (ISA). Thus, address traces, cache usage, and data size are ex-

amples of digital side channels, while power draw, electromagnetic radiation,

and heat are not. Portions of this chapter have been published in the 2015

USENIX Security Symposium [87]1.

Over the past five decades, numerous solutions [33, 34, 49, 61, 62, 65, 66,

73, 93, 96, 97, 99, 105, 108, 111, 112, 117–119] have been proposed for defending

against side-channel attacks. Unfortunately, these defenses provide point so-

lutions that leave the program open to other side-channel attacks. Thus, our

1Full citation: Ashay Rane, Calvin Lin, and Mohit Tiwari, “Raccoon: Closing Digital
Side-Channels Through Obfuscated Execution” in USENIX Security Symposium (SEC),
pages 431–446, 2015. The author of this dissertation contributed to this paper by performing
the research, evaluating the solution, and comparing the solution with prior work.

24

goal is to instead find a single solution that simultaneously closes a broad class

of side channels.

Our key insight is that digital side channels emerge from variations in

program execution, so while other solutions attempt to hide the symptoms—

for example, by normalizing the number of instructions along two paths of a

branch—we instead attack the root cause by executing extraneous program

paths, which we refer to as decoy paths. Intuitively, after obfuscation, the

adversary’s view through any digital side channel appears the same as if the

program were run many times with different inputs. Of course, we must en-

sure that our system records the output of only the real path and not the

decoy paths, so our solution uses a transaction-like system to update memory.

Furthermore, on the real paths, each store operation first reads the old value

of a memory location before writing the new value, while the decoy paths read

the old value and write the same old value.

The only distinction between real and decoy paths lies in the values

written to memory: Decoy and real paths will write different values, but unless

an adversary can break the data encryption, she cannot distinguish decoy

from real paths by monitoring digital side channels. Our solution does not

defend against non-digital side-channel attacks, because analog side channels

might reveal the difference between the encrypted values that are stored. For

example, a decoy path might “increment” some variable x multiple times, and

an adversary who can precisely monitor some non-digital side channel, such

as power-draw, might be able to detect that the “increments” to x all write

25

the same value, thereby revealing that the code belongs to a decoy path.

Nevertheless, our new approach offers several advantages. First, it de-

fends against digital side-channel attacks. Second, it does not require that the

programs themselves be secret, just the data. Third, it obviates the need for

special-purpose hardware. Thus, standard processor features such as caches,

branch predictors and prefetchers do not need to be disabled. Finally, in con-

trast with previous solutions for hiding specific side channels, it places few

fundamental restrictions on the set of supported language features.

This work makes the following contributions:

1. We design a set of mechanisms, embodied in a system that we call Rac-

coon,2 that closes digital side channels for programs executing on com-

modity hardware. Raccoon works for both single- and multi-threaded

programs.

2. We evaluate the security aspects of these mechanisms in several ways.

First, we argue that the obfuscated data- and control-flows are correct

and are always kept secret. Second, we use information flows over infer-

ence rules to argue that Raccoon’s own code does not leak information.

Third, as an example of Raccoon’s defense, we show that Raccoon pro-

tects against a simple but powerful side channel attack through the OS

interface.

2Raccoons are known for their clever ability to break their scent trails to elude predators.
Raccoons introduce spurious paths as they climb and descend trees, jump into water, and
create loops.

26

3. We evaluate the performance overhead of Raccoon and find that its over-

head is 8.9× smaller than that of GhostRider, which is the most similar

prior work [61].3 Unlike GhostRider, Raccoon defends against a broad

range of side-channel attacks and places many fewer restrictions on the

programming language, on the set of applicable compiler optimizations,

and on the underlying hardware.

This chapter is organized as follows. Section 3.1 explains background

information while Section 3.2 describes Raccoon’s guarantees. We then de-

scribe our solution in detail in Section 3.3 before presenting our security eval-

uation and our performance evaluation in Sections 3.4 and 3.5, respectively.

We discuss the implications of Raccoon’s design in Section 3.6, and we con-

clude in Section 3.7.

3.1 Background: Memory Trace Obliviousness

GhostRider [61, 62] is a set of compiler and hardware modifications that

transforms programs to satisfy Memory Trace Obliviousness (MTO). MTO

hides control flow by transforming programs to ensure that the memory access

traces are the same no matter which control flow path is taken by the program.

GhostRider’s transformation uses a type system to check whether the program

is fit for transformation and to identify security-sensitive program values. It

3GhostRider [61] was evaluated with non-optimized programs executing on embedded
CPUs, which results in an unrealistically low overhead (∼10×). Our measurements instead
use a modern CPU with an aggressively optimized binary as the baseline.

27

also pads execution paths along both sides of a branch so that the length of

the execution does not reveal the branch predicate value.

However, unlike our solutions, GhostRider cannot execute on generally-

available processors and software environments because GhostRider makes

strict assumptions about the underlying hardware and the user’s program.

Specifically, GhostRider (1) requires the use of new instructions to load and

store data blocks, (2) requires substantial on-chip storage, (3) disallows the

use of dynamic branch prediction, (4) assumes in-order execution, and (5) does

not permit use of the hardware cache (it instead uses a scratchpad memory

controlled by the compiler). GhostRider also does not permit the user code to

contain pointers or to contain function calls that use or return secret informa-

tion. By contrast, our solutions run on SGX-enabled Intel processors (SGX

is required to encrypt values on the data bus) and permits user programs to

contain pointers, permits the use of possibly unsafe arithmetic statements, and

allows the use of function calls that use or return secret information.

3.2 System Guarantees

Raccoon protects against digital side-channel attacks. Raccoon guar-

antees that an adversary monitoring the digital signals of the processor chip

cannot differentiate between the real path execution and the decoy path execu-

tions. Even after executing multiple decoy program paths, Raccoon guarantees

the same final program output as the original program.

Raccoon guarantees that its obfuscation steps will not introduce new

28

program bugs or crashes, so Raccoon does not introduce new information leaks

over the termination channel.

Assuming that the original program is race-free, Raccoon’s code trans-

formations respect the original program’s control and data dependences. More-

over, Raccoon’s obfuscation code uses thread-local storage. Thus, Raccoon’s

obfuscation technique works seamlessly with multi-threaded applications be-

cause it does not introduce new data dependences.

3.3 Raccoon Design

This section describes the design and implementation of Raccoon from

the bottom-up. We start by describing the two critical properties of Raccoon

that distinguish it from other obfuscation techniques. Then, after describing

the key building block upon which higher-level oblivious operations are built,

we describe each of Raccoon’s individual components: (1) a taint analysis

that identifies program statements that require obfuscation (Section 3.3.3),

(2) a runtime transaction-like memory mechanism for buffering intermediate

results along decoy paths (Section 3.3.4), (3) a program transformation that

obfuscates control-flow statements (Section 3.3.5), and (4) a code transfor-

mation that uses software Path ORAM to hide array accesses that depend

on secrets (Section 3.3.6). We then describe Raccoon’s program transforma-

tions that ensure crash-free execution (Section 3.3.7). Finally, we illustrate

with a simple example the synergy among Raccoon’s various obfuscation steps

(Section 3.3.8).

29

1: p← &a;
2: if secret = true then
3: Real path.
4: else
5: Decoy path.
6: p← &b; . Dummy instructions do not update p.
7: ∗p← 10; . Accesses variable a instead of b!
8: end if

Figure 3.1: Illustrating the importance of Property 2. This code fragment
shows how solutions that do not update memory along decoy paths may leak
information. If the decoy path is not allowed to update memory, then the
dereferenced pointer in line 7 will access a instead of accessing b, which reveals
that the statement was part of a decoy path.

3.3.1 Key Properties of Our Solution

Two key properties of Raccoon distinguish it from other branch-obfuscating

solutions [27, 61, 62, 73]:

• Property 1: Both real and decoy paths execute actual program instruc-

tions.

• Property 2: Both real and decoy paths are allowed to update memory.

Property 1 produces decoy paths that—from the perspective of an ad-

versary monitoring a digital side-channel—are indistinguishable from from real

paths. Without this property, previous solutions can close one side-channel

while leaving other side-channels open. To understand this point, we refer

to Figure 3.2 and consider a solution that normalizes execution time along

the two branch paths in the Figure by adding NOP instructions to the Not

30

1: function Square And Multiply(m, s, n)
2: z ← 1
3: for bit b in s from left to right do
4: if b = 1 then
5: z ← m · z2 mod n
6: else
7: z ← z2 mod n
8: end if
9: end for

10: return z
11: end function

Figure 3.2: Source code to compute ms mod n.

Taken path. This solution closes the timing channel but introduces different

instruction counts along the two branch paths. On the other hand, the addi-

tion of dummy instructions to normalize instruction counts will likely result

in different execution time along the two branch paths, since (on commodity

hardware) the NOP instructions will have a different execution latency than the

multiply instruction.

Property 2 is a special case of Property 1, but we include it because the

ability to update memory is critical to Raccoon’s ability to obfuscate execution.

For example, Figure 3.1 shows that if the decoy path does not update the

pointer p, then the subsequent decoy statement will update a instead of b,

revealing that the assignment to *p was part of a decoy path.

31

01: cmov(uint8_t pred, uint32_t t_val, uint32_t f_val) {

02: uint32_t result;

03: __asm__ volatile (

04: "mov %2, %0;"

05: "test %1, %1;"

06: "cmovz %3, %0;"

07: "test %2, %2;"

08: : "=r" (result)

09: : "r" (pred), "r" (t_val), "r" (f_val)

10: : "cc"

11:);

12: return result;

13: }

Figure 3.3: CMOV wrapper

3.3.2 Oblivious Store Operation

Raccoon’s key building block is the oblivious store operation, which we

implement using the CMOV x86 instruction. This instruction accepts a condition

code, a source operand, and a destination operand; if the condition is true, it

moves the source operand to the destination. When both the source and the

destination operands are in registers, the execution of this instruction does not

reveal information about the branch predicate (hence the name oblivious store

operation).4 As we describe shortly, many components in Raccoon leverage

the oblivious store operation. Figure 3.3 shows the x86 assembly code for the

CMOV wrapper function.

4Contrary to the pseudocode describing the CMOV instruction in the Intel 64 Architecture
Software Developer’s Manual, our assembly code tests reveal that in 64-bit operating mode
when the operand size is 16-bit or 32-bit, the instruction resets the upper 32 bits regardless
of whether the predicate is true. Thus the instruction does not leak the value of the predicate
via the upper 32 bits, as one might assume based on the manual.

32

3.3.3 Taint Analysis

Raccoon requires the user to annotate secret variables using the attribute

construct. With these secret variables identified, Raccoon performs inter-

procedural taint analysis to identify branches and data access statements that

require obfuscation. Raccoon propagates taint across both implicit and ex-

plicit flow edges. The result of the taint analysis is a list of memory accesses

and branch statements that must be obfuscated to protect privacy.

3.3.4 Transaction Management

To support Properties 1 and 2, Raccoon executes each branch of an

obfuscated if-statement in a transaction. In particular, Raccoon buffers load

and store operations along each path of an if-statement, and Raccoon writes

values along the real path to DRAM using the oblivious store operation. If

a decoy path tries to write a value to the DRAM, Raccoon uses the oblivious

store operation to read the existing value and write it back. At compile time,

Raccoon transforms load and store operations so that they will be serviced

from the transaction buffers. Figure 3.4 shows pseudocode that implements

transactional loads and stores. Loads and stores that appear in non-obfuscated

code do not use the transaction buffers.

3.3.5 Control-Flow Obfuscation

To obfuscate control flow, Raccoon forces control flow along both paths

of an obfuscated branch, which requires three key facilities: (1) a method of

33

// Writes a value to the transaction buffer.

tx_write(address, value) {

if (threaded program)

lock();

// Write to both the transaction buffer

// and to the non-transactional storage.

tls->gl_buffer[address] = value;

*address = cmov(real_idx == instance,

value, *address);

if (threaded program)

unlock();

}

// Fetches a value from the transaction buffer.

tx_read(address) {

if (threaded program)

lock();

value = *address;

if (address in tls->gl_buffer)

value = tls->gl_buffer[address];

value = cmov(real_idx == instance,

*address, value);

if (threaded program)

unlock();

return value;

}

Figure 3.4: Pseudocode for transaction buffer accesses. Equality checks are
implemented using XOR operation to prevent the compiler from introducing an
explicit branch instruction.

34

perturbing the branch outcome, (2) a method of bringing execution control

back from the end of the if-statement to the start of the if-statement so that

execution can follow along the unexplored path, and (3) a method of ensur-

ing that memory updates along decoy path(s) do not alter non-transactional

memory. The first facility is implemented by the obfuscate() function (which

forces sequential execution of both paths arising out of a conditional branch

instruction). Although Raccoon executes both branch paths, it evaluates the

(secret) branch predicate only once. This ensures that the execution of the

first path does not unexpectedly change the value of the branch predicate.

The second facility is implemented by the epilog() function (which transfers

control-flow from the post-dominator of the if-statement to the beginning of

the if-statement). Finally the third facility is implemented using the oblivi-

ous store operation described earlier. The control-flow obfuscation functions

(obfuscate() and epilog()) use the libc setjmp() and longjmp() functions

to transfer control between program points.

Safety of setjmp() and longjmp() Operations. The use of setjmp()

and longjmp() is safe as long as the runtime system does not destroy the acti-

vation record of the caller of setjmp() prior to calling longjmp(). Thus, the

function that invokes setjmp() should not return until longjmp() is invoked.

To work around this limitation, Raccoon copies the stack contents along with

the register state (identified by the jmp buff structure) and restores the stack

before calling longjmp(). To avoid perturbing the stack while manipulating

35

the stack, Raccoon manipulates the stack using C macros and global variables.

As an additional safety requirement, the runtime system must not re-

move the code segment containing the call to setjmp() from instruction mem-

ory before the call to longjmp(). Because both obfuscate()—which calls

setjmp()—and epilog()—which calls longjmp()—are present in the same

program module, we know that that the code segment will not vanish before

calling longjmp().

Obfuscating Nested Branches. Nested branches are obfuscated in Rac-

coon by maintaining a stack of transaction buffers that mimics the nesting

of transactions. Unlike traditional transactions, transactions in Raccoon are

easier to nest because Raccoon can determine whether to commit the results

or to store them temporarily in the transaction buffer at the beginning of the

transaction (based on the secret value of the branch predicate).

3.3.6 Software Path ORAM

Raccoon’s implementation of the Path ORAM algorithm builds on the

oblivious store operation. Since processors such as the Intel x86 do not have a

trusted memory (other than a handful of registers) for implementing the stash,

we modify the Path ORAM algorithm from its original form [97]. Raccoon’s

Path ORAM implementation cannot directly index into arrays that represent

the position map or the stash, so Raccoon’s implementation streams over the

position map and stash arrays and uses the oblivious store operation to selec-

36

tively read or update array elements. Raccoon implements both recursive [96]

as well as non-recursive versions of Path ORAM. Our software implementa-

tion of Path ORAM permits flexible sizes for both the stash memory and the

position map.

Section 3.5.3 compares recursive and non-recursive ORAM implemen-

tations with an implementation that streams over the entire data array. Rac-

coon uses AVX vector intrinsic operations for streaming over data arrays. We

find that even with large data sizes, it is faster to stream over the array than

perform a single ORAM access.

3.3.7 Limiting Termination Channel Leaks

By executing instructions along decoy paths, Raccoon might operate

on incorrect values. For example, consider the statement if (y != 0) { z

= x / y; }. If y = 0 for a particular execution and if Raccoon executes the

decoy path with y = 0, then the program will crash due to a division-by-zero

error, and the occurrence of this crash in an otherwise bug-free program would

reveal that the program was executing a decoy path (and, consequently, that

y = 0).

To avoid such situations, Raccoon prevents the program from termi-

nating abnormally due to exceptions. For each integer division that appears in

a transaction (along both real and decoy paths), Raccoon instruments the op-

eration so that it obliviously (using cmov) replaces the divisor with a non-zero

value. To prevent integer division overflow, Raccoon checks whether the divi-

37

dend is equal to INT MIN and whether the divisor is equal to -1; if so, Raccoon

obliviously substitutes the divisor to prevent a division overflow. Raccoon also

disables floating point exceptions using fedisableexcept(). Similarly, array

load and store operations appearing on the decoy path are checked (again,

obliviously, using cmov) for out-of-bounds accesses. Thus, to ensure that the

execution of decoy paths does not crash the program, Raccoon patches unsafe

operations. Section 3.4.3 demonstrates that this process of patching unsafe

operations does not leak secret information to the adversary.

3.3.8 Putting It All Together

We now explain how Raccoon transforms the code shown in Figure 3.5.

Here, the secret annotation informs Raccoon that the contents of array are

secret.

Static taint analysis then reveals that the branch predicate (line 2)

depends on the secret value, so Raccoon obfuscates this branch. Similarly,

implicit flow edges from the branch predicate to the two assignment state-

ments (at lines 3 and 5) indicate that Raccoon should use the oblivious store

operation for both assignment statements.

Accordingly, Raccoon replaces direct memory stores for l and r with

function calls that write into transaction buffers in lines 11 and 13 of the trans-

formed pseudocode. The access to array in line 1 is replaced by an oblivious

streaming operation in line 7. Finally, the branch in line 2 is obfuscated by

inserting the obfuscate() and epilog() function calls. The epilog() and

38

/* Transformed pseudocode. */

07: r1 = stream_load(array, mid)
08: r2 = r1 <= x
09: key = obfuscate(r2, r3)

10: if r3 {
11: tx_write(l, mid)
12: } else {
13: tx_write(r, mid)
14: }

15: epilog(key)
16: ...

/* Sample user code. */

01: int array[512]
 __attribute__((annotate("secret")));
02: if (array[mid] <= x) {
03: l = mid;
04: } else {
05: r = mid;
06: }

Load array[mid]
Store comparison result

Runtime Sequence Description

Return 0 on first call,
return 1 on second call

First, execute else path

Return to line 9 on first call,
return to line 16 on second

Execute then path during
second execution

Figure 3.5: Sample code and transformed pseudocode.

39

obfuscate() function calls are coordinated over the key variable. To pre-

vent the compiler from deleting or optimizing security-sensitive code sections,

Raccoon marks security-sensitive functions, variables, and memory access op-

erations as volatile (not shown in the transformed IR).5

At runtime, the transformed code executes the following steps:

1. Line 7 streams over the array and uses ORAM to load a single element

(identified by mid) of the array.

2. Line 8 calculates the actual value of the branch predicate.

3. The key to this obfuscation lies in the epilog() function on line 15,

which forces the transformed code to execute twice. The first time this

function is called, it transfers control back to line 9. The second time

this function is called, it simply returns, and program execution proceeds

to other statements in the user’s code.

4. Line 9 obfuscates the branch outcome. The first time the obfuscate()

function returns, it stores 0 in r3, and control is transferred to the state-

ment at line 13, where the tx write() function call updates the trans-

action buffer. Non-transactional memory is updated only if this path

corresponds to the real path.

5The C99 standard states that any “any expression referring to [a volatile object] shall be
evaluated strictly according to the rules of the abstract machine”, and the abstract machine
is defined in a manner that considers that “issues of optimization are irrelevant”.

40

The second time the obfuscate() function returns, it stores 1 in r3,

and control is transferred to the statement at line 11, again calling

the tx write() function to update the transaction buffer. Again, non-

transactional memory is updated only if this path corresponds to the

real path.

3.4 Security Evaluation

In this section, we first demonstrate that the control-flows and data-

flows in obfuscated programs are correct and that they are independent of the

secret value. Then, using type-rules that track information flows, we argue that

Raccoon’s own code does not leak secret information. We then illustrate Rac-

coon’s defenses against termination channels by reasoning about exceptions in

x86 processors. Finally, we evaluate Raccoon’s ability to prevent side-channel

attacks via the /proc filesystem.

3.4.1 Security of Obfuscated Code

In this section, we argue that the obfuscated control-flows and data-

flows (1) preserve the original program’s dependences and (2) do not reveal any

secret information. We only describe scalar loads and stores, since all array-

loads and array-stores are obfuscated by simply streaming over the array. To

simplify the explanation, the following arguments describe a top-level (i.e. a

non-nested) branch. The same arguments can be extended to nested branches

by maintaining a stack of transaction buffers.

41

Correctness of Obfuscated Data-Flow. To ensure correct data-flow, Rac-

coon uses a combination of transaction buffers and non-transactional storage

(i.e. main memory). Raccoon sets up a fresh transaction buffer for each thread

that executes a new path. Figure 3.4 shows the implementation of buffered

load and store operations for use with transactions. The store operations

along real paths write to both transaction buffers and non-transactional stor-

age (since threads cannot share data that is stored in thread-local transaction

buffers).

Consider a non-obfuscated program that stores a value to a memory

location m in line 10 and loads a value from the same location in line 20. We

now consider four possible arrangements of these two load and store opera-

tions in the obfuscated program, where each operation may reside either inside

or outside a transaction. Our goal is to ensure that the load operation always

reads the correct value, whether the correct value resides in a transactional

buffer or in non-transactional storage.

