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ABSTRACT
This paper presents Voyager, a novel neural network for data
prefetching. Unlike previous neural models for prefetching, which
are limited to learning delta correlations, our model can also learn
address correlations, which are important for prefetching irregular
sequences of memory accesses. The key to our solution is its hier-
archical structure that separates addresses into pages and offsets
and that introduces a mechanism for learning important relations
among pages and offsets.

Voyager provides significant prediction benefits over current
data prefetchers. For a set of irregular programs from the SPEC
2006 and GAP benchmark suites, Voyager sees an average IPC im-
provement of 41.6% over a system with no prefetcher, compared
with 21.7% and 28.2%, respectively, for idealized Domino and ISB
prefetchers. We also find that for two commercial workloads for
which current data prefetchers see very little benefit, Voyager dra-
matically improves both accuracy and coverage.

At present, slow training and prediction preclude neural models
from being practically used in hardware, but Voyager’s overheads
are significantly lower—in every dimension—than those of previous
neural models. For example, computation cost is reduced by 15-
20×, and storage overhead is reduced by 110-200×. Thus, Voyager
represents a significant step towards a practical neural prefetcher.
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1 INTRODUCTION
Machine learning has provided insights into various hardware pre-
diction problems, including branch prediction [21, 22, 48, 57] and
cache replacement [23, 42, 49]. So it is natural to ask if machine
learning (ML) could play a role in advancing the state-of-the-art in
data prefetching, where improvements have recently been difficult
to achieve. Unfortunately, data prefetching presents two challenges
to machine learning that branch prediction and cache replacement
do not.

First, data prefetching suffers from the class explosion problem.
While branch predictors predict a binary output—Taken or Not
Taken—and while cache replacement can be framed as a binary
prediction problem [19, 23, 27, 42, 54]—a line has either high or
low priority—prefetchers that learn delta correlations or address
correlations have enormous input and output spaces. For example,
for address correlation, also known as temporal prefetching, the
inputs and outputs are individual memory addresses, so for a 64-
bit address space, the model needs to predict from among tens of
millions of unique address values. Such predictions cannot be han-
dled by existing machine learning models for image classification
or speech recognition, which traditionally have input and output
spaces that are orders of magnitude smaller.1

Second, data prefetching has a labeling problem.Whereas branch
predictors can be trained by the ground truth answers as revealed
by a program’s execution, and whereas cache replacement policies
can be trained by learning from Belady’s provably optimal MIN
policy [19], data prefetchers have no known ground truth labels
from which to learn. Thus, given a memory accessm, the prefetcher
could learn to prefetch any of the addresses that followm. In ma-
chine learning parlance, it’s not clear which label to use to train
the ML model.

Previous work has made inroads into these problems. Most no-
tably, Hashemi, et al [12] show that prefetching can be phrased as a
classification problem and that neural models, such as LSTMs [13],2
can be used for prefetching. But Hashemi, et al. focus on learning
delta correlations, or strides, among memory references, and their
solution does not generalize to address correlation.

Since off-the-shelf neural models suffer from the two aforemen-
tioned problems, our goal in this paper is to develop a novel neural
model that can learn both delta and address correlations. We tackle
1The large number of outputs cannot be handled by Perceptrons either. Perceptrons
are by default designed for binary classification, so a typical method of dealing with
multiple prediction outputs is to have n models, each of them separating one output
class from the rest, where n is the number of outputs. Thus, for large output spaces,
Perceptrons are both expensive and ineffective.
2LSTM stands for Long Short-Term Memory, and LSTMs are neural networks that can
learn sequences of events.
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the two problems by developing a novel hierarchical neural net-
work structure that exploits unique properties of data prefetching
(described momentarily) that are not found in ML tasks in computer
vision or natural language processing.

To solve the class explosion problem, we decompose address
prediction into two sub-problems, namely, page prediction and
offset prediction. Thus, while a program can have tens of millions
of unique addresses, the total number of unique pages is only in the
tens or hundreds of thousands, and the number of unique offsets is
fixed at 64.

While this decomposition might appear to be both obvious and
trivial, the naive decomposition leads to the offset aliasing problem
in which all addresses with the same offset but different pages
will alias with one another. More precisely, different addresses
with the same offset will share the same offset embedding,3 which
limits the ability of neural networks to learn, because different
data addresses pull the shared offset embedding towards different
answers, resulting in poor performance. To address this issue, we
use a novel attention-based embedding layer that allows the page
prediction to provide context for the offset prediction. This context
enables our shared embedding layer to differentiate data addresses
without needing to learn a unique representation for every data
address.

To solve the labeling problem, we observe that the problem is
similar to the notion of localization for prefetchers. For example,
temporal prefetchers, such as STMS [53] and ISB [18], capture the
correlation between a pair of addresses, A and B, where A is the
trigger, or input feature, and B is the prediction, or output label.
The labeling problem is to find the most correlated output label B
for the input feature A. In STMS, A and B are consecutive memory
addresses in the global access stream. In ISB, which uses PC local-
ization [34], A and B are consecutive memory addresses accessed
by a common PC. But PC-localization is not always sufficient, for
example, in the presence of data-dependent correlations across
multiple PCs. Thus, to explore new forms of localization, we build
into our neural model a multi-label training scheme that enables
the model to learn from multiple possible labels. The key idea is
that instead of providing a single ground truth label, the model can
learn the label that is most predictable.

While this paper does not yet make neural models practical
for use in hardware data prefetchers, it shows that it is possible
to advance the state-of-the-art in data prefetching by using supe-
rior prefetching algorithms