• store outside transaction, load inside transaction: This implies

that there is no store operation on m within the transaction. Thus,

the transaction buffer does not contain an entry for m, and the load

operation reads the value from the non-transactional storage.

• store inside transaction, load inside transaction: Since the trans-

action has previously written to m, the transaction buffer contains an

42

entry for m, and the load operation fetches the value from the transac-

tion buffer.

• store inside transaction, load outside transaction: This implies

that the store operation must lie along the real path. Real-path exe-

cution updates non-transactional storage. Since load operations outside

of transactions always fetch from non-transactional storage, the load

operation reads the correct value of m.

• store outside transaction, load outside transaction: Raccoon

does not change load or store operations that are located outside of

the transactions. Hence the non-obfuscated reaching definition remains

unperturbed.

Raccoon correctly obfuscates multi-threaded code as well. In programs

obfuscated by Raccoon, decoy paths only update transactional buffers. Thus,

only the store operations on real path affect reaching definitions of the ob-

fuscated program. Furthermore, store (or load) operations along real path

immediately update (or fetch) non-transactional storage and do not wait until

the transaction execution ends. Thus, memory updates from execution of real

paths are immediately visible to all threads, ensuring that inter-thread depen-

dences are not masked by transactional execution. Finally, all transactional

load and store operations use locks to ensure that these accesses are atomic.

Put together, load and store operations on real paths are atomic and globally-

visible, whereas store operations on decoy paths are only locally-visible and

43

get discarded upon transaction termination. We thus conclude that the ob-

fuscated code maintains correct data-flows for both single- and multi-threaded

programs.

Concealing Obfuscated Data-Flow. Raccoon always performs two store

operations for every transactional write operation, regardless of whether the

write operation belongs to a real path or a decoy path. Moreover, by leveraging

the oblivious store operation, Raccoon hides the specific value written to

the transactional buffer or to the non-transactional storage. Although the

tx read() function uses an if-statement, the predicate of the if-statement

is not secret, since an adversary can simply inspect the code and differentiate

between repeated and first-time memory accesses. Thus, we conclude that the

data-flows exposed to the adversary do not leak secret information.

Concealing Obfuscated Control-Flow. Raccoon converts control flow

that depends on secret values into static (i.e. deterministically repeatable)

control-flow that does not depend on secret values. Given a conditional branch

instruction and two branch targets in the LLVM Intermediate Representation

(IR), Raccoon always forces execution along the first target and then the sec-

ond target. Thus, the sequence of executed branch targets depends on the

(static) encoding of the branch instruction and not on the secret predicate.

44

Category Functions Secret info.
Control-flow
obfuscation.

obfuscate(),
epilog().

Predicate value

Wrapper functions
for unsafe operations.

stream load(),
stream store(),
div wrapper().

Array index,
division operands.

Registering stack and
array information.

reg memory(),
reg stack base().

-

Initialization and
clean-up functions.

init handler(),
exit handler().

-

Table 3.1: Entry-points of Raccoon’s library.

3.4.2 Security of Obfuscation Code

Raccoon’s own code should never leak secret information, so in this

section, we demonstrate the security of the secret information maintained by

Raccoon. Because the Raccoon code exposes only a handful of APIs (Table 3.1)

to user applications, we can perform a detailed analysis of the code’s entry-

and exit-points to ensure that these interfaces never spill secret information

outside of Raccoon’s own code.

Type System for Tracking Information Flows. Figure 3.6 shows a sub-

set of the typing rules used for checking the IR of Raccoon’s own code. These

rules express small-step semantics that track security labels. We assume the

existence of a functions lr : ν → γ and la : ∆ → γ that map LLVM’s virtual

registers (ν) and addresses (∆) to security labels (γ), respectively. Security

labels can be of two types: L represents low-context (or public) information,

while H represents high-context (or secret) information. Secret information

45

T-LOAD

lr(p) = L, A = pts(p),m = max
a∈A

la(a)

〈x = loadp; c, la, lr〉 → 〈c, la, lr[x 7→ m]〉

T-STORE

lr(p) = L, A = pts(p)

〈store(x, p); c, la, lr〉 → 〈c,
⋃
a∈A

la[a 7→ max(la(a), lr(x)), lr]〉

T-BINOP 〈v = binary-op(x, y); c, la, lr〉 → 〈c, la, lr[v 7→max(lr(x), lr(y))]〉

T-UNOP 〈v = unary-op(x); c, la, lr〉 → 〈c, la, lr[v 7→ lr(x)]〉

T-BRANCH

lr(p) = L, 〈ct; c, la, lr〉 → 〈c, la′, lr ′〉, 〈cf ; c, la, lr〉 → 〈c, la′′, lr ′′〉
〈branch(p, ct, cf); c, la, lr〉 → 〈c,M(la

′, la
′′),M(lr

′, lr
′′)〉

T-CMOV 〈v = cmov(p, t, f); c, la, lr〉 → 〈c, la, lr[v 7→ L]〉

T-SKIP 〈v = skip; c, la, lr〉 → 〈c, la, lr〉

T-SEQUENCE

〈c0, la, lr〉 → 〈c0′, la′, lr ′〉
〈c0; c1, la, lr〉 → 〈c0′; c1, la′, lr ′〉

M(l′, l′′) = ∀x ∈ {K(l′) ∪ K(l′′)} (x, max(l′(x), l′′(x))) K(l) = {x | (x, s) ∈ l}

Figure 3.6: Typing rules and supporting functions that check security of Rac-
coon’s code.

46

listed in Table 3.1 is assigned the H security label, while all other information

is assigned the L security label. We also assume the existence of a function

pts : r → {∆} that returns the points-to set for a given virtual register r.

Our goal is to ensure that Raccoon does not leak secret information

either through control-flow (branch instructions) or data-flow (load and store

instructions). The typing rules in Figure 3.6 verify that information labeled as

secret never appears as an address in a load or store instruction and never

appears as a predicate in a branch instruction. Otherwise, the typing rules

would result in a stuck transition. To prevent information leaks, Raccoon

passes the secret information through the declassifier (cmov) before executing

a load, store, or branch operation with a secret value. Due to its oblivious

nature, the cmov operation resets the security label of its destination to L.

Security Evaluation of the cmov Operation. The tiny code size of the

cmov operation (Figure 3.3) permits us to thoroughly inspect each instruction

for possible information leaks. We use the Intel 64 Architecture Software

Developer’s Manual to understand the side-effects of each instruction.

Since the code operates on the processor registers only and never ac-

cesses memory, it operates within the (trusted) boundary of the sealed pro-

cessor chip. The secret predicate is loaded into the %1 register. The mov

instruction in line 4 initializes the destination register with t val. The test

instruction at line 5 checks if pred is zero and updates the Zero flag (ZF), Sign

flag (SF), and the Parity flag (PF) to reflect the comparison. The subsequent

47

cmovz instruction copies f val into the destination register only if pred is

zero. At this point, ZF, SF, and PF still contain the results of the compari-

son. The test instruction at line 7 overwrites these flags by comparing known

non-secret values.

Since none of the instructions ever accesses memory, these instruc-

tions can never raise a General Protection Fault, Page Fault, Stack Excep-

tion Fault, Segment Not Present exception, or Alignment Check exception.

None of these instructions uses the LOCK prefix, so they will never gener-

ate an Invalid Opcode (#UD) exception. As per the Intel Software Devel-

oper’s Manual, the above instructions cannot raise any other exception be-

sides the ones listed above. Through a manual analysis of the descriptions

of 253 performance events6 supported by our target platform, we discov-

ered that only two performance events are directly relevant to the code in

Figure 3.3: PARTIAL RAT STALLS.FLAGS MERGE UOP and UOPS RETIRED.ALL.

The first event (FLAGS MERGE UOP), which counts the number of performance-

sensitive flags-merging micro-operations, produces the same value for our code,

no matter whether the predicate is true or false. The second event (UOPS RETIRED.ALL)

counts the number of retired micro-operations. Since details of micro-operation

counts for x86 instructions are not publicly available, we used an unofficial

source of instruction tables7 to verify that the micro-operation count for a

cmov instruction is independent of the instruction’s predicate. We thus con-

6Intel 64 and IA-32 Architectures Software Developers Manual, Section 19.5.
7http://www.agner.org/optimize/instruction_tables.pdf

48

Category Interrupt list

Arithmetic errors
Division by zero, invalid operands,
overflow, underflow, inexact results.

Memory access
interrupts

Stack exception fault,
general protection fault, page fault.

Debugging interrupts Single-step, breakpoint.

Privileged operations Invalid TSS, segment not present.

Coprocessor (legacy)
interrupts

No coprocessor, coprocessor overrun,
coprocessor error.

Other
Non-maskable interrupt,
invalid opcode, double-fault abort.

Table 3.2: Categorized list of x86 hardware exceptions.

clude that the code in Figure 3.3 does not leak the secret predicate value.

3.4.3 Termination Leaks

In Section 3.3.7, we explained how Raccoon patches division operations

and memory access instructions to prevent the program from crashing along

decoy paths. We now explain why these patches are sufficient in preventing

the introduction of new termination leaks. Table 3.2 shows a categorized list

of exception conditions arising in Intel x86 processors8 that may terminate

programs. Among these interrupts, Raccoon transparently handles arithmetic

and memory access interrupts.

Debugging interrupts are irrelevant for the program safety discussion

because they do not cause the program to terminate. Our threat model does

not apply obfuscation to OS or kernel code. Since we do not expect user

programs to contain privileged instructions, Raccoon does not need to mask

8http://www.x86-64.org/documentation/abi.pdf

49

interrupts from privileged operations. Coprocessor interrupts are relevant to

Numeric Processor eXtensions (NPX), which are no longer used today. Non-

maskable interrupts are not caused by software events and thus need not be

hidden by Raccoon. Branches in Raccoon always jump to the start of valid

basic blocks, so invalid opcodes can never occur in an obfuscated version of

a correct program. A double-fault exception occurs when the processor en-

counters an exception while invoking the handler for a previous exception.

Aborts due to double-fault need not be hidden by Raccoon because none of

the primary exceptions in an obfuscated program will leak secret information.

In conclusion, Raccoon prevents abnormal program termination, thus guaran-

teeing that Raccoon’s execution of decoy paths will never cause information

leaks over the termination channel.

3.4.4 Defense Against Side-Channel Attacks

We have argued in Sections 3.4.1 and 3.4.2 that Raccoon closes digital

side-channels. We now show a concrete example of a simple but powerful

side-channel attack, and we use basic machine-learning techniques to visually

illustrate Raccoon’s defense against this attack. We model the adversary as a

process that observes the instruction pointer (IP) values of the victim process.

Both the victim process and the adversary process run on the same machine.

The driver process starts the victim process and immediately pauses the

victim process by sending a SIGSTOP signal. The driver process then starts

the adversary process and sends it the process ID of the paused victim

50

#1

#2

#3

#4

#5

#1 #2 #3 #4 #5
Actual

P
re

d
ic

te
d

ip−resolv.

asc

dsc

rnd

asc dsc rnd
Actual

P
re

d
ic

te
d

findmax

2k

100k

500k

2k 100k 500k
Actual

P
re

d
ic

te
d

tax

#1

#2

#3

#4

#5

#1 #2 #3 #4 #5
Actual

P
re

d
ic

te
d

obfs. ip−resolv.

asc

dsc

rnd

asc dsc rnd
Actual

P
re

d
ic

te
d

obfs. findmax

2k

100k

500k

2k 100k 500k
Actual

P
re

d
ic

te
d

obfs. tax

Figure 3.7: Confusion matrices for ip-resolv, find-max and tax. The top
matrices describe original execution. The bottom matrices describe obfuscated
execution.

process. This adversary process polls for the instruction pointer of the victim

process every 5ms via the kstkeip field in /proc/pid/stat. When the victim

process finishes execution, the driver process sends a SIGINT signal to the

adversary process, signalling it to save its collection of instruction pointers

to a file. We run the victim programs with various secret inputs and each

run produces a (sampled) trace of instruction pointers. Each such trace is

labelled with the name of the program and an identifier for the secret input.

We collect 300 traces for each label. For the sake of brevity, we show results

for only three programs from our benchmark suite.

The labelled traces are then passed through a Support Vector Machine

for k-fold cross-validation (we choose k = 10) using LIBSVM v3.18. Using

the prediction data, we construct a confusion matrix for each program, which

conveys the accuracy of a classification system by counting the number of

correctly-predicted and mis-predicted values (see Figure 3.7). The confusion

51

Name Lines Data size
Classifier 86 5 features, 5 records
IP resolver 247 3,500 records
Medical risk analysis 92 3,200 records
CRC32 76 10 KB
Genetic algorithm 446 pop. size = 1 KB
Tax calculator 350 -
Radix sort 675 256K elements

Binary search 35 10K elements
Dijkstra 50 1K edges
Find max 27 1K elements
Heap add 24 1K elements
Heap pop 42 10K elements
Histogram 40 1K elements
Map 29 1K elements
Matrix multiplication 28 500 x 500 values

Table 3.3: Benchmark programs used for performance evaluation of Raccoon.
The bottom eight programs are also used to evaluate GhostRider. The re-
maining seven programs cannot be transformed by GhostRider because these
programs use pointers and invoke functions in the secret context.

matrices show that for the non-secure executions, the classifier is able to label

instruction pointer traces with high accuracy. By contrast, when using traces

from obfuscated execution, the classifier’s accuracy is significantly lower.

3.5 Performance Evaluation

Methodology. Raccoon is implemented in the LLVM compiler framework

v3.6. In our test setup, the host operating system is CentOS 6.3. To evaluate

performance, we use 15 programs (eight small kernels and seven small appli-

cations). Table 3.3 summarizes their characteristics and the associated input

data sizes. The bottom eight programs in the table are the same programs

used to evaluate GhostRider [61, 62], and we use these to compare Raccoon’s

52

overhead against that of GhostRider. To simplify the comparison between

Raccoon and GhostRider, we use data sizes that are similar to those used

to evaluate GhostRider [61]. Raccoon uses the attribute construct to

mark secret variables—which mandates that the input programs are written

in C/C++. However the rest of Raccoon operates entirely on the LLVM IR

and does not use any source-language features. Thus, Raccoon can easily be

ported to work with any language that can be compiled to the LLVM IR. All

tests use the LLVM/Clang compiler toolchain.

We run all experiments on a machine with two Intel Xeon (Sandy

Bridge) processors and with 32 GB (8 × 4 GB) DDR3 memory. Each pro-

cessor has eight cores with 256 KB private L2 caches. The eight cores on

a processor chip share a 20 MB L3 cache. Streaming encryption/decryption

hardware makes the cost of accessing memory from encrypted RAM banks

almost the same as the cost of accessing a DRAM bank. The underlying hard-

ware does not support encrypted RAM banks, but we do not separately add

any encryption-related overhead to our measurements because the streaming

access cost is almost the same with or without encryption.

Performance measurements of our simulated ORAM use the native

hardware performance event—UNHALTED CORE CYCLES. We measure overhead

using clock gettime(). Our software Path ORAM implementation is config-

ured with a block size of 64 bytes. Each node in the Path ORAM tree stores

10 blocks. The stash size is selected at ORAM initialization time and is set to

ORAM block count
100

or 64 entries, whichever is higher.

53

ORAM/Streaming Obfuscation
Control−Flow Obfuscation

O
ve

rh
ea

d
(X

)

1

5

10

50

100

500

1,000

fin
dm

ax

m
ed

−r
isk

s

m
at

rix
−m

ul

he
ap

−a
dd

ge
ne

tic
−a

lgo

ra
dix

−s
or

t

ip−
tre

e

cr
c−

32

bin
−s

ea
rc

h

cla
ss

ifie
r

he
ap

−p
op

m
ap

his
to

gr
am

dij
ks

tra
ta

x

Figure 3.8: Sources of obfuscation overhead.

20 0 26 0

112
46 81 115

320

152

495

127

1294

0

1987

432

0

500

1000

1500

2000

m
at

rix
m

ul

he
ap

−a
dd

bin
−s

ea
rc

h

he
ap

−p
op

his
to

gr
am m

ap

fin
d−

m
ax

dij
ks

tra

O
ve

rh
ea

d
(X

)

GhostRider

Raccoon

Figure 3.9: Overhead comparison on GhostRider’s benchmarks. Even when we
generously underestimate GhostRider’s overhead, GhostRider sees an average
overhead of 195×, while Raccoon’s overhead is 21.8×.

54

3.5.1 Obfuscation Overhead

There are two main sources of Raccoon overhead: (1) the cost of

the ORAM operations (or streaming) and (2) the cost of control-flow ob-

fuscation (including the cost of buffering transactional memory accesses, the

cost of copying program stack and CPU registers, and the cost of oblivi-

ously patching arithmetic and memory access instructions). We account for

ORAM/streaming overhead over both real and decoy paths. Of course, the

overhead varies with program characteristics, such as size of the input data,

number of obfuscated statements, and number of memory access statements.

Figure 3.8 shows the obfuscation overhead for the benchmark programs when

compared with an aggressively optimized (compiled with -O3) non-obfuscated

binary executable. The geometric mean of the overhead is ∼16.1×. Applica-

tions closer to the left end of the spectrum had low overheads due to Raccoon’s

ability to leverage existing compiler optimizations (if-conversion, automatic

loop unrolling, and memory to register promotion). In most applications with

high obfuscation overhead, a majority of the overhead arises from transactional

execution in control-flow obfuscation.

3.5.2 Comparison with GhostRider

To place our work in the context of similar solutions to side-channel

defenses, we compare Raccoon with the GhostRider hardware/software frame-

work [61, 62] that implements Memory Trace Obliviousness. This section

focuses on the performance aspects of the two systems, but Raccoon pro-

55

vides significant benefits over GhostRider beyond performance. First, Rac-

coon provides a broad coverage against many different side-channel attacks.

Second, the dynamic obfuscation scheme used in Raccoon strengthens the

threat model, since it allows the transformed code to be released to the adver-

sary. Third, Raccoon does not require special-purpose hardware. Finally, since

GhostRider adds instructions to mimic address traces in both branch paths,

it requires that address traces from obfuscated code be known at compile-

time, which significantly limits the programs that GhostRider can obfuscate.

Raccoon relaxes this requirement by executing actual code, so Raccoon can

transform more complex programs than GhostRider.

Methodology. We now describe our methodology for simulating the GhostRider

solution. As with our Raccoon setup, we compare GhostRider’s obfuscated

program with an aggressively optimized (compiled with -O3) non-obfuscated

version of the same program. Various compiler optimizations (dead code elim-

ination, vectorization, constant merging, constant propagation, global value

optimizations, instruction combining, loop-invariant code motion, and promo-

tion of memory to registers) interfere with GhostRider’s security guarantees,

so we disable optimizations for the obfuscated program. We manually apply

the transformations implemented in the GhostRider compiler. We simulate a

processor that is modelled after the GhostRider processor, so we use a single-

issue in-order processor that does not allow prefetching into the cache.

There are four reasons why our methodology significantly underesti-

56

mates GhostRider’s overhead. The first three reasons stem from our inability

to faithfully simulate all features of the GhostRider processor: (1) We simu-

late variable-latency instructions, (2) we simulate the use of a dynamic branch

predictor, and (3) we simulate a perfect cache for non-ORAM memory ac-

cesses. All three of these discrepancies give GhostRider an unrealistically fast

hardware platform. The fourth reason arises because our simulator does not

support AVX vector instructions, so we are unable to compare GhostRider

against a machine that can execute AVX vector instructions.

The non-obfuscated execution uses a 4-issue, out-of-order core with

support for Access Map Pattern Matching prefetching scheme [42] for the L1,

L2 and L3 data caches. In all other respects, the two processor configurations

are identical. Both processors are clocked at 1 GHz. The processor configu-

ration closely matches the configuration described by Fletcher et al. [33], and

based on their measurements, we assume that the latency to all ORAM banks

is 1,488 cycles per cache line. We run GhostRider’s benchmarks on this mod-

ified Marss86 simulator and manually add the cost of each ORAM access to

the total program execution latency.

Performance Comparison. Figure 3.9 compares the overhead of GhostRider

on the simulated processor and the overhead of Raccoon. Only those bench-

mark programs that meet GhostRider’s assumptions are used in this com-

parison. The remaining seven applications cannot be transformed by the

GhostRider solution because they use pointers or because they invoke func-

57

1e+01 1e+03 1e+05 1e+07

1e
+

00
1e

+
02

1e
+

04
1e

+
06

ORAM size (KB)

T
im

e
(u

s)

● ● ●

●

●

●

●

●

Recursive ORAM
Non−recursive ORAM

(a) Initialization cost of recursive and non-
recursive ORAM implementation (median
of 10 measurements for each sample).

1e+01 1e+03 1e+05 1e+07 1e+09

1
10

0
10

00
0

Data size (elements)

C
P

U
 c

yc
le

s
(m

ill
io

ns
)

● ●

●

●

●
●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

Non−recursive ORAM − 1
Stream − 1
Non−recursive ORAM − 64
Stream − 64

(b) Performance comparison of software
Path ORAM and streaming over the entire
array.

Figure 3.10: Software ORAM performance.

tions in the secret context. We see that Raccoon’s overhead (geometric mean

of 16.1× over all 15 benchmarks, geometric mean of 21.8× over GhostRider-

only benchmarks) is significantly lower than GhostRider’s overhead (geometric

mean of 195×), even when giving GhostRider’s processor substantial benefits

(perfect caching, lack of AVX-vector support in the baseline processor, and

dynamic branch prediction).

3.5.3 Software Path ORAM

This section considers choices for Raccoon’s ORAM implementation. In

particular, to run on typical general-purpose processors, we need to modify the

Path ORAM algorithm to assume just a tiny amount of trusted memory, which

58

forces us to stream the position map and stash multiple times to obliviously

copy or update elements.

We thus consider three possible implementations. The first, recursive

ORAM [96], places the position map in a smaller ORAM until the position

map of the smallest ORAM fits in the CPU registers. The second is a non-

recursive solution that streams over a single large position map. The third

uses AVX intrinsic operations and streams over the entire array to access a

single element.

Figure 3.10(a) compares the cost of ORAM initialization for different

ORAM sizes in our recursive and non-recursive ORAM implementations. On

this log-log scale, we see that the non-recursive ORAM is significantly faster

than the recursive ORAM for all sizes. Figure 3.10(b) compares our non-

recursive ORAM implementation against the streaming approach. In partic-

ular, it measures the cost of accessing a single element and the cost of 64

single-element random accesses using ORAM and streaming. We see that the

streaming implementation is orders of magnitude faster than our non-recursive

ORAM.

In summary, our software implementation of Path ORAM requires non-

trivial changes to the original Path ORAM algorithm. Unfortunately, these

changes impose a prohibitively large memory bandwidth requirement, mak-

ing the modified software Path ORAM far costlier than streaming over ar-

rays. Raccoon’s obfuscation technique is compatible with the use of dedicated

ORAM memory controllers, and Raccoon’s overhead can be further reduced

59

by using such special purpose hardware [65].

3.6 Discussion

Closing Other Side-Channels. The existing Raccoon implementation does

not defend against kernel-space side-channel attacks. However, many of Rac-

coon’s obfuscation principles can be applied to OS kernels as well. Memory

updates in systems such as TxOS [85] can be made oblivious using Raccoon’s

cmov operation. By contrast, non-digital side-channels appear to be funda-

mentally beyond Raccoon’s scope since physical characteristics (power, tem-

perature, EM radiation) of hardware devices make it possible to differentiate

between real values and decoy values.

Multi-threaded Programs. Raccoon’s data structures are stored in thread-

local storage (TLS), so Raccoon can access internal data structures without

using locks. Raccoon initializes these data-structures at thread entry-points

(identified by pthread create()) and frees them at thread destruction-points

(identified by pthread exit()). Raccoon prevents race conditions on the user

program’s memory by using locks where necessary. Most importantly, as long

as the user program is race-free, Raccoon maintains the correct data-flow de-

pendences in both single-threaded and multi-threaded programs, as described

in Section 3.4.1.

60

Taint Analysis. Raccoon’s taint analysis is sound but not complete, so it

over-approximates the amount of code that must be obfuscated. For large pro-

grams, this over-approximation is a significant source of overhead. Raccoon’s

taint analysis is flow-insensitive, path-insensitive, and context-insensitive, and

Raccoon uses a rudimentary alias analysis technique that assumes two pointers

alias if they have the same type. We believe that more precise static analysis

techniques can be used to greatly shrink Raccoon’s taint graph, thus reducing

the obfuscation overhead.

Limitations Imposed by Hardware. Various x86 instructions (DIV, SQRT,

etc.) consume different cycles depending on their operands. Such operand-

dependent instruction execution latency introduces the biggest hurdle in en-

suring the safety of Raccoon-obfuscated programs. We also believe that the

performance overhead of obfuscated programs would be substantially smaller

than the current overhead if processors came equipped with (small) scratch-

pad memory. Based on these conjectures, we plan to explore the impact of

modified hardware designs in the near future.

3.7 Conclusions

In this chapter, we have introduced the notion of digital side-channel

attacks, and we have presented a system named Raccoon to defend against such

attacks. We have evaluated Raccoon’s performance against 15 programs to

show that its overhead is significantly less than that of the best prior work and

61

that it has several additional benefits: It expands the threat model, it removes

special-purpose hardware, it permits the release of the transformed code to

the adversary, and it also expands the set of supported language features. In

comparing Raccoon against GhostRider, we find that Raccoon’s overhead is

more than 8.9× lower.

Raccoon’s obfuscation technique can be enhanced in several ways. First,

while the performance overhead of Raccoon-obfuscated programs is high enough

to preclude immediate practical deployment, we believe that this overhead can

be substantially reduced by employing deterministic or special-purpose hard-

ware. Second, Raccoon’s technique of transactional execution and oblivious

memory update can be applied to the operating system (OS) kernel, thus

paving the way for protection against OS-based digital side-channel attacks.

Finally, in addition to defending against side-channel attacks, we believe that

Raccoon can be strengthened to defend against covert-channel communication.

62

Chapter 4

Closing Side Channels due to Floating-Point

Instructions

In this chapter, we present our research on closing side channels arising

due to variable-latency floating point instructions. We also present an opti-

mized approach for closing control flow side channels. Portions of this work

have been published in the 2016 USENIX Security Symposium [88]1.

Numerous side channels exist, including instruction and data caches [80,

83], branch predictors [2], memory usage [44, 110], execution time [18, 95],

heat [67], power [51], and electromagnetic radiation [35], but one particularly

insidious side channel arises from the execution of variable-latency floating-

point instructions [7, 37], in which an instruction’s latency varies widely de-

pending on its operands, as shown in Table 4.1.

Both x862 and ARM3 provide variable-latency floating-point instruc-

1Full citation: Ashay Rane, Calvin Lin, and Mohit Tiwari, “Secure, Precise, and Fast
Floating-Point Operations on x86 Processors” in USENIX Security Symposium (SEC), pages
71–86, 2016. The author of this dissertation contributed to this paper by designing the
research, performing the research, evaluating the solution, and comparing the solution with
prior work.

2http://www.agner.org/optimize/instruction_tables.pdf
3http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344k/

ch16s07s01.html

63

Zero Normal Subnormal Infinity NaN
7 11 153 7 7

Table 4.1: Latency (in cycles) of the SQRTSS instruction for various operands.

tions. This variable latency stems from the desire to have graceful floating-

point arithmetic behavior, which, as we explain in Section 4.2, requires the

use of so-called subnormal values [31], which are processed using special algo-

rithms. Since subnormal values are rare, hardware vendors typically support

such values in microcode, so as not to slow down the common case. The re-

sulting difference in instruction latency creates a timing side channel, which

has been used to infer cross-origin data in browsers and to break differential

privacy guarantees of a remote database [7].

However, variable latency floating-point instructions represent only a

part of the problem, since higher level floating-point operations, such as sine

and cosine, are typically implemented in software. Thus, the implementation

of these floating-point operations can leak secret information through other

side channels as well. Depending on the secret values, programs can throw

exceptions, thereby leaking the presence of abnormal inputs through termina-

tion. Programs can also contain conditional branches, which can leak secrets

through the instruction pointer, branch predictor, or memory access count.

Finally, programs that index into lookup tables can leak secrets through the

memory address trace.

To prevent information leaks in both floating-point instructions and

floating-point software, a strong solution should ensure at least four key prop-

64

erties, which correspond to the side channels that we discussed above: (1) fixed-

time operations that are independent of secret values, (2) disabled exceptions,

(3) sequential control flow, and (4) uniform data accesses that are independent

of the value of secret variables. Previous solutions [7, 23] are inadequate be-

cause they do not ensure all four properties, are slow, are orders of magnitude

less precise, or are difficult to implement.

This work presents a novel solution that closes side channels arising

from both hardware and software implementations of floating point operations,

providing all four properties mentioned above. Our compiler-based solution

has two components.

The first component creates building blocks of elementary floating-point

operations for instructions that are natively supported by the hardware (addi-

tion, subtraction, multiplication, division, square root, and type conversion).

Our solution leverages unused SIMD lanes so that fast operations on nor-

mal operands are accompanied by slower dummy computations on subnormal

operands, yielding a consistent yet low instruction latency for all types of

operands.

The second component is a software library of higher-level floating-

point operations like sine and cosine. The key to creating this second com-

ponent is a new code transformation that produces fixed-latency functions

through normalized control flows and data access patterns. Code generated

by our compiler closes digital side-channels, which have been defined to be

those side channels that carry information over discrete bits [87]. Whereas

65

previous work in closing digital side channels employs a runtime system [87],

our solution shifts much of the work to compile time, yielding a significantly

smaller runtime overhead.

This work makes the following contributions:

1. We present a novel compiler-based system, called Escort, for closing dig-

ital side channels that arise from the processing of floating-point instruc-

tions.

2. Secure: We demonstrate that our solution is secure not just against

timing but also against digital side channels. We demonstrate Escort’s

capabilities by defeating a machine-learning side-channel attack, by de-

fending against a timing attack on the Firefox web browser, by conduct-

ing extensive performance measurements on an x86 processor, and by

verifying our solution’s code using typing rules.

3. Precise: We show that Escort provides precision that is identical to

that of the standard C math library. By contrast, the previous solution’s

precision is off by several million floating-point values.

4. Fast: We show that our solution is fast. On a set of micro-benchmarks

that exercise elementary floating-point operations, Escort is 16× faster

than the previous solution [7].

5. As an ancillary contribution, we introduce a methodology for evaluating

the precision and security of floating-point operations, which is fraught

66

with subtleties.

The rest of this work is organized as follows. Section 4.1 describes

Escort’s guarantees. We provide background in Section 4.2 before presenting

our solution in Section 4.3. We evaluate our solution in Sections 4.4–4.6.

Finally, we conclude in Section 4.7.

4.1 Escort’s Guarantees

Escort rejects programs that contain unsupported features—I/O op-

erations and recursive function calls. Unlike prior work [61, 87], Escort does

transform loops that leak information through trip counts. Escort is unable

to handle programs containing irreducible control flow graphs (CFGs), but

standard compiler transformations [76] can transform irreducible CFGs into

reducible CFGs. Escort assumes that the input program does not use vector

instructions, does not exhibit undefined behavior, does not terminate abnor-

mally through exceptions, and is free of race conditions. Given a program that

abides by these limitations, Escort guarantees that the transformed code pro-

duces identical results as the original program, does not leak secrets through

timing or digital side channels, and that the transformed code does not termi-

nate abnormally.

67

Small gap
10-45

0

Smallest
positive
number

Next smallest
positive number

. . .

Large gap
10-38

(a) Without subnormal values.

0
Smallest
positive
number

Next smallest
positive number

. . .

Equal gaps
 10-45

(b) With subnormal values.

Figure 4.1: Impact of allowing subnormal numbers. Without subnormal val-
ues, there exists a much larger gap between zero and the smallest positive
number than between the first two smallest positive numbers. With subnor-
mal numbers, the values are more equally spaced. (The figure is not drawn to
scale.)

4.2 Background

The variable latency of floating-point instructions creates security vul-

nerabilities. In this section, we explain subnormal numbers, which are the

cause of the variable latency, and we explain the difficulty of fixing the result-

ing vulnerability. We also explain how the Unit of Least Precision (ULP) can

be used to quantify the precision of our and competing solutions.

4.2.1 Subnormal Numbers

Subnormal numbers have tiny exponents, which result in floating-point

values that are extremely close to zero: 10−45 < |x| < 10−38 for single-precision

numbers and 10−324 < |x| < 10−308 for double-precision numbers. Subnormal

68

values extend the range of floating-point numbers that can be represented,

but more importantly, they enable gradual underflow—the property that as

floating-point numbers approach zero along the number scale, the difference

between successive floating-point numbers does not increase4. Figures 4.1a

and 4.1b show the differences between zero and the two smallest positive

floating-point numbers. With subnormal numbers, the gap between any two

consecutive floating-point values is never larger than the values themselves,

thus exhibiting Gradual Underflow. Subnormal numbers are indispensable

because gradual underflow is required for reliable equation solving and con-

vergence acceleration [31, 47].

To avoid the added hardware complexity of supporting subnormal num-

bers, which occur infrequently, vendors typically process subnormal values in

microcode, which is orders of magnitude slower than hardwired logic.

The resulting difference in latencies creates a security vulnerability.

An adversary that can measure the latency of a floating-point instruction can

make reasonable estimates about the operand type, potentially inferring secret

values using the timing channel. While subnormal values occur infrequently

in typical program execution, an adversary can deliberately induce subnormal

values in the application’s inputs to enable subnormal operand timing attacks.

4https://www.cs.berkeley.edu/~wkahan/ARITH_17U.pdf

69

4.2.2 Floating-Point Error Measurement

Unlike real (infinite precision) numbers, floating-point numbers use a

limited number of bits to store values, thus making them prone to rounding

errors. Rounding errors in floating-point numbers are typically measured in

terms of the Unit of Least Precision (ULP) [77]. The ULP distance between

two floating-point numbers is the number of distinct representable floating-

point numbers between them, which is simply the result of subtracting their

integer representations. If the result of the subtraction is zero, the floating-

point numbers must be exactly the same.

4.3 Our Solution: Escort

Escort offers secure counterparts of ordinary non-secure floating-point

operations, including both elementary operations and higher-level math op-

erations. The elementary operations include the six basic floating-point op-

erations that are natively supported by the ISA—type conversion, addition,

subtraction, multiplication, division, and square root—and a conditional data

copy operation. The 112 higher-level math operations are those that are imple-

mented using a combination of native instructions. Examples of higher-level

functions include sine, cosine, tangent, power, logarithm, exponentiation, ab-

solute value, floor, and ceiling.

The next subsections describe Escort’s design in three parts. First, we

describe the design of Escort’s secure elementary operations. These opera-

tions collectively form the foundation of Escort’s security guarantees. Second,

70

C * D

(intended
operation)

A * B

(intended
operation)

C * D

(intended
operation)

A * B

(intended
operation)

ti
m

e

[next instr.]

[next instr.]

ti
m

e

P * Q

(dummy
operation)

P * Q

(dummy
operation)ti

m
e

[next instr.] [next instr.]

ti
m

e

After
transformation

 (a) Original
(non-secure) code

(b) Transformed
(secure) code

Figure 4.2: The key idea behind Escort’s secure elementary operations. The
operation is forced to exhibit a fixed latency by executing a fixed-latency long-
running operation in a spare SIMD lane.

we describe Escort’s compiler, which accepts non-secure code for higher-level

operations and converts it into secure code. This compiler combines a code

transformation technique with Escort’s secure elementary operations. Third,

we present an example that shows the synergy among Escort’s components.

4.3.1 Elementary Operations

The key insight behind Escort’s secure elementary operations is that the

latencies of SIMD instructions are determined by the slowest operation among

the SIMD lanes (see Figure 4.2), so the Escort compiler ensures that each ele-

mentary instruction runs along side a dummy instruction whose operand will

produce the longest possible latency. Our analysis of 94 x86 SSE and SSE2 in-

structions (which includes single- and double-precision arithmetic, comparison,

logical, and conversion instructions) reveals: (1) that only the multiplication,

division, square root, and single-precision to double-precision conversion (up-

cast) instructions exhibit latencies that depend on their operands and (2) that

subnormal operands induce the longest latency.

71

double escort_mul_dp(double x, double y) {

const double k_normal_dp = 1.4;

const double k_subnormal_dp = 2.225e-322;

double result;

__asm__ volatile(

"movdqa %1, %%xmm14;"

"movdqa %2, %%xmm15;"

"pslldq $8, %1;"

"pslldq $8, %2;"

"por %3, %1;"

"por %4, %2;"

"movdqa %2, %0;"

"mulpd %1, %0;"

"psrldq $8, %0;"

"movdqa %%xmm14, %1;"

"movdqa %%xmm15, %2;"

: "=x" (result), "+x" (x), "+x" (y)

: "x" (k_subnormal_dp), "x" (k_normal_dp)

: "xmm15", "xmm14");

return result;

}

Figure 4.3: Escort’s implementation of double-precision multiplication, using
the AT&T syntax.

72

01: copy(uint8_t pred, uint32_t t_val, uint32_t f_val) {

02: uint32_t result;

03: __asm__ volatile (

04: "mov %2, %0;"

05: "test %1, %1;"

06: "cmovz %3, %0;"

07: "test %2, %2;"

08: : "=r" (result)

09: : "r" (pred), "r" (t_val), "r" (f_val)

10: : "cc"

11:);

12: return result;

13: }

Figure 4.4: Code for conditional data copy operation that does not leak infor-
mation over digital side channels. This function returns t val if pred is true;
otherwise it returns f val. The assembly code uses AT&T syntax.

In particular, Escort’s fixed-time floating-point operations utilize SIMD

lanes in x86 SSE and SSE2 instructions. Our solution (1) loads genuine and

dummy (subnormal) inputs in spare SIMD lanes of the same input register,

(2) invokes the desired SIMD instruction, and (3) retains only the result of

the operation on the genuine inputs. Our tests confirm that the resulting

SIMD instruction exhibits the worst-case latency, with negligible variation in

running time (standard deviation is at most 1.5% of the mean). Figure 4.3

shows Escort’s implementation of one such operation.

Escort includes Raccoon’s conditional data copy operation (see Fig-

ure 4.4) which does not leak information through digital side channels. This

operation copies the contents of one register to another register if the given

condition is true. However, regardless of the condition, this operation con-

sumes a fixed amount of time, executes the same set of instructions, and does

73

 0 %

 20 %

 40 %

 60 %

 80 %

100 %

fa
b
sf

fa
b
s

e
x
p
1

0
f

e
x
p
1

0
e
x
p
f

lo
g
1

0
p
o
w

lo
g
2

p
o
w

f
e
x
p
2

f
lo

g
lo

g
1

0
f

e
x
p
2

ce
il

fl
o
o
r

lo
g
2

f
lo

g
f

si
n

co
s

si
n
f

co
sf

ta
n

ce
ilf

fl
o
o
rf

ta
n
f

O
p
ti

m
iz

e
d
 fl

o
a
ti

n
g
-p

o
in

t
in

st
ru

ct
io

n
s

Figure 4.5: Percentage of instructions that are left uninstrumented (without
sacrificing security) after consulting the SMT solver.

not access application memory.

4.3.2 Compiling Higher-Level Operations

Escort’s compiler converts existing non-secure code into secure code

that prevents information leakage through digital side channels. First, our

compiler replaces all elementary floating-point operations with their secure

counterparts. Next, our compiler produces straight-line code that preserves

control dependences among basic blocks while preventing instruction side ef-

fects from leaking secrets. Our compiler then transforms array access state-

ments so that they do not leak information through memory address traces.

Finally, our compiler transforms loops whose trip count reveals secrets over

digital side channels. We now describe each step in turn.

4.3.2.1 Step 1: Using Secure Elementary Operations

The Escort compiler replaces x86 floating-point type-conversion, mul-

tiplication, division, and square root assembly instructions with their Escort

74

counterparts. However, Escort’s secure elementary operations can be up to

two orders of magnitude slower than their non-secure counterparts. Hence,

our compiler minimizes their usage by using taint tracking and by employ-

ing the quantifier-free bit-vector logic in the Z3 SMT solver [30], which is

equipped with floating-point number theory. If the solver can prove that the

operands can never be subnormal values, then Escort refrains from replacing

that instruction.

In effect, the Escort compiler constructs path-sensitive Z3 expressions

for each arithmetic statement in the LLVM IR. For every Φ-node that pro-

duces an operand for an arithmetic expression, Escort creates one copy of

the expression for each input to the Φ-node. If the solver reports that no

operand can have a subnormal value, then Escort skips instrumentation of

that floating-point operation.

We set a timeout of 40 seconds for each invocation of the SMT solver. If

the solver can prove that the instruction never uses subnormal operands, then

Escort skips replacing that floating-point instruction with its secure counter-

part. Figure 4.5 shows the percentage of floating-point instructions in com-

monly used math functions that are left untransformed by Escort.

This optimization is conservative because it assumes that all floating-

point instructions in the program have subnormal operands unless proven oth-

erwise. The correctness of the optimization is independent of the code’s use

of pointers, library calls, system calls, or dynamic values. The static analysis

used in this optimization is flow-sensitive, path-sensitive, and intra-procedural.

75

1: for each basic block bb in function do
2: if entry block(bb) then
3: pred[bb]← true
4: else
5: pred[bb]← false
6: end if
7: end for
8:

9: for each basic block bb in function do
10: br ← branch(bb)
11: if unconditional branch(br) then
12: {s} ← successors(bb)
13: pred[s]← pred[s] ∨ pred[bb]
14: pred[s]← simplify(pred[s])
15: else . Conditional Branch.
16: {s1, s2} ← successors(bb)
17: if loop condition branch(br) then
18: . Skip branches that represent loops.
19: pred[s1]← pred[s1] ∨ pred[bb]
20: pred[s2]← pred[s2] ∨ pred[bb]
21: else
22: p← condition(br)
23: pred[s1]← pred[s1] ∨ (pred[bb] ∧ p)
24: pred[s2]← pred[s2] ∨ (pred[bb] ∧ ¬p)
25: end if
26: pred[s1]← simplify(pred[s1])
27: pred[s2]← simplify(pred[s2])
28: end if
29: end for

Figure 4.6: Algorithm for predicating basic blocks.

76

4.3.2.2 Step 2: Predicating Basic Blocks

Basic block predicates represent the conditions that dictate whether an

instruction should execute. These predicates are derived by analyzing condi-

tional branch instructions. For each conditional branch instruction that evalu-

ates a predicate p, the Escort compiler associates the predicate p with all basic

blocks that execute if the predicate is true, and it associates the predicate ¬p

with all basic blocks that execute if the predicate is false. For unconditional

branches, the compiler copies the predicate of the previous block into the next

block. Finally, if the Escort compiler comes across a block that already has a

predicate, then the compiler sets the block’s new predicate to the logical OR

of the input predicates. At each step, the Escort compiler uses Z3 as a SAT

solver to simplify predicates by eliminating unnecessary variables in predicate

formulas. Figure 4.6 shows the algorithm for basic block predication.

4.3.2.3 Step 3: Linearizing Basic Blocks

The Escort compiler converts the given code into straight-line code so

that every invocation of the code executes the same instructions. To preserve

control dependences, the basic blocks are topologically sorted, and then the

code is assembled into a single basic block with branch instructions removed.

4.3.2.4 Step 4: Controlling Side Effects

We now explain how Escort prevents side effects from leaking secrets.

Here, side effects are modifications to the program state or any observable in-

77

1: p← &a
2: secret← input() . Assume input() returns true.
3: if secret = true then
4: ...
5: else
6: ...
7: p← &b . Instruction does not update pointer p, since basic block’s

execution-time predicate is false.
8: ∗p← 10 . Accesses a instead of b!
9: end if

Figure 4.7: The use of pointers can leak information. If store instructions
are not allowed to access memory when the basic block’s predicate is false,
then pointer p will dereference the address for a instead of b, thus revealing
that secret is true.

teraction, including memory accesses, exceptions, function calls, or I/O. Escort

controls all side effects except for I/O statements.

Memory Access Side Effects. To ensure proper memory access side ef-

fects, the Escort compiler replaces store instructions with conditional data-

copy operations that are guarded by the basic block’s predicate, so memory is

only updated by instructions whose predicate is true.

Unfortunately, this näıve approach can leak secret information when the

program uses pointers. Figure 4.7 illustrates the problem: If store instructions

are not allowed to update a pointer variable when the basic block predicate is

false, then the address trace from subsequent load instructions on the pointer

variable will expose the fact that the pointer variable was not updated.

The Escort compiler prevents such information leaks by statically re-

78

placing pointer dereferences with loads or stores to each element of the points-

to set5. Thus Escort replaces the statement in line 8 (Figure 4.7) with a store

operation on b. When the points-to set is larger than a singleton set, Escort

uses the conditional data copy operation on all potential pointees i.e. the el-

ements of the points-to set. The predicate of the conditional copy operation

checks whether the pointer points to the candidate pointee. If the predicate

is false, the pointee’s existing value is overwritten, whereas if the predicate is

true, the new value is written to the pointee.

Function Call Side Effects. Adversaries can observe the invocation of

functions (or lack thereof) using side channels like the Instruction Pointer.

Thus, a solution incapable of handling function calls will leak information

to the adversary. While inlining functions is a potential solution, inlining is

impractical for large applications.

Escort handles side effects from function calls by propagating the pred-

icate from the calling function to the callee. Thus, each user-defined function

is given an additional argument that represents the predicate of the call site’s

basic block. The callee ensures correct handling of side effects by ANDing its

own predicates with the caller’s predicate.

5Escort uses a flow-sensitive, context-insensitive pointer analysis: https://github.com/
grievejia/tpa. Replacing a pointer dereference with a store operation on all elements of
the points-to set is feasible for Escort because points-to set sizes in the Musl C library are
very small.

79

Side Effects from Exceptions. Program termination caused by exceptions

will leak the presence or absence of abnormal operands. To prevent such

information leakage, Escort requires that exceptions not occur during program

execution6.

Escort manages floating-point and integer exceptions differently. Es-

cort requires that the programmer disable floating-point exceptions (e.g. us-

ing feclearexcept()). For integer exceptions, Escort borrows ideas from

Raccoon by replacing abnormal operands with benign operands (e.g. Escort

prevents integer division-by-zero by replacing a zero divisor with a non-zero

divisor).

4.3.2.5 Step 5: Transforming Array Accesses

Array index values reveal secrets as well. For instance, if the adversary

observes that accesses to array[0] and array[secret index] result in ac-

cesses to locations 10 and 50, then the adversary knows that secret index =

40. To eliminate such information leaks, the Escort compiler transforms each

array access into a linear sweep over the entire array, which hides from the

adversary the address of the program’s actual array index.

Of course, the transformed code is expensive, but this approach is fea-

sible because (1) math library functions typically use only a few small lookup

tables, thus requiring relatively few memory accesses and (2) the processor’s

6Escort assumes that the input program does not throw exceptions, so masking excep-
tions does not change the semantics of the program.

80

caches and prefetchers dramatically reduce the cost of sweeping over the ar-

rays.

4.3.2.6 Step 6: Transforming Loops

Some loops introduce timing channels because their trip counts depend

on secret values. The Escort compiler transforms such loops using predictive

mitigation [117]. The loop body executes as many times as the smallest power

of 2 that is greater than or equal to the loop trip count. For instance, if the

actual loop trip count is 10, then the loop body is executed 16 times. The

basic block predicate ensures that dummy iterations do not cause side effects.

With this transformed code, an adversary that observes a loop trip count of l

can infer that the actual loop trip count l′ is between l and 0.5× l. However,

the exact value of l′ is not revealed to the adversary.

Unfortunately, this naive approach can still leak information. For in-

stance, if two distinct inputs cause the loop to iterate 10 and 1000 times re-

spectively, the transformed codes will iterate 16 and 1024 times respectively—a

large difference that may create timing variations. To mitigate this problem,

Escort allows the programmer to manually specify the minimum and maximum

loop trip counts using programmer annotations. These annotations override

the default settings used by the Escort compiler.

4.3.3 Example Transformation: exp10f

We now explain how Escort transforms an example non-secure function

81

float e10(float x) {

float n, y = mf(x, &n);

if (int(n) >> 23 & 0xff < 0x82) {

float p = p10[(int) n + 7];

if (y == 0.0f) {

return p;

}

return exp2f(3.322f * y) * p;

}

return exp2(3.322 * x);

}

(a) Original code for exp10f().

01: float e10(float x) {

02: float n, y = mf(x, &n);

03: if (int(n) >> 23 & 0xff < 0x82) {

04: float p = p10[(int) n + 7];

05: if (y == 0.0f)

06: result = p;

07: else

08: result =

exp2f(3.322f * y) * p;

09: } else

10: result = exp2(3.322 * x);

11: return result;

12: }

(b) Result after applying LLVM’s
mergereturn pass. This code becomes
the input for the Escort compiler.

12: float e10(float x) {

13: return e10_cloned(x, true);

14: }

15:

16: float e10_cloned(float x, uint pred) {

17: float n, y = mf_cloned(x, &n, pred);

18: float p = write(int(n) >> 23 & 0xff

< 0x82, stream_load(p10, (int) n + 7]));

19: bool p2 = y == 0.0f;

20: write(pred & p1 & p2, p, &result);

21: write(pred & p1 & !p2,

escort_mul(

escort_mul(

exp2f_cloned(3.322f,

pred & p1 & !p2),

y),

p),

&result);

22: write(!p1,

escort_mul(

exp2_cloned(3.322, pred & !p1),

escort_upcast(x))),

result);

23: return result;

24: }

(c) Result of the Escort compiler’s trans-
formation.

Figure 4.8: Escort’s transformation of exp10f().

82

Line # Predicate
2, 3, 11 TRUE

4, 5 (n >> 23 & 0xff) < 0x82

6 (n >> 23 & 0xff) < 0x82 ∧ y = 0

8 (n >> 23 & 0xff) < 0x82 ∧ y 6= 0

10 ¬((n >> 23 & 0xff) < 0x82)

Table 4.2: Predicates per line for function in Figure 4.8b.

(Figure 4.8a) into a secure function (Figure 4.8c). To simplify subsequent anal-

yses and transformations, the Escort compiler applies LLVM’s mergereturn

transformation pass, which unifies all exit nodes in the input function (see

Figure 4.8b).

First, the Escort compiler replaces elementary floating-point operations

in lines 8 and 10 with their secure counterpart function shown in lines 21 and

22 of the transformed code. Second, using the algorithm shown in Figure 4.6,

the Escort compiler associates predicates with each basic block, which we list

in Table 4.2. Third, the Escort compiler linearizes basic blocks by applying

a topological sort on the control flow graph (see Figure 4.9) and fuses the

basic blocks together. Finally, the Escort compiler replaces the array access

statement in line 4 with a function that sweeps over the entire array. The

resulting code, shown in Figure 4.8c, eliminates control flows and data flows

that depend on secret values. In addition to closing digital side channels, the

code also uses secure floating-point operations.

83

A: y = mf(x, &n)

(n >> 23
& 0xff)
< 0x82?

B: p = p10[n + 7]

y = 0?C: result = exp2
(3.332 * x)

D: result = p

E: result = exp2f
(3.332f * y) * p

F: return result

Yes

Yes

No

No

Figure 4.9: Control flow graph with labeled statements for the code in Fig-
ure 4.8b. A, B, D, E, C, F is one possible sequence of basic blocks when linearized
by the Escort compiler.

84

4.4 Security Evaluation

This section demonstrates that Escort’s floating-point operations run

in fixed time and do not leak information through digital side channels. Since

precise timing measurement on x86 processors is tricky due to complex proces-

sor and OS design, we take special measures to ensure that our measurements

are accurate. In addition to Escort’s timing and digital side channel defense,

we also demonstrate Escort’s defense against a floating-point timing channel

attack on the Firefox web browser.

4.4.1 Experimental Setup

We run all experiments on a 4-core Intel Core i7-2600 (Sandy Bridge)

processor. The processor is clocked at 3.4 GHz. Each core on this processor has

a 32 KB private L1 instruction cache, a 32 KB private L1 data cache, and a 256

KB private L2 cache. A single 8 MB L3 cache is shared among all four cores.

The host operating system is Ubuntu 14.04 running kernel version 3.13. We

implement compiler transformations using the LLVM compiler framework [55]

version 3.8.

We measure instruction latencies using the RDTSC instruction that re-

turns the number of elapsed cycles since resetting the processor. Since the

latency of executing the RDTSC instruction is usually higher than the latency

of executing operations, our setup measures the latency of executing 1024 con-

secutive operations and divides the measured latency by 1024. Our setup uses

the CPUID instruction and volatile variables for preventing the processor and

85

the compiler from reordering critical instructions. Finally, our setup measures

overhead by executing an empty loop body—a loop body that contains no in-

structions other than those in the test harness. By placing an empty volatile

asm block in the empty loop body, our setup prevents the compiler from

deleting the empty loop body.

4.4.1.1 Outlier Elimination

Many factors outside of the experiment’s control, like interrupts, schedul-

ing policies, etc., may result in outliers in performance measurements. We now

explain our procedure for eliminating outliers, before demonstrating that the

elimination of these outliers does not bias the conclusions.

We use Tukey’s method [106] for identifying outliers, but we adapt it

to conservatively classify fewer values as outliers (thus including more values

as valid data points). The original Tukey’s method first finds the minimum

(Mn), median (Md), and maximum (Mx) of a set of values. The first quartile,

Q1, is the median of values between Mn and Md. The third quartile, Q3, is the

median of values between Mx and Md. The difference between the first and

the third quartiles (Q3−Q1) is called the Inter-Quartile Range, RIQ. Tukey’s

method states that any value v, such that v > Q3+3×RIQ or v < Q1−3×RIQ

is a probable outlier. In our evaluation, we weaken our outlier elimination

process (i.e. we count fewer values as outliers), by (1) setting the RIQ to be at

least equal to 1.0, and (2) classifying v as an outlier when v > Q3 +20×RIQ or

v < Q1 − 20×RIQ. Results presented in the following sections use the relaxed

86

Mean Median Std. Dev.
Different
Operands

847,323
(0.81%)

1,066,270
(1.02%)

381,467

Same
Operands

929,703
(0.89%)

1,139,961
(1.09%)

364,192

Table 4.3: Number of discarded outliers from 100 million double-precision
square-root operations. The results indicate that our outlier elimination pro-
cess is statistically independent of the input operand values.

Tukey method described above.

To demonstrate that our outlier elimination process does not bias con-

clusions, we compare the distribution of outliers between (a) 100 million op-

erations using randomly-generated operands, and (b) 100 million operations

using one fixed operand. The two experiments do not differ in any way other

than the difference in their input operands. Table 4.3 shows the mean, median,

and standard deviation of outliers for the double-precision square-root opera-

tion. Results for other floating-point operations are similar and are elided for

space reasons. Since the difference in mean values as well as the difference in

median values is within a quarter of the standard deviation from the mean,

we conclude that the discarded outlier count is statistically independent of the

input operand values.

4.4.2 Timing Assurance of Elementary Operations

Since exhaustively testing all possible inputs for each operation is in-

feasible, we instead take the following three-step approach for demonstrating

the timing channel defense for Escort’s elementary operations: (1) We charac-

87

Figure 4.10: Comparison of running times of elementary operations. sp identi-
fies Escort’s single-precision operations, dp identifies Escort’s double-precision
operations, and fix identifies FTFP’s fixed-point operations. Numbers at the
top of the bars show the total cycle count. We see that Escort’s execution
times are dominated by the cost of subnormal operations, and we see that
FTFP’s overheads are significantly greater than Escort’s.

terize the performance of Escort’s elementary operations using a specific, fixed

floating-point value (e.g. 1.0), (2) using one value from each of the six differ-

ent types of values (zero, normal, subnormal, +∞, -∞, and not-a-number),

we show that our solution exhibits negligible variance in running time, and

(3) to demonstrate that each of the six values in the previous experiment is

representative of the class to which it belongs, we generate 10 million normal,

subnormal, and not-a-number (NaN) values, and show that the variance in

running time among each set of 10 million values is negligible. Our key find-

ings are that Escort’s operations run in fixed time, are fast, and that their

performance is closely tied to the performance of the hardware’s subnormal

operations.

Figure 4.10 compares the running times of elementary operations of Es-

88

Function Escort
Native
(SSE)

add-sp 0 0
add-dp 0 0
sub-sp 0 0
sub-dp 0 0
mul-sp 0 49.2 (175%)
mul-dp 0 49.2 (175%)
div-sp 0.66 (0.4%) 65.67 (163%)
div-dp 1.66 (0.8%) 69.08 (164%)
sqrt-sp 1.49 (0.8%) 62.7 (170%)
sqrt-dp 2.98 (1.5%) 66.87 (169%)
upcast 0 40.99 (178%)

Table 4.4: Comparison of standard deviation of running times of elementary
operations across six types of values (zero, normal, subnormal, +∞, −∞,
and not-a-number). Numbers in parenthesis show the standard deviation as
a percentage of the mean. The -sp suffix identifies single-precision operations
while the -dp suffix identifies double-precision operations. Compared to SSE
operations, Escort exhibits negligible variation in running times.

cort and of previous solutions (FTFP). First, we observe that the running times

of Escort’s single- and double-precision operations are an order-of-magnitude

lower than those of FTFP’s fixed-precision operations. Second, Escort’s run-

ning time is almost entirely dominated by the processor’s operation on sub-

normal numbers. Third, conversion between fixed-point and floating-point

takes a non-trivial amount of time, further increasing the overhead of FTFP’s

operations. Overall, Escort elementary operations are about 16× faster than

FTFP’s.

Table 4.4 shows the variation in running time of elementary operations

across six different types of inputs (zero, normal value, subnormal value, +∞,

89

Fn. NaN Normal Subnormal
add-sp 0.21 (3.1%) 0.21 (2.9%) 0.19 (2.7%)
add-dp 0.21 (3.0%) 0.20 (2.9%) 0.21 (3.0%)
sub-sp 0.18 (2.6%) 0.19 (2.7%) 0.20 (2.9%)
sub-dp 0.19 (2.7%) 0.19 (2.7%) 0.19 (2.7%)
mul-sp 0.98 (0.7%) 0.94 (0.7%) 1.05 (0.7%)
mul-dp 0.90 (0.6%) 1.04 (0.7%) 1.02 (0.7%)
div-sp 1.22 (0.6%) 1.27 (0.7%) 1.23 (0.6%)
div-dp 1.39 (0.7%) 1.37 (0.6%) 1.17 (0.6%)
sqrt-sp 1.15 (0.6%) 1.13 (0.6%) 1.14 (0.6%)
sqrt-dp 1.29 (0.7%) 1.41 (0.7%) 1.33 (0.7%)
upcast 1.03 (0.9%) 0.89 (0.8%) 0.95 (0.8%)

Table 4.5: Standard deviation of 10 million measurements for each type of
value (normal, subnormal, and not-a-number). All standard deviation values
are within 3.1% of the mean. Furthermore, the mean of these 10,000,000
measurements is always within 2.7% of the representative measurement.

−∞, and not-a-number value) and compares it with the variation of SSE (na-

tive) operations. While SSE operations exhibit high variation (the maximum

observed standard deviation is 176% of the mean), Escort’s operations show

negligible variation across different input types.

Finally, we measure Escort’s running time for 10 million random nor-

mal, subnormal, and not-a-number values. We observe that the standard de-

viation of these measurements, shown in Table 4.5, is extremely low (at most

3.1% of the mean). We thus conclude that our chosen values for each of the

six classes faithfully represent their class.

90

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

flo
or

ce
il

fa
bs

lo
g1

0

lo
g

lo
g2 si
n

co
s

ta
n

ex
p

po
w

P
ro

ce
ss

o
r

C
y
cl

e
s

FTFP
Escort-SP
Escort-DP

Figure 4.11: Comparison of running times of commonly used higher-level func-
tions. Error bars (visible for only a few functions) show the maximum variation
in running time for different kinds of input values.

4.4.3 Timing Assurance of Higher-Level Operations

Using different types of floating-point values (zero, normal, subnormal,

+∞, −∞, and not-a-number), Figure 4.11 compares the performance of most

of the commonly used single- and double-precision higher-level operations7.

Overall Escort’s higher-level operations are about 2× slower than their cor-

responding FTFP operation, which is the price for closing side channels that

FTFP does not close.

Figure 4.12 shows the breakdown of the performance of commonly used

higher-level functions. We observe that the performance of most higher-level

functions is dominated by the latency of operations on subnormal operands,

which is closely tied to the performance of the underlying hardware. A handful

of routines (exp10(), exp10f(), exp2(), and exp2f()) use lookup tables that

7We exclude the exp2() (6,617 cycles), exp10() (14,910 cycles), exp2f() (1,693 cycles),
and exp10f() (9,134 cycles) from Figure 4.11 because FTFP does not implement these
operations.

91

0

5,000

10,000

15,000

fa
b
sf

fa
b
s

ce
il

fl
o
o
r

fl
o
o
rf

ce
ilf

lo
g
f

lo
g
2

f
lo

g
1

0
f

e
x
p
2

f
lo

g
e
x
p
f

lo
g
2

lo
g
1

0
e
x
p

e
x
p
2

p
o
w

f
p
o
w

ta
n

e
x
p
1

0
f

co
s

si
n

ta
n
f

co
sf

si
n
f

e
x
p
1

0
M

E
A

N

P
ro

ce
ss

o
r

C
y
cl

e
s

baseline (non-secure) execution
control flow obfuscation
data access obfuscation

subnormal operands

Figure 4.12: Performance breakdown of Escort’s commonly used higher-level
functions. The baseline (non-secure) execution and exception handling to-
gether cost less than 250 cycles for each function, making them too small to
be clearly visible in the above plot.

(a) Original im-
age.

(b) Reconstructed
image using tim-
ing attack.

(c) Reconstructed images in 3 inde-
pendent, consecutive experiments af-
ter patching Firefox with Escort.

Figure 4.13: Results of attack and defense on a vulnerable Firefox browser
using timing-channel information leaks arising from the use of subnormal
floating-point numbers.

are susceptible to address-trace-based side-channel information leaks, so the

code transformed by Escort sweeps over these lookup tables for each access

to the table. Finally, we see that the cost of control flow obfuscation (i.e. the

cost of executing all instructions in the program) contributes the least to the

total overhead.

92

4.4.4 Side-Channel Defense in Firefox

We now evaluate Escort’s defense against the timing channel attack by

Andrysco et al. [7] on the Firefox web browser. The attack reconstructs a

two-color image inside a victim web page using only the timing side channel

in floating-point operations. The attack convolves the given secret image with

a matrix of subnormal values. The convolution step for each pixel is timed

using high resolution Javascript timers. By comparing the measured time

to a threshold, each pixel is classified as either black or white, effectively

reconstructing the secret image.

We integrate Escort into Firefox’s convolution code8 and re-run the

timing attack. The results (see Figure 4.13c) show that Escort successfully

disables the timing attack.

4.4.5 Control- and Data-Flow Assurance

We now show that Escort’s operations do not leak information through

control flow or data flow. We first use inference rules over the LLVM IR to

demonstrate non-interference between secret inputs and digital side channels.

We run a machine-learning attack on Escort and demonstrate that Escort

successfully disables the attack.

8Specifically, we replace three single-precision multiplication operations with invocations
to the equivalent Escort function. All source code changes are limited to the code in the
ConvolvePixel() function in SVGFEConvolveMatrixElement.cpp.

93

T-PUBLIC-LOAD
Γ(ptr) =
L

P = ptset(ptr)
m =
max

addr∈P
Γ(addr)

Γ′ =
Γ[val 7→ m]

Γ ` val := public-load ptr : Γ′

T-PUBLIC-STORE
Γ(ptr) =
L

∀ addr ∈ ptset(p)
m = max(Γ(val),Γ(addr))
Γ′ =
Γ[addr 7→ m]

Γ ` public-store ptr, val : Γ′

T-SECRET-LOAD
Γ′ =
Γ[val 7→ H]

Γ ` val := secret-load ptr : Γ′

T-SECRET-STORE

∀ addr ∈ ptset(p)
Γ′ =
Γ[addr 7→ H]

Γ ` secret-store ptr, val : Γ′

T-BRANCH
Γ(cond) = L

Γ ` br cond,block1,block2 : Γ

T-OTHER
Γ′ = Γ[x 7→ Γ(y)]

Γ ` x:=y : Γ′

T-COMPOSITION
Γ ` S1 : Γ′, Γ′ ` S2 : Γ′′

Γ ` S1;S2 : Γ′′

T-SANITIZER
Γ′ = Γ[x 7→ L]

Γ ` S(x) : Γ′

Table 4.6: Inference rules for verifying the security of Escort’s higher-level
operations.

94

4.4.5.1 Non-Interference Using Inference Rules

Since Escort’s elementary operations are small and simple—they are

implemented using fewer than 15 lines of assembly code, they do not access

memory, and they do not contain branch instructions—they are easily verified

for non-interference between secret inputs and digital side channels. Using an

LLVM pass that applies the inference rules from Table 4.6, tracking labels that

can be either L (for low-context i.e. public information) or H (for high-context

i.e. private information), we verify that Escort’s higher-level operations close

digital side channels. This compiler pass initializes all function arguments with

the label H, since arguments represent secret inputs.

Inference rules for various instructions dictate updates to the labels.

The environment Γ tracks the label of each pointer and each address. The

Escort compiler tags load and store instructions as secret if the pointer is

tainted, or public otherwise. Unlike a public load or store instruction, a

secret load or store instruction is allowed to use a tainted pointer since

Escort generates corresponding loads and stores to all statically-determined

candidate values in the points-to set. The sanitization rule resets the value’s

label to L and is required to suppress false alarms from Escort’s loop condition

transformation. Escort’s transformed code includes instructions with special

LLVM metadata that trigger the sanitization rule.

During verification, the compiler pass iterates over each instruction and

checks whether a rule is applicable using the rule’s antecedents (the statement

above the horizontal line); if so, it updates its local state as per the rule’s

95

consequent (the statement below the horizontal line). If no applicable rule is

found, then the compiler pass throws an error. The compiler pass processes

the code for Escort’s 112 higher-level operations without throwing errors.

4.4.5.2 Defense Against Machine-Learning Attack

We use the TensorFlow [1] library to design a machine-learning clas-

sifier, which we use to launch a side-channel attack on the execution of the

expf() function, where the input to the expf() function is assumed to be

secret. Using three distinct inputs, we run this attack on the implementa-

tions in the (non-secure) Musl C library and in the (secure) Escort library.

We first use the Pin dynamic binary instrumentation tool [64] to gather the

full instruction address traces of both expf() implementations9. We train

the TensorFlow machine-learning classifier by feeding the instruction address

traces to the classifier, associating each trace with the secret input to expf().

We use cross entropy as the cost function for TensorFlow’s training phase. In

the subsequent testing phase, we randomly select one of the collected address

traces and ask the classifier to predict the secret input value.

We find that for the Musl implementation, the classifier is accurately

able to predict the correct secret value from the address trace. On the other

hand, for the Escort implementation, the classifier’s accuracy drops to 33%,

which is no better than randomly guessing one of the three secret input values.

9Using the md5sum program, we observe that Escort’s address traces for all three inputs
are identical.

96

Function Min. Median Max.

add 16 1,743,272 210,125,824
sub 1,312 6,026,976 84,089,503,744
mul 317 8,587,410 112,134,679,849
div 829 5,834,095 30,899,033,427
sqrt 562 2,815,331 21,257,836,468

floor 0 0 0
ceil 0 0 0
log 1,698 5,908,547 2,705,277,8104
log2 262 5,812,840 13,890,632,367
log10 981 10,105,199 40,631,590,323
exp 132 1,409,624 6,066,894
sin 1,316 4,173,786 40,138,955,131
cos 2,166 2,241,360 10,127,702
tan 717 5,576,540 40,126,401,802
pow 522 3,425,870 26,876,068,127
fabs 352 3,129,984 40,134,770,688

Table 4.7: Floating-point difference for 10,000 operations on random inputs in
terms of Unit of Least Precision (ULP) in FTFP versus Musl C library.
Since we observe zero ULP distance between Escort’s results and Musl’s re-
sults, this table omits Escort’s results.

4.5 Precision Evaluation

We examine the precision of Escort and FTFP by comparing Escort’s

and FTFP’s results with those produced by a standard C library.

4.5.1 Comparison Using Unit of Least Precision

Methodology. We adopt an empirical approach to estimate precision in

terms of Unit of Least Precision (ULP), since formal derivation of maximum

ULP difference requires an intricate understanding of theorem provers and

97

floating-point algorithms. We run various floating-point operations on 10,000

randomly generated pairs (using drand48()) of floating-point numbers be-

tween zero and one. For elementary operations, we compare the outputs of

Escort and FTFP with the outputs of native x86 instructions. For all other

operations, we compare the outputs of Escort and FTFP with the outputs

produced by corresponding function from the Musl C library.

Results. We observe that Escort’s results are identical to the results pro-

duced by the reference implementations, i.e. the native (x86) instructions and

the Musl C library. More precisely, the ULP difference between Escort’s re-

sults and reference implementation’s results is zero. On the other hand, FTFP,

which computes arithmetic in fixed-point precision, produces output that dif-

fers substantially from the output of Musl’s double-precision functions (see

Table 4.7). The IEEE 754 standard requires that addition, subtraction, multi-

plication, division, and square root operations are computed with ULP differ-

ence of at most 0.5. Well-known libraries compute results for most higher-level

operations within 1 ULP.

4.5.2 Comparison of Program Output

Methodology. Since differences in program outputs provide an intuitive un-

derstanding of the error introduced by approximate arithmetic operations, we

compare the output of the test suite of Minpack10, a library for solving non-

10https://github.com/devernay/cminpack

98

<
10−5

10−5 to
10−3

10−3 to
100

100 to
103

>
103

49% 9% 21% 10% 11%

Table 4.8: Distribution of differences in answers produced by Minpack-FTFP
and Minpack-C. In all, 321 values differ between the outputs of the two
programs.

linear equations and non-linear least squares problems. We generate three vari-

ants of Minpack: Minpack-C uses the standard GNU C library, Minpack-

Escort uses the Escort library, and Minpack-FTFP uses the FTFP library.

We run the 29 programs in Minpack’s test suite and compare the outputs

produced by the three program variants.

Results. We observe that Minpack-Escort produces output that is iden-

tical to Minpack-C’s output. We also observe that all outputs of Minpack-

FTFP differ from Minpack-C. Specifically, 321 values differ between the

outputs of Minpack-FTFP and Minpack-C. We analyze all 321 differences

between Minpack-FTFP and Minpack-C by classifying them into the fol-

lowing five categories: (1) smaller than 10−5, (2) between 10−5 and 10−3, (3)

between 10−3 and 100, (4) between 100 and 103, and (5) larger than 103. As

seen in Table 4.8, almost half of the differences (49%) are extremely small

(less than 10−5), possibly arising from relatively small differences between

fixed-point and floating-point calculations. However, we hypothesize that dif-

ferences amplify from propagation, since nearly 42% of the differences are

larger than 10−3.

99

Application
Escort

Overhead

Static (LLVM)
Floating-Point

Instruction
Count

433.milc 29.33× 2,791
444.namd 57.32× 9,647
447.dealII 20.31× 21,963
450.soplex 4.74× 4,177
453.povray 82.53× 25,671

470.lbm 56.19× 711
480.sphinx3 52.46× 629

MEAN
32.63×

(geo. mean)
9,370

(arith. mean)

Table 4.9: Overhead of SPEC-Escort (SPECfp2006 using Escort operations)
relative to SPEC-Libc (SPECfp2006 using libc).

4.6 Performance Evaluation

We now evaluate the end-to-end application performance impact of

Escort’s floating-point library and Escort’s control flow obfuscation.

4.6.1 Impact of Floating-Point Library

This section evaluates the performance impact of Escort on the SPEC

floating point benchmarks, as well as on a security-sensitive program SVMlight,

a machine-learning classifier.

Evaluation Using SPEC Benchmarks. We use the C and C++ floating-

point applications in the SPEC CPU 2006 benchmark suite with reference

inputs. We generate two versions of each program—the first version (SPEC-

100

Test Case
Overhead for

Training
Overhead for
Classification

#1 8.66× 1.34×
#2 30.24× 0.96×
#3 1.41× 1.11×
#4 12.75× 0.92×

GEO
MEAN

8.28× 1.07×

Table 4.10: Overhead of Escort on SVMlight program.

Libc) uses the standard C library functions, and the second version (SPEC-

Escort) uses functions from the Escort library11. We compile the SPEC-

Libc program using the Clang/LLVM 3.8 compiler with the -O3 flag, and we

disable auto-vectorization while compiling the SPEC-Escort program. The

following results demonstrate the worst case performance overhead of Escort

for these programs, since we transform all floating-point operations in SPEC-

Escort to use the Escort library. More precisely, we do not reduce the number

of transformations either using taint tracking or using SMT solvers.

Table 4.9 shows that Escort’s overhead is substantial, with a geometric

mean of 32.6×. We expect a lower average overhead for applications that use

secret data, since taint tracking would reduce the number of floating-point

operations that would need to be transformed.

11We also ran the same programs using the FTFP library, but the programs either crashed
due to errors or ran for longer than two hours, after which they were manually terminated.

101

Evaluation Using SVMlight. To evaluate Escort’s overhead on a security-

sensitive benchmark, we measure Escort’s performance on SVMlight, an im-

plementation of Support Vector Machines in C, using the four example test

cases documented on the SVMlight website12. We mark the training data and

the classification data as secret. Before replacing floating-point computations,

Escort’s taint analysis discovers all floating-point computations that depend

on the secret data, thus reducing the list of replacements. We also instruct

Escort to query the Z3 SMT solver to determine whether candidate floating-

point computations could use subnormal operands. Escort then replaces these

computations with secure operations from its library. We compile the base-

line (non-secure) program using the Clang/LLVM 3.8 compiler with the -O3

flag, and we disable auto-vectorization while compiling SVMlight with Escort.

We measure the total execution time using the RDTSC instruction. Table 4.10

shows that Escort’s overhead on SVMlight. We observe that Escort’s overhead

on SVMlight is substantially lower than that on SPEC benchmarks. Using the

md5sum program, we verify that the output files before and after transforma-

tion of SVMlight are identical.

4.6.2 Impact of Control Flow Obfuscation

To compare the performance impact of Escort’s control flow obfusca-

tion technique with that of Raccoon, we use the same benchmarks that were

used to evaluate Raccoon [87], while compiling the baseline (non-transformed)

12http://svmlight.joachims.org/

102

Benchmark
Raccoon
Overhead

Escort
Overhead

ip-tree 1.01× 2.40×
matrix-mul 1.01× 1.01×
radix-sort 1.01× 1.06×
findmax 1.01× 1.27×

crc32 1.02× 1.00×
genetic-algo 1.03× 1.03×

heap-add 1.03× 1.27×
med-risks 1.76× 1.99×
histogram 1.76× 2.26×

map 2.04× 1.01×
bin-search 11.85× 1.01×
heap-pop 45.40× 1.44×
classifier 53.29× 1.24×

tax 444.36× 1.67×
dijkstra 859.65× 1.10×

GEO MEAN 5.32× 1.32×

Table 4.11: Performance comparison of benchmarks compiled using Raccoon
and Escort. We only compare the control flow obfuscation overhead, since
both Raccoon and Escort use the same technique for data access obfuscation.

103

application with the -O3 optimization flag. Although both Escort and Rac-

coon obfuscate control flow and data accesses, we compare the cost of control

flow obfuscation only, since both Escort and Raccoon obfuscate data accesses

using the identical technique. Table 4.11 shows the results.

We find that programs compiled with Escort have a significantly lower

overhead than those compiled with Raccoon. Escort’s geometric mean over-

head is 32%, while that of Raccoon is 5.32×. The worst-case overhead for

Escort is 2.4× (for ip-tree).

The main reason for the vast difference in overhead is that Raccoon

obfuscates branch instructions at execution time, which requires the copying

and restoring of the stack for each branch instruction. Since the stack can

be arbitrarily large, such copying and restoring adds substantial overhead to

the running time of the program. On the other hand, Escort’s code rewriting

technique obfuscates code at compile time using basic block predicates, which

enables significant performance boosts on the above benchmarks.

4.7 Conclusions

In this work, we have presented Escort, a compiler-based tool that

closes side channels that stem from floating-point operations. Escort prevents

an attacker from inferring secret floating-point operands through the timing

channel, though micro-architectural state, and also through off-chip digital

side channels, such as memory address trace.

104

Escort uses native SSE instructions to provide speed and precision.

Escort’s compiler-based approach enables it to support a significantly larger

number of floating-point operations (112) than FTFP (19).

Escort’s design motivates further research into hardware support for

side-channel resistant systems. For example, by allowing software to con-

trol the timing of integer instruction latencies and their pipelined execution,

Escort’s guarantees could be extended to instructions beyond floating-point

instructions.

105

Chapter 5

Mitigating Non-Digital Side Channels

In this chapter, we present our research on extending existing power

side channel defenses, so that we can protect a broad class of applications

running on modern microprocessors.

Mechanisms for closing digital side-channels—those that leak discrete

bits of information through entities such as caches, the address trace, and the

branch predictor—have been well studied for a variety of programs and ar-

chitectures [7, 15, 27, 52, 61, 65, 73, 87, 88, 97, 111, 119]. However, as Figure 5.1

shows, existing defenses for analog side channels—such as power, electromag-

netic radiation, and temperature—cannot protect a broad class of programs

running on modern microprocessors. In particular, defenses based on blinding

or masking [11, 16, 22, 26, 36, 45, 46, 59, 75, 78, 81] rely on mathematical prop-

erties of cryptographic computations, so they are not applicable to many im-

portant programs, such as databases, social media platforms, and machine-

learning programs. Approaches that use custom transistors whose power con-

sumption is independent of the data [28, 84, 86, 103, 104] are prohibitively ex-

pensive to scale to an entire modern processor, and they do not protect against

power variations that arise due to microarchitectural optimizations, such as

106

Complex Apps with
Arbitrary Control and

Data Flow

Cryptographic
Kernels

Blinding / Masking
[CHES ‘99]

Highly-Constrained
Processors

 Modern
Processors

Custom Transistors [CHES ‘05]

`

Computational
Blinking [ISCA ‘18]

Our Solution:
Vantage

Complexity of Applications

C
o

m
p

le
xi

ty
 o

f
P

ro
ce

ss
o

rs

Figure 5.1: Relative comparison of power side-channel defenses. Our solu-
tion, Vantage, enables protection for a broad class of applications running
on modern microprocessors, by building on existing techniques like Computa-
tional Blinking or Custom Transistors.

out-of-order execution, caches, or branch predictors. Hardware defenses also

include computational blinking [5], which hides power consumption for short

bursts of time [107, 116], but program behavior can vary so widely that these

solutions are incompatible with complex control and data flow.

For several reasons, compilers would seem to be an ideal tool for de-

fending against side-channel attacks. First, compilers can reason about and

close whole-program information flow, so compilers can eliminate analog side-

channel variations over long sequences of instructions, thereby complementing

existing defenses. Second, compilers offer lower performance overheads than a

possible hardware solution, because they can selectively apply defenses to just

107

those parts of the program that manipulate sensitive data. Finally, compilers

can adapt their transformations based on the target processor and all of their

microarchitectural optimizations. Unfortunately, compilers also appear to be

fundamentally ill-suited to closing analog side channels, because compilers tar-

get the instruction set architecture (ISA), a functional interface that hides from

the compiler the very implementation details—the analog channels—that we

wish to regulate.

This work explains how compilers can in fact be used to close analog

side channels—specifically the power side channel—for a broad class of applica-

tions running on x64, ARM 32, and ARM 64 processors. Our key idea is to use

a power model1 to intentionally change a microprocessor’s power consumption

through program execution. In essence, the power model helps us selectively

break the ISA barrier, allowing our compiler—the Vantage compiler—to de-

liberately change the program’s power consumption for the sake of closing the

power channel over long sequences of instructions.

Vantage can be viewed as a system for analyzing and translating pro-

grams to a new abstract domain—the power domain—which allows compilers

to reason about the power consumption of the program. More broadly, the

key ideas behind Vantage can be used to build compilers for similar abstract

domains for the purpose of closing other side channels.

Our compiler is not tied to any particular power model, so it can be

1Power models characterize a microprocessor’s power consumption based on microarchi-
tectural events such as instruction count, cache misses, etc.

108

customized to use more precise and accurate power models as they become

available. To illustrate the flexibility of our approach, we evaluate versions of

the Vantage compiler that use two very different power models—the open-

source McPAT [58] model and the closed-source Intel Running Average Power

Limit (RAPL) [29] model. We make no claims that McPAT and RAPL are

the best possible power models. Indeed, there has been a long history in

the development of increasingly-accurate power models [17, 48, 58, 92, 102, 120],

and our key contribution is the approach for augmenting compilers with power

models to close analog side channels.

This work makes the following contributions:

1. Importance of Closing Power Channels on Modern Processors

for a Variety of Programs. We argue that current techniques are lim-

ited because they do not protect complex programs running on existing

commercial hardware.

2. Use of Power Models to Transcend the ISA Barrier. We ob-

serve that because power models link digital events to analog behavior,

a compiler can selectively use a power model to peek through the ISA to

modulate power consumption, thereby closing power channels over long

sequences of instructions.

3. Compilers for Two Distinct Power Models. We introduce the

Vantage compiler that complements existing techniques to close the

power channel in a broad variety of applications running on modern

109

Label #1
(Malicious Packet)

Label #2
(Benign Packet)

Mean 2003.0 1893.1
Stdev 29.8 30.8

Table 5.1: Energy consumption (measured using Intel RAPL) while running
the LibSVM classifier [20] that labels data from the KDD Cup dataset [10].
We observe that energy consumption is a reasonable indicator of the label of
the input data.

processors. We evaluate Vantage using two power models, one an open-

source model (McPAT) that explicitly exposes power leakage and the

second, a closed-source model (RAPL) from which we stastically identify

power leaks.

4. Security and Performance Evaluation. We show that Vantage

protects otherwise vulnerable programs. Depending on the underlying

power model and the target microprocessor, Vantage imposes a mean

slowdown from a few percent to about 7×, which is 33× to 137× more

efficient than a baseline hardware-only solution.

5.1 Motivation

In this section, we explain the importance of closing the power channel

for a broad class of applications running on modern processors.

Power side channels leak secret information through not just arithmetic

and logic operations, but also through branches, memory accesses, and through

microarchitectural optimizations. Table 5.1 shows, for two secret inputs passed

110

Power Consumption of Non−Secure Execution #1 (~2.1W)

Power Consumption of Secure Executions: #1 and #2 (~2.1W)

Power Consumption of Non−Secure Execution: #2 (~1.9W)1.9

2.0

2.1

0 50 100
Time (microseconds)

D
yn

am
ic

 P
ow

er
 (

W
at

ts
)

Figure 5.2: Power consumption of the LibSVM classifier before and after using
our solution (measured using McPAT). The non-secure executions (shown in
red and orange), produce a visually distinct profile of power consumption,
whereas after using our solution, for all secrets, the power profiles are identical
(shown as a single line in blue), effectively mitigating the power channel attack.

to the LibSVM classifier [20], the total energy consumption measured using

Intel RAPL [29]. We see that when running the classifier on a reference net-

work intrusion dataset [10], there exists a correlation between the processor’s

energy consumption and the classification of network packets as either benign

or malicious. Thus, we see that an adversary can infer the packet label by

simply observing differences in the processor’s energy consumption.

In addition to the total energy consumption, the profile of the energy

consumption depends on the inputs as well, enabling the adversary to infer

the secret through just a partial observation of the program execution. Fig-

ure 5.2 shows that the power consumption (measured using the McPAT power

modeling framework [58]) during a 140µs time window differs between the two

non-secure executions (shown in red and orange), where one execution pro-

duces more peaks than the other. Thus, we see that the power channel is

111

dangerous and easy to exploit, in applications that may operate on private or

confidential information.

5.2 Open-Source Power Model: McPAT

To be able to close the power channel, we first need to understand how

source code can affect the power consumption. In the following sections, we

describe our analysis of the McPAT power model, our steps to validate the

analysis results, and finally, the code transformations for eliminating power

variations.

5.2.1 Analysis of McPAT

To understand the impact of source code on power consumption, we

analyze the power model, the microarchitectural simulator whose events drive

the power model, and the compiler backend whose instructions trigger events

in the microarchitecture. From our analysis of the McPAT power model, we

find that it estimates the processor’s power consumption based on the pro-

cessor’s physical characteristics (e.g. supply voltage), its features (e.g. cache

sizes), and its microarchitectural events (e.g. cache hits and misses). Since the

processor’s physical characteristics and its features are constant for the pro-

gram lifetime, we focus our effort on the impact of microarchitectural events on

power consumption. We then find the assembly instructions whose operands

may cause variations in the microarchitectural events produced by the Gem5

simulator, by analyzing the microcode and exceptions for the x64, ARM 32,

112

and ARM 64 microprocessors and also the common portions of the microar-

chitectures such as out-of-order execution, caches, and TLBs. Finally, we

analyze the translation of LLVM IR instructions into assembly programs to

understand the impact of IR instruction operands on power consumption. Al-

though we perform this analysis manually, existing static analysis techniques

such as Information Flow Analysis [32] can be used to derive the same results.

5.2.2 Our Findings

Across all three targets (x64, ARM 32 and ARM 64), we find that

branch instructions and memory accesses induce variations in power consump-

tion due to their effect on the fetched instructions and the cache usage. In the

following paragraphs, we describe computational instructions whose execution

induces power variations.

Vulnerable Instructions for x64 Target. We find that 22 instructions

(see Table 5.2) on x64 processors execute varying number of microcode op-

erations depending on their operands, thus affecting the power consumption.

Among these, 19 instructions are either used only in kernel mode (thus being

outside of Vantage’s threat model) or are rarely used in code generated by

modern compilers (e.g. string instructions). Hence, we focus our attention on

the remaining three instructions (IDIV, BSF, and BSR).

Vulnerable Instructions for ARM 32 Target. We find that predicated

instructions on ARM 32 (generated by LLVM for compare and select IR

113

Instruction
Reason for executing variable
number of micro operations

ENTER Value of the nesting depth

MOV
If the register operand is a
segment selector register

LODS, STOS,
SCAS, CMPS,
MOVS, INS, OUTS

If instructions are prefixed
with REP

IDIV Value of dividend (RAX)

JMP, RET
If processor executes far
jump or far return

IRET
If processor returns to
virtual 8086 mode

INT, INT3 If processor is in long mode

BSR, BSF
Early termination if input is
zero

CMPXCHG8B,
CMPXCHG16B

Early termination if EAX
or RAX does not match
with m64 or m128 respectively

LLDT
Early termination if
invalid operand

PSRLDQ,
PSLLDQ

Value of immediate
(constant) operand

Table 5.2: x64 instructions whose operand values trigger variable number of
microcode operations.

114

instructions) can cause variations in power consumption depending on their

operands, and that various software runtime library functions (e.g. integer

division) cause variations in power consumption due to their use of conditional

branches and predicated instructions. For processors with software floating-

point ABI, we find that the elementary floating-point operations (i.e. add, sub,

mul, div, and sqrt) and conversion operations between integer and floating-

point numbers use conditional branches and predicated instructions, causing

the inputs to create variations in power consumption.

5.2.3 Validation of the Analysis Results

We validate the results of the above analysis using randomized testing,

where our goal is to check whether there exist other sources of variations in the

power consumption, beyond the ones that we discovered. We thus use several

different inputs to execute randomly-generated instruction sequences that our

previous analysis concluded as safe from power variations, and we observe the

power profile of the instruction sequences across the different inputs. If our

manual analysis is incorrect (i.e. if additional instructions exist whose power

consumption varies with the input), we expect to see differences in the power

profile when the input values differ.

Validation for x64 Target. We implement this experiment for the x64

platform using the Intel XED (X86 Encoder Decoder) library2. From the

2https://intelxed.github.io/

115

roughly 400 instructions supported by the Gem5 simulator, our test generator

emits 277 instructions (187 SSE instruction and 90 integer instructions). The

instructions not emitted by our randomized tests include 71 x87 (coproces-

sor) instructions, 38 ring 0 (or system management) instructions, 17 branch

instructions, and 7 string instructions; we do not include these instructions in

our randomized test since they are either removed by our compiler during the

code transformation or because these instructions are not used or rarely used

in modern user-level code. Our randomized test generates instructions using

five addressing modes, whenever supported by the instructions: immediate

mode, register mode, indirect mode, base-relative mode, and offset-scaled-

base-relative mode. Each instruction sequence is 1,000 instructions long, and

in each execution we iterate 10,000 times over the generated instruction se-

quence. At every 1µs, we measure the power consumption, and we find that

regardless of the operand values used in the instruction sequence, all executions

produce an identical power profile.

Since the Intel XED library does not support encoding instructions

for ARM 32 and ARM 64 microprocessors, we are currently in the process

of manually encoding instruction mnemonics to port this experiment to the

ARM platforms.

5.2.4 Design of the Vantage Compiler

Armed with the list of instruction that may induce power variations,

we then devise code transformations of Vantage. Fortunately, many trans-

116

Figure 5.3: Dependences among runtime components for compiling programs
using Vantage.

formed operations can be generated incrementally using the Vantage com-

piler themselves, thus eliminating the need to manually write all transformed

operations in assembly code. As Figure 5.3 shows, we only need a handful

of operations in assembly code, while the Vantage compiler generates the

remaining operations from C code and the handwritten assembly code. Using

the Vantage compiler, we also transform the Berkeley SoftFloat library3 for

elementary floating-point operations (32- and 64-bit floating-point addition,

subtraction, multiplication, division, and square root) and Musl C library4 for

higher-level floating-point operations (sine, cosine, logarithm, and other sim-

ilar operations). Finally, these transformed components are linked with the

transformed version of the benchmarks to produce the executable file.

The Vantage compiler first applies inter-procedural, flow-sensitive,

3http://www.jhauser.us/arithmetic/SoftFloat.html
4https://www.musl-libc.org

117

and context-insensitive taint propagation to identify instructions that use sen-

sitive values. Vantage relies on the programmer to identify those variables

that store sensitive inputs. The Vantage compiler then removes or replaces

instructions that may operate on sensitive information and which may leak the

sensitive information through power consumption. Vantage borrows a trans-

formation from the Escort [88] compiler, which closes digital side channels, and

we briefly illustrate this transformation below. Vantage also includes new

transformations that are not present in the other compilers.

Transformation of Tainted store Instructions. Vantage replaces store

instructions with predicated write operations, whose predicate controls whether

the operation writes new data or pre-existing data. Most importantly, the

predicated write operation uses bitwise operations in place of the conditional

branch, so that the value of the predicate does not cause variations in the power

consumption. Figure 5.4 shows the assembly code for the X64, ARM 32, and

ARM 64 targets.

Transformation of Tainted branch Instructions. Similar to the Escort

compiler, Vantage performs standard if-conversion by replacing conditional

branches with unconditional branches, while also predicating the instructions

along the conditionally-execute path using the predicated write operation de-

scribed above. Vantage also transforms loops by unrolling them a fixed

number of times, as specified by the programmer’s annotation. Vantage

118

01: pred_write(uint8_t cond, uint32_t __t, uint32_t __f) {

02: uint32_t ret, tmp;

03: __asm__ volatile (

04: #if defined(__aarch64__)

05: "tst %w[con], #0xff;"

06: "csel %w[ret], %w[f], %w[t], eq;"

07: #else

08: #if defined(__arm__)

09: "neg %[tmp], %[con];"

10: "and %[ret], %[tmp], %[t];"

11: "mvn %[tmp], %[tmp];"

12: "and %[tmp], %[tmp], %[f];"

13: "orr %[ret], %[ret], %[tmp];"

14: #else

15: #if defined(__x86_64__)

16: "mov %[t], %[ret];"

17: "test %[con], %[con];"

18: "cmove %[f], %[ret];"

19: #endif

20: #endif

21: #endif

22: : [ret] "=&r" (ret), [tmp] "=&r" (tmp)

23: : [con] "r" (cond), [t] "r" (__t),

24: [f] "r" (__f)

25: : "cc");

26: return ret;

27: }

Figure 5.4: Conditional move operation for x64, ARM 32, and ARM 64. The
code does not leak the secret condition through power consumption.

computes predicates for basic blocks whose execution depends on the tainted

branch, by propagating branch predicates along the edges of the CFG, before

rewriting only those instructions in the conditional blocks that may cause side

effects.

119

Transformation of Tainted Pointer Dereferences. Since memory ac-

cesses affect the usage of the processor cache, which affects the power con-

sumption, Vantage replaces sensitive pointer dereferences with accesses that

forcibly bypass the cache. We implement such accesses by modifying the Gem5

simulator, and our implementation adds the correct latency from such memory

accesses to the program’s execution time. Such accesses can also be imple-

mented in software using uncacheable memory.

01: uint32_t bit_scan_forward(uint32_t input) {

02: uint8_t n = 1;

03: if ((input & 0xffff) == 0) {

04: n += 16; input >>= 16; }

05: if ((input & 0x00ff) == 0) {

06: n += 8; input >>= 8; }

07: if ((input & 0x000f) == 0) {

08: n += 4; input >>= 4; }

09: if ((input & 0x0003) == 0) {

10: n += 2; input >>= 2; }

11: if (input == 0) {

12: return 0; }

13: return n + ((input + 1) & 0x01);

Figure 5.5: C Code for bit scan forward operation that is later transformed
using the Vantage compiler.

Transformation of Other Instructions. We implement software versions

of BSF and BSR (see Figure 5.5) and a binary version of long division IDIV (see

Figure 5.6), all of which execute using a fixed number of microcode operations,

after transformation using Vantage. For transforming comparison operations

120

01: udivrem_32(uint32_t numerator, uint32_t denominator,

02: uint32_t* quotient, uint32_t* remainder) {

03: uint32_t __quo = 0, __rem = 0;

04: int32_t i;

05: for (i = sizeof(uint32_t) * 8 - 1; i >= 0; i--) {

06: __rem <<= 1;

07: uint8_t q_bit = 1,num_i = (numerator >> i) & 1;

08: __rem |= num_i;

09: if (__rem >= denominator) {

10: __rem -= denominator;

11: } else {

12: q_bit = (__quo >> i) & 1;

13: }

14: __quo |= (q_bit << i);

15: }

16: if (quotient != NULL) {

17: *quotient = __quo; }

18: if (remainder != NULL) {

19: *remainder = __rem; }

20: }

Figure 5.6: C Code for unsigned integer division that is later transformed
using the Vantage compiler. We mark the numerator and the denominator
inputs as secret.

on the ARM 32 target, we use the GNU Superoptimizer5 for discovering al-

ternative instruction sequences that are functionally equivalent to the integer

comparison operations, and we port the results of the GNU Superoptimizer

from PowerPC to ARM 32 assembly code (see Figures 5.7 and 5.8 for exam-

ples). Using the X64 and ARM 32 ISA specifications as reference, we use the

CVC4 SMT solver [9] to prove that these transformed operations produce the

correct output. For floating-point comparisons, we use transformed code from

the Berkeley SoftFloat library. Finally, Vantage replaces the select IR in-

5https://github.com/embecosm/gnu-superopt

121

01: uint8_t cmp_ne(uint32_t x, uint32_t y) {

02: #if defined(__arm__)

03: register uint32_t ret, tmp;

04: __asm__ volatile (

05: "sub %[t], %[x], %[y];"

06: "sub %[r], %[y], %[x];"

07: "orr %[r], %[r], %[t];"

08: "lsr %[r], %[r], #31;"

09: : [r] "=r" (ret), [t] "=&r" (tmp)

10: : [x] "r" (x), [y] "r" (y)

11: : "cc");

12: return ret & 1;

13: #else

14: return x != y;

15: #endif

16: }

}

Figure 5.7: Not-equals comparison without causing power variations.

struction with a transformed comparison operation followed by the predicated

write operation. For the ARM 32 microprocessor with a software floating-point

ABI, we use transformed versions of 32- and 64-bit floating-point operations

from the Berkeley SoftFloat library. We ensure that the transformed oper-

ations do not throw exceptions, since exceptions may reveal the instruction

predicate through abnormal termination.

5.3 Closed-Source Power Model: RAPL

We now illustrate the key steps for extending our prior design of the

Vantage compiler based on Intel RAPL, which is a closed-source power

model. Our high-level approach is to create a regression model between mi-

122

01: uint8_t cmp_ugt(uint32_t x, uint32_t y) {

02: #if defined(__arm__)

03: register uint32_t ret;

04: __asm__ volatile (

05: "subs %[r], %[y], %[x];"

06: "sbc %[r], %[r], %[r];"

07: "neg %[r], %[r];"

08: : [r] "=r" (ret)

09: : [x] "r" (x), [y] "r" (y)

10: : "cc");

11: return ret;

12: #else

13: return x > y;

14: #endif

15: }

}

Figure 5.8: Unsigned greater-than comparison without causing power varia-
tions.

croarchitectural events and power consumption6, and we use the model to

determine instructions that may leak information through power consump-

tion.

5.3.1 A Regression Model that Approximates RAPL

We construct a flexible regression model whose precision can be con-

trolled using a tuning parameter. Unlike previous regression models for power

consumption [13, 24, 40, 41, 98, 113], the coefficients in our regression model

(based on the Elastic Net regression technique [124]) depend on a parameter

6Indeed, correlation identified by the regression model does not imply causation. How-
ever, constructing our compiler-based defense using correlation (instead of causation) does
not alter our solution’s security guarantees, although it worsens the performance impact
since the compiler is forced to control a larger set of microarchitectural events.

123

λ, which enables a tradeoff between the precision and the simplicity of the

regression model. More precisely, the value of λ affects the number of zero

coefficients (i.e. coefficients whose value is zero), which indicates that the cor-

responding microarchitectural events have no impact on the estimated power

consumption. So a model with more zero coefficients reduces the number of

microarchitectural events that need to be controlled using our compiler, effec-

tively reducing the performance overhead of our defense. At the same time,

however, a model with more zero coefficients can also be imprecise, since fewer

microarchitectural events are used to estimate power. This tradeoff between

precision and the number of zero coefficients is crucial since it allows us to

construct a defense that is tailored to the desired threat model and to the

performance envelope.

Our regression model for our test platform (an Intel x86 Haswell pro-

cessor) uses 21 raw performance events (see Table 5.3) that form a superset

of the microarchitectural events that can be controlled using the x86 ISA. We

use programs from the SPEC CPU 2006 benchmark suite with training in-

puts, and we run them to completion while measuring performance and power

every 100 ms, resulting in ≈420,000 measurements. Since our x86 processor

supports the measurement of only four simultaneous performance events, we

run each SPEC program 21 times, measuring one performance event in each

instance of the execution.

124

Type
Performance

Event
Coeff.

for λmin

Coeff.
for λthr

Instr-
uction

Branch Inst. 1.3×10−09 1.3×10−09

Mispred. Br. 8.9×10−09 3.0×10−09

Executed u-ops 4.8×10−11 5.3×10−11

Issued u-ops 7.5×10−11 1.0×10−10

CPU Clock 8.3×10−11 2.5×10−11

Retired Inst. 1.2×10−10 7.0×10−11

Mem.
Access

DTLB LD Miss 4.3×10−08 0
DTLB ST Miss 0 0
ITLB Miss 1.5×10−06 8.6×10−07

ICache Read 2.4×10−10 2.0×10−10

ICache Miss 9.2×10−09 1.1×10−08

L1 Cache Hit 8.4×10−11 2.8×10−11

L2 Cache Hit 1.2×10−08 8.0×10−09

L3 Cache Hit 0 0
L1 Cache Miss 0 0
L2 Cache Miss 0 0
L3 Cache Miss 0 0

Math
Op.

Arith. u-ops 3.0×10−10 0
AVX Inst 0 0
AVX to SSE
Transitions

0 0

SSE to AVX
Transitions

0 0

—
Intercept
(Avg Energy)

1.1 1.2

Table 5.3: The 21 chosen performance events for computing the regression
between microarchitectural events and energy consumption and their corre-
sponding coefficients (after rounding to one decimal).

125

●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●

 0 0 0 0 0 0
 1

 1
 3
 3
 3
 3
 3
 3
 3
 3
 3

 4
 4
 4
 4

 4
 4

 5
 5

 5
 5

 5
 5

 6
 7

 8
 11 12 12 13

0.000

0.025

0.050

0.075

0.100

−4 −3 −2 −1 0log(λmin) log(λthr)
log(λ)

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

 (
R

M
S

E
)

in
 P

re
di

ct
io

n
(J

ou
le

s)

Figure 5.9: The prediction error increases as λ increases beyond λmin, which
produces the smallest prediction error. We are interested in the value of λ for
which the prediction error is close to the smallest prediction error. Digits on
the curve indicate the number of non-zero coefficients for the corresponding
values of λ.

126

Tradeoff Between Simplicity and Precision. We select the value of λ,

whose value affects the number of non-zero coefficients, after measuring its

impact on the prediction error, which is strictly convex, thus permitting an

iterative approach to discover the value of λ that results in the smallest pre-

diction error. Figure 5.9 shows the prediction error after using cross-validation

on the SPEC CPU 2006 measurements. The digits on the curve indicate the

number of non-zero coefficients. We observe that when λ = λmin = 0.00013,

the Root Mean Square (RMS) prediction error is close to 25 mJ, and that

the cross validation error continues to be under the 25 mJ threshold until

λ = λthr = 0.00413.

5.3.2 Validation of the Analysis Results

We validate the accuracy of the regression coefficients for both λ =

λmin and λ = λthr regression models by predicting the energy consumption

of the processor while it executes the PARSEC benchmark applications [12].

Table 5.4 shows the prediction accuracy, computed using the RMS error for

every 100 ms of program execution. The prediction accuracy of our regression

models is higher than 96%, so we believe that our models are sufficiently

accurate.

5.3.3 Design of the Vantage Compiler for Intel RAPL

By leveraging the flexibility of our regression model, we create a power

channel defense for λ = λthr, and we call the corresponding solution as Van-

127

Benchmark
Accuracy of
Model when
λ = λmin

Accuracy of
Model when

λ = λthr

blackscholes 98.96 % 97.19 %
bodytrack 94.92 % 95.28 %
canneal 96.72 % 96.15 %
facesim 97.72 % 98.21 %
ferret 98.06 % 95.52 %
fluidanimate 97.03 % 97.30 %
freqmine 94.61 % 95.85 %
raytrace 96.23 % 97.14 %
streamcluster 96.46 % 95.74 %
vips 98.84 % 96.72 %

Geo. Mean 96.75 % 96.51 %

Table 5.4: Accuracy of the new regression models based on 100 ms mea-
surements of a subset of the PARSEC benchmarks using Intel RAPL. The
remaining benchmarks failed to either compile or run on our platform.

tage-RAPL. The Vantage-RAPL compiler extends the Vantage compiler,

by ignoring the transformation of TLB events, since the data TLB coefficients

are equal to zero. Specifically, Vantage-RAPL forces cache misses on every

access to a secret address using the clflush instruction. Such accesses can

also be implemented using uncacheable memory.

5.4 Evaluation

We now evaluate the performance of our code transformations using

microbenchmarks (which test integer division, bit scan operations, and inte-

ger and floating-point comparisons), and we also evaluate the security and

performance of our full benchmarks.

128

5.4.1 Experimental Setup

Vantage uses the LLVM compiler [55] version 7.0 for transforming

programs. For Intel RAPL measurements, we gather performance and en-

ergy measurements every 100 ms on an 8-core Intel Haswell processor clocked

at 3.4 GHz. The processor contains 32 KB private L1 instruction and data

caches, 256 KB private L2 unified caches, and a shared 8 MB unified L3 cache.

The processor runs Ubuntu 16.04 with Linux kernel version 4.4.0. For mea-

surements based on McPAT, we gather performance and power measurements

every 1µs using the Gem5 microarchitectural simulator that models 1 GHz

out-of-order x64, ARM 32, and ARM 64 processors with 32 KB L1 instruction

and data caches, a 256 KB L2 cache, and an 8 MB L3 cache. As a reference for

performance comparison of Vantage, we use a hypothetical hardware-only

defense that does not use contextual information from a compiler like Van-

tage, forcing the processor to consume worst-case power and execution time

for every operation. Our hardware-only defense consumes 1 cycle for arith-

metic operations, 2 cycles for branches, 3 cycles for CALL instructions, and 400

cycles for memory references7.

5.4.2 Performance of Microbenchmarks

Figures 5.10 and 5.11 evaluate the performance impact of Vantage’s

microprocessor-specific code transformations. We observe that the slowdowns

are substantial, especially for the bitscan operations, but these instructions do

7https://www.agner.org/optimize/instruction_tables.pdf

129

7.2
4.8

23.9

32.3

12.7

0

10

20

30

In
t D

iv
is

io
n

In
t R

em
ai

nd
er

B
it

S
ca

n
F

w
d

B
it

S
ca

n
R

ev

G
E

O
−

M
E

A
N

S
lo

w
do

w
n

on
 x

64
 (

X
)

Figure 5.10: Performance overhead of transformed 32-bit division, remainder,
and bit scan code on the x64 target.

not dominate the dynamic instruction count in the benchmark applications,

so their impact on the performance of the full applications is relatively low.

5.4.3 Benchmark Applications

We now evaluate the security and performance of Vantage on x64,

ARM 32, and ARM 64 targets with McPAT-based and RAPL-based mea-

surements using 12 benchmarks. Since there are no standardized benchmarks

for evaluating side channel defenses, we use commonly used programs whose

inputs represent private or confidential information. These benchmarks rep-

resent applications from four diverse categories: (1) general user applications

(comprising of a Font Renderer8, a Hash Table implementation9, and a Bloom

Filter implementation10), (2) machine-learning kernels (comprising of Dis-

8https://github.com/nothings/stb/blob/master/stb_easy_font.h
9https://github.com/watmough/jwHash

10https://github.com/bitly/dablooms

130

16.2

11.9

1.7 2.6 2.1

7.2
9.2 9.1

5.7

0

5

10

15

In
t D

iv

In
t R

em

In
t N

ot
 E

q.

In
t G

re
at

er
 T

ha
n

In
t G

re
at

er
 o

r
E

q.

F
P

 N
ot

 E
q.

F
P

 G
re

at
er

 T
ha

n

F
P

 G
re

at
er

 o
r

E
q.

G
E

O
−

M
E

A
N

S
lo

w
do

w
n

on
 A

R
M

32

Figure 5.11: Performance overhead of transformed 32-bit division, remainder,
and comparison on ARM 32 target.

parity Map computer vision benchmark [109], the LibSVM Support Vector

Machine Classifier11, and an implementation of the K-Means clustering algo-

rithm12), (3) graph kernels (which includes an implementation of Top-k Search,

the Bellman-Ford shortest path algorithm, and the Pagerank algorithm), and

(4) cryptographic kernels (the Microsoft Lattice Cryptography Library13, a

Curve25519 elliptic curve implementation14, and a Poly1305 message authen-

tication code implementation15). Nine of the total 12 benchmarks are written

by third party developers. For each application, we mark its inputs as se-

cret, and we use at least three distinct inputs for each application. We use

smaller data sizes for McPAT-based measurements since McPAT-based sim-

11https://github.com/cjlin1/libsvm
12https://wikicoding.org/wiki/c/k-means_clustering_algorithm/
13https://www.microsoft.com/en-us/research/project/

lattice-cryptography-library
14https://github.com/agl/curve25519-donna
15https://github.com/floodyberry/poly1305-donna

131

ulations run many times slower than RAPL-based executions. Our compiler

detects vulnerabilities in, and accordingly transforms, all applications except

the cryptographic kernels, since, as per our power models, the cryptographic

kernels do not include instructions that leak information.

We emphasize that the evaluation results are closely tied to each power

model, so results from one power model are not directly comparable with

results from the other power model.

Hypothetical Hardware−Only Defense Vantage

4

122

7

80

1

26

1

246

1

123

2

266

2

91

1

135

2

174

1

258

1

338

1

65

2

130

1

10

100

1000

F
on

t R
en

de
re

r

H
as

h
Ta

bl
e

B
lo

om
 F

ilt
er

D
is

pa
rit

y
M

ap

Li
bS

V
M

K
−

m
ea

ns

To
p−

K

B
el

lm
an

 F
or

d

P
ag

er
an

k

La
tti

ce
 C

ry
pt

o

C
ur

ve
25

51
9

P
ol

y1
30

5

G
E

O
−

M
E

A
N

S
lo

w
do

w
n

(X
)

X64 Target

3

171

4

96

1

30

1

461

1

137

1

494

3

135

1

47

2

109

1

166

1

480

1

53

1

137

1

10

100

1000

F
on

t R
en

de
re

r

H
as

h
Ta

bl
e

B
lo

om
 F

ilt
er

D
is

pa
rit

y
M

ap

Li
bS

V
M

K
−

m
ea

ns

To
p−

K

B
el

lm
an

 F
or

d

P
ag

er
an

k

La
tti

ce
 C

ry
pt

o

C
ur

ve
25

51
9

P
ol

y1
30

5

G
E

O
−

M
E

A
N

S
lo

w
do

w
n

(X
)

ARM 64 Target

4

178

6

105

1

35

2

472

1

140

2

367

28

161

2

56

2

100

1

146

1

386

1

78

2

141

1

10

100

1000

F
on

t R
en

de
re

r

H
as

h
Ta

bl
e

B
lo

om
 F

ilt
er

D
is

pa
rit

y
M

ap

Li
bS

V
M

K
−

m
ea

ns

To
p−

K

B
el

lm
an

 F
or

d

P
ag

er
an

k

La
tti

ce
 C

ry
pt

o

C
ur

ve
25

51
9

P
ol

y1
30

5

G
E

O
−

M
E

A
N

S
lo

w
do

w
n

(X
)

ARM 32 with Hardware Floating−Point Support

4

174

7

109

1

35

1

186

1

60

7

46
28

161

2

91 6749

1

144

1

332

1

79

3

99

1

10

100

1000

F
on

t R
en

de
re

r

H
as

h
Ta

bl
e

B
lo

om
 F

ilt
er

D
is

pa
rit

y
M

ap

Li
bS

V
M

K
−

m
ea

ns

To
p−

K

B
el

lm
an

 F
or

d

P
ag

er
an

k

La
tti

ce
 C

ry
pt

o

C
ur

ve
25

51
9

P
ol

y1
30

5

G
E

O
−

M
E

A
N

S
lo

w
do

w
n

(X
)

ARM 32 with Software Floating−Point Support

Figure 5.12: Performance overhead of Vantage on x64, ARM 32, and
ARM 64 targets.

132

5.4.3.1 Security Evaluation

Methodology for McPAT-Based Measurements. Our McPAT-based

measurements are obtained using the Gem5 simulator, enabling precisely re-

producible results on every execution. To determine whether the power trace

of the transformed programs is independent of the secrets, we compute the

SHA1 checksum for the power trace obtained using Gem5 and McPAT, and

we check whether the checksums are exactly identical even when the secret

inputs differ. If identical, we conclude that the power trace is independent of

the secrets.

Results for McPAT-Based Measurements. For all but the cryptographic

benchmarks, we observe that the non-secure execution produces a different

SHA1 checksum (elided for space) for each secret input, whereas programs

transformed using Vantage produce exactly identical SHA1 checksums of

the power traces regardless of the programs’ secret inputs. Indeed, as per

our power model analysis, the cryptographic kernels do not use vulnerable

instructions that leak secrets.

Methodology for RAPL Measurements. We collect 50 power profiles

for every combination of the application and the secret input, and we feed

these profiles to an Extreme Gradient Boosting classifier, which we implement

using the xgboost [21] R package. We first randomly shuffle the power profiles,

before using one-third of the profiles for training the classifier. We measure the

133

Benchmark
Application

Non-Secure
Execution

AUC

Vantage
Execution

AUC

Hash Table 0.91 +/- 0.02 0.50 +/- 0.03
Disparity Map 0.85 +/- 0.03 0.49 +/- 0.04
LibSVM Classifier 0.93 +/- 0.02 0.48 +/- 0.04
Top-k Search 0.94 +/- 0.02 0.45 +/- 0.05
Page Rank 0.92 +/- 0.02 0.50 +/- 0.05
Bellman Ford 0.99 +/- 0.01 0.51 +/- 0.05

Font Renderer 0.53 +/- 0.05 0.46 +/- 0.05
Bloom Filter 0.46 +/- 0.04 0.49 +/- 0.04
K-Means Clustering 0.55 +/- 0.05 0.49 +/- 0.05
Lattice Cryto Key Exch. 0.45 +/- 0.05 0.51 +/- 0.05
Curve25519 ECC 0.51 +/- 0.05 0.42 +/- 0.05
Poly1305 MAC 0.47 +/- 0.05 0.44 +/- 0.05

Table 5.5: Mean Area Under the Curve (AUC) and standard deviation for
ROC curves corresponding to non-secure and secure (Vantage) execution
over 500 summaries. We observe that six benchmark applications are vul-
nerable to power channel attacks, and Vantage thwarts the attack in the
transformed (Vantage) execution.

accuracy of the classification on the remaining two-thirds of the profiles using

the Area Under the Curve (AUC) metric of the Receiver Operating Charac-

teristic (ROC) Curve. The random shuffling step perturbs the classification

accuracy on each execution, so we perform the classification 500 times and if

the mean AUC is close to 0.5, then we conclude that the adversary is unsuc-

cessful at launching a power channel attack. Consequently, if the mean AUC

for programs transformed using Vantage drops close to 0.5, then we conclude

that Vantage successfully defeats the power channel attack.

134

17

2

1

2

46

8

218

2

35

1

2 2

6

1

10

100

F
on

t R
en

de
re

r

H
as

h
Ta

bl
e

B
lo

om
 F

ilt
er

D
is

pa
rit

y
M

ap

Li
bS

V
M

K
−

m
ea

ns

To
p−

K

B
el

lm
an

 F
or

d

P
ag

er
an

k

La
tti

ce
 C

ry
pt

o

C
ur

ve
25

51
9

P
ol

y1
30

5

G
E

O
−

M
E

A
N

S
lo

w
do

w
n

(X
)

Figure 5.13: Performance overhead of Vantage-RAPL.

Results for RAPL Measurements. Table 5.5 shows the Area Under the

Curve (AUC) metric for ROC curves for the original and transformed pro-

grams using Intel RAPL measurements. We find that 6 of the 12 benchmarks

(shown in the top half of the table) are vulnerable to power channel attacks.

In particular, we observe that benchmarks whose dynamic instruction count

depends on the secrets are more susceptible to power channel attacks using

RAPL, while benchmarks whose memory address trace depends on the secrets

are harder to attack. We observe that programs transformed using Vantage-

RAPL thwart the power channel attack.

5.4.3.2 Performance Evaluation

Results for McPAT Measurements. Figure 5.12 compares the perfor-

mance overhead of programs running on the hardware-only defense versus

that of programs transformed by Vantage. Since the hardware-only defense

lacks contextual information about the program, it needs to treat every op-

135

eration as secret, thus forcing the worst-case execution time for every oper-

ation. In contrast, programs transformed using the Vantage compiler can

transform only those sections of the code that may leak secrets, thus execut-

ing programs two to three orders of magnitude faster than the hardware-only

defense. Among programs transformed by Vantage, we observe that bench-

marks that access memory using secret pointers (Font Renderer and Top-k)

incur high overhead. We also find that on the ARM 32 target with software

floating-point ABI, benchmarks that use floating-point arithmetic (LibSVM,

K-Means, and Pagerank) experience substantial overheads due to their use of

software floating-point arithmetic. The Top-k application uses many compar-

isons (again, implemented in Vantage in software), which results in higher

overhead on the ARM 32 targets compared to the ARM 64 target. Across all

analyzed targets, we find that the mean overhead from using Vantage is at

most 3×, while that from using a hardware-only defense ranges between 99×

and 141×.

Results for RAPL Measurements. Figure 5.13 shows the performance

overhead of programs transformed by Vantage-RAPL, where we observe that

benchmarks which access memory using secret pointers (Font Renderer and

Top-k) or which perform floating-point arithmetic on secret values (LibSVM,

K-Means, and Pagerank) experience the most slowdowns. These results vali-

date our understanding that Vantage’s transformation of control flow is sub-

stantially cheaper than its transformation of memory references and floating-

136

point computation, since it is more expensive to force cache misses or to per-

form dummy subnormal floating-point computation compared to executing

dummy instructions. On average, we see a 6× slowdown from the use of

Vantage-RAPL.

5.5 Discussion

Performance Overhead of Vantage. The performance overhead of Van-

tage stems from its strong security property of making the running time of the

application independent of the secrets, so as to not leak information through

the total energy consumption. Like Vantage, any solution that enforces a

fixed energy consumption will need to enforce a worst-case execution time.

However, we believe that Vantage’s performance overhead can be reduced

using aggressive compiler optimizations combined with modest microarchitec-

tural changes.

Accuracy of Power Models. Vantage’s defense relies crucially on the

accuracy of the power model. However, many power models exist whose pre-

dictions are close to the actual power consumption [17, 48, 58, 92, 102, 120].

Vantage is not tied to any specific power models; instead Vantage can be

adapted based on the available power model.

Other Physical Side Channels. Beyond power, there exist systems that

model other aspects of the program execution such as heat [38, 39] and elec-

137

tromagnetic radiation [57, 122], so our approach could be useful for mitigating

other analog side channel attacks besides power channel attacks.

5.6 Conclusion and Future Work

Until now, power channel defenses have protected a small minority of

programs. This work shows how compiler-based techniques can be used to

close power side channels in a more diverse class of applications running on

modern processors. The key observation is that to bridge the gap between

the program execution and the power consumption, we need a mapping from

software events to power consumption, which can be provided by existing

power models.

By mapping software events to power consumption, Vantage can elim-

inate variations in all software events—and only those software events—that

affect power consumption. At the same time, by reasoning about power con-

sumption at the program level, Vantage can selectively apply mitigation

techniques only where needed.

Looking to the future, we can combine our compiler-based code trans-

formations with existing cycle-level power side-channel defenses to provide a

comprehensive power channel defense. We also plan to improve the perfor-

mance impact of our solutions through microarchitectural enhancements.

138

Chapter 6

Conclusion and Future Work

In this dissertation, we presented compiler-based solutions for closing

or mitigating digital as well as non-digital side channels. Our solutions require

programmer annotations that identify the input variables that hold sensitive

information, and the compiler tracks the flow of sensitive information through

various instructions, so that it transforms only those parts of the program that

operate on sensitive values. Our solutions also adapt the code transformations

based on the threat model as well as the microarchitecture.

Our solutions use the key insight that a broad class of side channels

arise due to variations in the application’s source-level behavior, which can

be summarized in terms of control flows and data flows. Consequently, by

making the application’s control flows and data flows independent of the pro-

gram’s sensitive information, our solutions close a broad class of side channels.

But side channels can also exist in the implementation of individual assembly

instructions, such as the integer division instruction, which can leak informa-

tion about the operands through the running time, architectural exceptions,

and through power consumption. For closing such side channels, our solu-

tions rewrite the operation without using the vulnerable assembly instruction.

139

For instance, our Vantage solution rewrites the division instruction using

only bitwise arithmetic operations. We derive the rewritten operations either

manually or by using results from an existing superoptimizer.

6.1 Future Work

We now list potential topics for extending this work.

Synthesizing Side-Channel Defenses. Based on our generalized approach

for closing side channels through abstractions from program instructions

to side-channel leakage, it could be possible to synthesize compiler trans-

formations automatically based on microarchitectural models of informa-

tion leakage. Synthesis techniques can also be useful for proving stronger

guarantees through a rich domain-specific language that is amenable to

aggressive static analysis, such as determining whether the generated

code transformations are composable with other compiler transforma-

tions or whether the generated code transformations preseve program

correctness.

Extending the ISA to Include Behavioral Constraints. Currently, the

only way for a compiler to affect the microarchitecture’s behavior is

through the ISA, which is a functional interface and which does not in-

clude a specification of behavioral properties such as power consumption

or timing. Consequently, software solutions are often forced to craft

clever but fragile techniques for influencing microarchitectural behavior,

140

often resulting in large performance overheads. By extending the ISA to

include not just functional but also a behavioral specification, software

can directly control the microarchitecture’s behavioral properties, thus

likely improving performance.

Creating a Standardized Benchmark for Evaluating Defenses. Finally,

various side channel defenses exist, but it is difficult to compare these

defenses against each other because of the lack of a set of programs that

can be used as a standardized benchmark. By designing a reference

benchmark suite, we can enable a direct comparison of not just the per-

formance impact of various solutions but also their purported security

on different programs running on various platforms.

141

Bibliography

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael

Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,

Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete

Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A

System for Large-Scale Machine Learning. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI), pages 265–283,

2016.

[2] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the Power

of Simple Branch Prediction Analysis. In Information, Computer and

Communications Security (ICCS), pages 312–320, 2007.

[3] Onur Aciiçmez and Jean-Pierre Seifert. Cheap Hardware Parallelism

Implies Cheap Security. In Workshop on Fault Diagnosis and Tolerance

in Cryptography, pages 80–91, 2007.

[4] Shaizeen Aga and Satish Narayanasamy. InvisiMem: Smart Memory

Defenses for Memory Bus Side Channel. In International Symposium

on Computer Architecture (ISCA), pages 94–106, 2017.

[5] Alric Althoff, Joseph McMahan, Luis Vega, Scott Davidson, Timothy

142

Sherwood, Michael Taylor, and Ryan Kastner. Hiding Intermittent

Information Leakage with Architectural Support for Blinking. In Inter-

national Symposium on Computer Architecture (ISCA), pages 638–649,

2018.

[6] Jude Angelo Ambrose, Roshan G. Ragel, and Sri Parameswaran. RIJID:

Random Code Injection to Mask Power Analysis Based Side Channel

Attacks. In Design Automation Conference (DAC), pages 489–492,

2007.

[7] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin

Lerner, and Hovav Shacham. On Subnormal Floating Point and Abnor-

mal Timing. In Symposium on Security and Privacy (Oakland), pages

623–639, 2015.

[8] Amro Awad, Yipeng Wang, Deborah Shands, and Yan Solihin. Ob-

fusMem: A Low-Overhead Access Obfuscation for Trusted Memories.

In International Symposium on Computer Architecture (ISCA), pages

107–119, 2017.

[9] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,

Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4.

In Computer Aided Verification (CAV), pages 171–177, July 2011.

[10] Stephen D. Bay, Dennis Kibler, Michael J. Pazzani, and Padhraic Smyth.

The UCI KDD Archive of Large Data Sets for Data Mining Research

143

and Experimentation. SIGKDD Explorations Newsletter, 2(2):81–85,

December 2000.

[11] A. G. Bayrak, F. Regazzoni, D. Novo, P. Brisk, F. X. Standaert, and

P. Ienne. Automatic Application of Power Analysis Countermeasures.

IEEE Transactions on Computers, 64(2):329–341, 2015.

[12] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,

Princeton University, January 2011.

[13] William Lloyd Bircher and Lizy K. John. Complete System Power

Estimation Using Processor Performance Events. IEEE Transactions

on Computers, 61(4):563–577, April 2012.

[14] Colin Blundell, E Christopher Lewis, and Milo Martin. Unrestricted

transactional memory: Supporting I/O and system calls within transac-

tions. Technical report, University of Pennsylvania, 2006.

[15] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino,

Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure

Thompson. Vale: Verifying High-Performance Cryptographic Assembly

Code. In USENIX Security Symposium (SEC), pages 917–934, 2017.

[16] Eric Brier and Marc Joye. Weierstrass Elliptic Curves and Side-Channel

Attacks. In Public Key Cryptography (PKC), pages 335–345, 2002.

[17] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A

Framework for Architectural-Level Power Analysis and Optimizations.

144

In International Symposium on Computer Architecture (ISCA), pages

83–94, 2000.

[18] David Brumley and Dan Boneh. Remote timing attacks are practical.

In USENIX Security Symposium, 2005.

[19] Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong Chung,

Chi Cao Minh, Christos Kozyrakis, and Kunle Olukotun. The Atomos

Transactional Programming Language. In Programming Language De-

sign and Implementation (PLDI), pages 1–13, 2006.

[20] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support

Vector Machines. Transactions on Intelligent Systems and Technology,

2:27:1–27:27, 2011.

[21] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting

System. In Knowledge Discovery and Data Mining (KDD), pages 785–

794, 2016.

[22] Zhimin Chen and Patrick Schaumont. Virtual Secure Circuit: Porting

Dual-Rail Pre-Charge Technique into Software on Multicore. IACR

Cryptology ePrint Archive, page 272, 2010.

[23] Jeroen V. Cleemput, Bart Coppens, and Bjorn De Sutter. Compiler

Mitigations for Time Attacks on Modern x86 Processors. Transactions

on Architecture and Code Optimization, 8(4):23:1–23:20, January 2012.

145

[24] Gilberto Contreras and Margaret Martonosi. Power Prediction for Intel

XScale Processors Using Performance Monitoring Unit Events. In Inter-

national Symposium on Low Power Electronics and Design (ISLPED),

pages 221–226, 2005.

[25] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De

Sutter. Practical Mitigations for Timing-Based Side-Channel Attacks on

Modern x86 Processors. In IEEE Symposium on Security and Privacy

(Oakland), pages 45–60, 2009.

[26] Jean-Sébastien Coron. Resistance Against Differential Power Analy-

sis for Elliptic Curve Cryptosystems. In Cryptographic Hardware and

Embedded Systems (CHES), pages 292–302, 1999.

[27] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and

Michael Franz. Thwarting Cache Side-Channel Attacks Through Dy-

namic Software Diversity. In Network and Distributed System Security

Symposium (NDSS), 2015.

[28] Jean-Luc Danger, Sylvain Guilley, Shivam Bhasin, and Maxime Nas-

sar. Overview of Dual Rail with Precharge Logic Styles to Thwart

Implementation-Level Attacks on Hardware Cryptoprocessors. In Sig-

nals, Circuits and Systems (SCS), pages 1–8, 2009.

[29] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and

Christian Le. RAPL: Memory Power Estimation and Capping. In Inter-

146

national Symposium on Low Power Electronics and Design (ISLPED),

pages 189–194, 2010.

[30] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver.

In International Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems, pages 337–340, 2008.

[31] James W. Demmel. Effects of Underflow on Solving Linear Systems.

Technical Report UCB/CSD-83-128, EECS Department, University of

California, Berkeley, Aug 1983.

[32] Dorothy E Denning and Peter J Denning. Certification of Programs for

Secure Information Flow. Communications of the ACM, 20(7):504–513,

1977.

[33] C. W. Fletcher, Ren Ling, Yu Xiangyao, M. van Dijk, O. Khan, and

S. Devadas. Suppressing the Oblivious RAM Timing Channel While

Making Information Leakage and Program Efficiency Trade-Offs. In

High Performance Computer Architecture (HPCA), pages 213–224, 2014.

[34] Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas. A

Secure Processor Architecture for Encrypted Computation on Untrusted

Programs. In ACM Workshop on Scalable Trusted Computing, pages 3–

8, 2012.

[35] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electro-

magnetic Analysis: Concrete Results. In Cryptographic Hardware and

147

Embedded Systems (CHES), pages 251–261, 2001.

[36] Louis Goubin and Jacques Patarin. DES and Differential Power Analy-

sis (The “Duplication” Method). In Cryptographic Hardware and Em-

bedded Systems (CHES), pages 158–172, 1999.

[37] Johann Großschädl, Elisabeth Oswald, Dan Page, and Michael Tunstall.

Side-Channel Analysis of Cryptographic Software via Early-Terminating

Multiplications. In Information Security and Cryptology (ISC), pages

176–192, 2010.

[38] Taliver Heath, Ana Paula Centeno, Pradeep George, Luiz Ramos, Yo-

gesh Jaluria, and Ricardo Bianchini. Mercury and Freon: Tempera-

ture Emulation and Management for Server Systems. In Architectural

Support for Programming Languages and Operating Systems (ASPLOS),

pages 106–116, 2006.

[39] Wei Huang, Shougata Ghosh, Siva Velusamy, Karthik Sankaranarayanan,

Kevin Skadron, and Mircea Stan. HotSpot: A Compact Thermal Mod-

eling Methodology for Early-Stage VLSI Design. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 14(5):501–513, 2006.

[40] Canturk Isci and Margaret Martonosi. Runtime Power Monitoring in

High-End Processors: Methodology and Empirical Data. In Interna-

tional Symposium on Microarchitecture (MICRO), pages 93–104, 2003.

148

[41] Canturk Isci and Margaret Martonosi. Phase Characterization for

Power: Evaluating Control-Flow-Based and Event-Counter-Based Tech-

niques. In High-Performance Computer Architecture (HPCA), pages

121–132, Feb 2006.

[42] Yasuo Ishii, Mary Inaba, and Kei Hiraki. Access Map Pattern Matching

for High Performance Data Cache Prefetch. In International Conference

on Supercomputing (ICS), pages 499–500, 2009.

[43] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Ac-

cess Pattern disclosure on Searchable Encryption: Ramification, Attack

and Mitigation. In Network and Distributed System Security Sympo-

sium, NDSS, 2012.

[44] Suman Jana and Vitaly Shmatikov. Memento: Learning Secrets from

Process Footprints. In IEEE Symposium on Security and Privacy (Oak-

land), pages 142–157, 2012.

[45] Marc Joye and Jean-Jacques Quisquater. Hessian Elliptic Curves and

Side-Channel Attacks. In Cryptographic Hardware and Embedded Sys-

tems (CHES), pages 402–410, 2001.

[46] Marc Joye and Christophe Tymen. Protections Against Differential

Analysis for Elliptic Curve Cryptography. In Cryptographic Hardware

and Embedded Systems (CHES), pages 377–390, 2001.

149

[47] W Kahan. Interval Arithmetic Options in the Proposed IEEE Floating-

Point Arithmetic Standard. Interval Mathematics, pages 99–128, 1980.

[48] Andrew B. Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. ORION

2.0: A Fast and Accurate NoC Power and Area Model for Early-Stage

Design Space Exploration. In Design, Automation and Test in Europe

(DATE), pages 423–428, 2009.

[49] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. STEALTH-

MEM: System-Level Protection Against Cache-Based Side Channel At-

tacks in the Cloud. In USENIX Security Symposium (SEC), pages

189–204, 2012.

[50] Paul C Kocher. Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems. In Advances in Cryptology (CRYPTO),

pages 104–113, 1996.

[51] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power

Analysis. In 19th Annual International Cryptology Conference on Ad-

vances in Cryptology, pages 388–397, 1999.

[52] Jingfei Kong, Onur Aciiçmez, Jean-Pierre Seifert, and Huiyang Zhou.

Hardware-Software Integrated Approaches to Defend Against Software

Cache-Based Side Channel Attacks. In High Performance Computer

Architecture (HPCA), pages 393–404, 2009.

150

[53] Markus Kuhn. Cipher Instruction Search Attack on the Bus-Encryption

Security Microcontroller DS5002FP. IEEE Transactions on Computers,

47(10):1153–1157, 1998.

[54] Butler Lampson. A Note on the Confinement Problem. Communica-

tions of the ACM, pages 613–615, 1973.

[55] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. In Code Generation and

Optimization (CGO), pages 75–86, 2004.

[56] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,

and Marcus Peinado. Inferring Fine-Grained Control Flow Inside SGX

Enclaves with Branch Shadowing. In USENIX Security Symposium

(SEC), pages 557–574, 2017.

[57] Bing Li, Mingzhu Lei, Meiyuan Chen, and Lanyong Zhang. Electro-

Magnetic Analysis of High-Frequency Digital Signal Processors. Springer-

Plus, 5(1):1313, 2016.

[58] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.

Tullsen, and Norman P. Jouppi. McPAT: An Integrated Power, Area,

and Timing Modeling Framework for Multicore and Manycore Archi-

tectures. In International Symposium on Microarchitecture (MICRO),

pages 469–480, 2009.

151

[59] Pierre-Yvan Liardet and Nigel P. Smart. Preventing SPA/DPA in ECC

Systems Using the Jacobi Form. In Cryptographic Hardware and Em-

bedded Systems (CHES), pages 391–401, 2001.

[60] Greg Linden, Brent Smith, and Jeremy York. Amazon.Com Recommen-

dations: Item-to-Item Collaborative Filtering. IEEE Internet Comput-

ing, 7(1):76–80, January 2003.

[61] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari,

and Elaine Shi. GhostRider: A Hardware-Software System for Memory

Trace Oblivious Computation. In Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS), pages 87–101, 2015.

[62] Chang Liu, M. Hicks, and E. Shi. Memory Trace Oblivious Program

Execution. In Computer Security Foundations Symposium, pages 51–65,

2013.

[63] Fangfei Liu and Ruby B. Lee. Random Fill Cache Architecture. In In-

ternational Symposium on Microarchitecture (MICRO), pages 203–215,

2014.

[64] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-

wood. Pin: Building Customized Program Analysis Tools with Dynamic

Instrumentation. In Programming Language Design and Implementa-

tion (PLDI), pages 190–200, 2005.

152

[65] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste

Asanovic, John Kubiatowicz, and Dawn Song. PHANTOM: Practical

Oblivious Computation in a Secure Processor. In Computer and Com-

munications Security (CCS), pages 311–324, 2013.

[66] Robert Martin, John Demme, and Simha Sethumadhavan. TimeWarp:

Rethinking Timekeeping and Performance Monitoring Mechanisms to

Mitigate Side-Channel Attacks. In International Symposium on Com-

puter Architecture (ISCA), pages 118–129, 2012.

[67] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Chris-

tian Müller, Lothar Thiele, and Srdjan Capkun. Thermal Covert Chan-

nels on Multi-Core Platforms. In USENIX Security Symposium (SEC),

pages 865–880, 2015.

[68] David May, Henk L. Muller, and Nigel P. Smart. Non-Deterministic

Processors. In Australasian Conference on Information Security and

Privacy (ACISP), pages 115–129, 2001.

[69] David May, Henk L. Muller, and Nigel P. Smart. Random Register Re-

naming to Foil DPA. In Cryptographic Hardware and Embedded Systems

(CHES), pages 28–38, 2001.

[70] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards

Practical Tools for Side Channel Aware Software Engineering: ‘Grey

Box’ Modelling for Instruction Leakages. In USENIX Security Sympo-

sium (SEC), pages 199–216, 2017.

153

[71] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,

Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. In-

novative Instructions and Software Model for Isolated Execution. In

International Workshop on Hardware and Architectural Support for Se-

curity and Privacy (HASP), pages 10:1–10:1, 2013.

[72] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,

Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. In-

novative Instructions and Software Models for Isolated Execution. In

International Workshop on Hardware and Architectural Support for Se-

curity and Privacy, 2013.

[73] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The

Program Counter Security Model: Automatic Detection and Removal of

Control-Flow Side Channel Attacks. In International Conference on

Information Security and Cryptology (ICISC), pages 156–168, 2005.

[74] Mark Monmonier. The Internet, Cartographic Surveillance, and Lo-

cational Privacy. In Maps and the Internet, pages 97–113. Elsevier,

2003.

[75] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Com-

piler Assisted Masking. In Cryptographic Hardware and Embedded Sys-

tems (CHES), pages 58–75, 2012.

[76] Steven Muchnick. Advanced Compiler Design and Implementation.

Morgan Kaufmann Publishers Inc., 1997.

154

[77] Jean-Michel Muller. On the definition of ulp(x). Technical Report

2005-009, ENS Lyon, February 2005.

[78] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Thresh-

old Implementations Against Side-Channel Attacks and Glitches. In

International Conference on Information and Communications Security

(ICICS), pages 529–545, 2006.

[79] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebas-

tian Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious Multi-Party

Machine Learning on Trusted Processors. In USENIX Security Sympo-

sium (SEC), pages 619–636, 2016.

[80] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and

Countermeasures: the Case of AES. In RSA Conference on Topics in

Cryptology, pages 1–20, 2006.

[81] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent

Rijmen. A Side-Channel Analysis Resistant Description of the AES

S-Box. In Fast Software Encryption (FSE), pages 413–423, 2005.

[82] Zizi Papacharissi. The Virtual Geographies of Social Networks: A Com-

parative Analysis of Facebook, LinkedIn and ASmallWorld. New media

& Society, 11(1-2):199–220, 2009.

[83] Colin Percival. Cache Missing for Fun and Profit. In Technical BSD

Conference, 2005.

155

[84] Thomas Popp and Stefan Mangard. Masked Dual-Rail Pre-Charge

Logic: DPA-Resistance Without Routing Constraints. In Cryptographic

Hardware and Embedded Systems (CHES), pages 172–186, 2005.

[85] Donald E. Porter, Owen Hofmann, Christopher Rossbach, Alexander

Benn, and Emmett Witchel. Operating System Transactions. In Sym-

posium on Operating Systems Principles (SOSP), pages 161–176, 2009.

[86] Srividhya Rammohan, Vijay Sundaresan, and Ranga Vemuri. Reduced

Complementary Dynamic and Differential Logic: A CMOS Logic Style

for DPA-Resistant Secure IC Design. In VLSI Design (VLSID), pages

699–705, 2008.

[87] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing Digital

Side-Channels Through Obfuscated Execution. In USENIX Security

Symposium (SEC), pages 431–446, 2015.

[88] Ashay Rane, Calvin Lin, and Mohit Tiwari. Secure, Precise, and Fast

Floating-Point Operations on x86 Processors. In USENIX Security Sym-

posium (SEC), pages 71–86, 2016.

[89] Ashay Rane, Mohit Tiwari, and Calvin Lin. Digital Methods for Closing

Analog Side Channels. In Submission, 2018.

[90] Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk, and

Srinivas Devadas. Design Space Exploration and Optimization of Path

156

Oblivious RAM in Secure Processors. In International Symposium on

Computer Architecture (ISCA), pages 571–582, 2013.

[91] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.

Hey, You, Get Off of My Cloud: Exploring Information Leakage in Third-

party Compute Clouds. In Computer and Communications Security

(CCS), pages 199–212, 2009.

[92] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. DRAMSim2: A

Cycle Accurate Memory System Simulator. IEEE Computer Architec-

ture Letters (CAL), 10(1):16–19, January 2011.

[93] Andrei Sabelfeld and Andrew C. Myers. Language-Based Information-

Flow Security. IEEE JSAC, pages 5–19, 2003.

[94] Kouichi Sakurai and Tsuyoshi Takagi. A Reject Timing Attack on an

IND-CCA2 Public-Key Cryptosystem. In International Conference on

Information Security and Cryptology, pages 359–374, 2003.

[95] Werner Schindler. A Timing Attack Against RSA with the Chinese Re-

mainder Theorem. In Cryptographic Hardware and Embedded Systems

(CHES), pages 109–124, 2000.

[96] Elaine Shi, Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious

RAM with O((logN)3) Worst-Case Cost. In Advances in Cryptology

(CRYPTO), pages 197–214, 2011.

157

[97] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher,

Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: An Ex-

tremely Simple Oblivious RAM Protocol. In Conference on Computer

and Communications Security (CCS), pages 299–310, 2013.

[98] Bo Su, Junli Gu, Li Shen, Wei Huang, Joseph L. Greathouse, and Zhiy-

ing Wang. PPEP: Online Performance, Power, and Energy Prediction

Framework and DVFS Space Exploration. In International Symposium

on Microarchitecture (MICRO), pages 445–457, 2014.

[99] G. Edward Suh, Christopher Fletcher, Dwaine Clarke, Blaise Gassend,

Marten van Dijk, and Srinivas Devadas. Author Retrospective AEGIS:

Architecture for Tamper-Evident and Tamper-Resistant Processing. In

International Conference on Supercomputing (ICS), pages 68–70, 2014.

[100] Mohammadkazem Taram, Ashish Venkat, and Dean M. Tullsen. Mobi-

lizing the Micro-ops: Exploiting Context Sensitive Decoding for Security

and Energy Efficiency. In International Symposium on Computer Ar-

chitecture (ISCA), pages 624–637, 2018.

[101] Chandramohan Thekkath, David Lie, Mark Mitchell, Patrick Lincoln,

Dan Boneh, John Mitchell, and Mark Horowitz. Architectural Support

for Copy and Tamper Resistant Software. In International Conference

on Architectural Support for Programming Languages and Operating Sys-

tems, pages 168–177, 2000.

158

[102] Shyamkumar Thoziyoor, Jung Ho Ahn, Matteo Monchiero, Jay B. Brock-

man, and Norman P. Jouppi. A Comprehensive Memory Modeling Tool

and Its Application to the Design and Analysis of Future Memory Hier-

archies. In International Symposium on Computer Architecture (ISCA),

pages 51–62, 2008.

[103] K. Tiri, M. Akmal, and I. Verbauwhede. A Dynamic and Differential

CMOS Logic with Signal Independent Power Consumption to Withstand

Differential Power Analysis on Smart Cards. In European Solid-State

Circuits Conference (ESSCIRC), pages 403–406, 2002.

[104] Kris Tiri and Ingrid Verbauwhede. A Logic Level Design Methodology

for a Secure DPA Resistant ASIC or FPGA Implementation. In Design,

Automation and Test in Europe (DATE), pages 246–251, 2004.

[105] Mohit Tiwari, Casen Hunger, and Mikhail Kazdagli. Understanding

Microarchitectural Channels and Using Them for Defense. In Interna-

tional Symposium on High Performance Computer Architecture, pages

639–650, 2015.

[106] John Tukey. Exploratory Data Analysis. Pearson, 1977.

[107] O. A. Uzun and S. Kse. Converter-Gating: A Power Efficient and

Secure On-Chip Power Delivery System. IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, 4(2):169–179, June 2014.

159

[108] Bhanu C. Vattikonda, Sambit Das, and Hovav Shacham. Eliminating

Fine Grained Timers in Xen. In Cloud Computing Security Workshop,

pages 41–46, 2011.

[109] Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta,

Christopher Louie, Saturnino Garcia, Serge Belongie, and Michael Bed-

ford Taylor. SD-VBS: The San Diego Vision Benchmark Suite. In IEEE

International Symposium on Workload Characterization (IISWC), pages

55–64, 2009.

[110] Yao Wang, Andrew Ferraiuolo, and G. Edward Suh. Timing Channel

Protection for a Shared Memory Controller. In International Symposium

on High Performance Computer Architecture (HPCA), pages 225–236,

2014.

[111] Zhenghong Wang and Ruby B. Lee. New Cache Designs for Thwarting

Software Cache-Based Side Channel Attacks. In International Sympo-

sium on Computer Architecture (ISCA), pages 494–505, 2007.

[112] Zhenghong Wang and Ruby B Lee. A Novel Cache Architecture with

Enhanced Performance and Security. In International Symposium on

Microarchitecture (MICRO), pages 83–93, 2008.

[113] Wei Wu, Lingling Jin, Jun Yang, Pu Liu, and Sheldon X. Tan. A

Systematic Method for Functional Unit Power Estimation in Micropro-

cessors. In Design Automation Conference (DAC), pages 554–557, 2006.

160

[114] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas.

Secure Hierarchy-Aware Cache Replacement Policy (SHARP): Defend-

ing Against Cache-Based Side Channel Atacks. In International Sym-

posium on Computer Architecture (ISCA), pages 347–360, 2017.

[115] Shengqi Yang, Wayne Wolf, N. Vijaykrishnan, D. N. Serpanos, and Yuan

Xie. Power Attack Resistant Cryptosystem Design: A Dynamic Voltage

and Frequency Switching Approach. In Design, Automation and Test

in Europe (DATE), pages 64–69, 2005.

[116] W. Yu and S. Kse. Time-Delayed Converter-Reshuffling: An Efficient

and Secure Power Delivery Architecture. IEEE Embedded Systems Let-

ters, 7(3):73–76, Sept 2015.

[117] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Predictive Mit-

igation of Timing Channels in Interactive Systems. In Computer and

Communications Security (CCS), pages 563–574, 2011.

[118] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. Home-

Alone: Co-residency Detection in the Cloud via Side-Channel Analysis.

In Symposium on Security and Privacy (Oakland), pages 313–328, 2011.

[119] Yinqian Zhang and Michael K. Reiter. Düppel: Retrofitting Commodity

Operating Systems to Mitigate Cache Side Channels in the Cloud. In

Computer and Communications Security (CCS), pages 827–838, 2013.

161

[120] Xinnian Zheng, Lizy K. John, and Andreas Gerstlauer. Accurate Phase-

Level Cross-Platform Power and Performance Estimation. In Design

Automation Conference (DAC), pages 1–6, 2016.

[121] Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang. A Software Ap-

proach to Defeating Side Channels in Last-Level Caches. In Computer

and Communications Security (CCS), pages 871–882, 2016.

[122] Boyuan Zhu, Junwei Lu, and Erping Li. Electromagnetic Radiation

Study of Intel Dual Die CPU with Heatsink. In Symposium on Anten-

nas, Propagation and EM Theory, pages 949–952, 2008.

[123] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. HIDE: An Infras-

tructure for Efficiently Protecting Information Leakage on the Address

Bus. In Architectural Support for Programming Languages and Operat-

ing Systems (ASPLOS), pages 72–84, 2004.

[124] Hui Zou and Trevor Hastie. Regularization and Variable Selection via

the Elastic Net. Journal of the Royal Statistical Society, Series B,

67:301–320, 2005.

162

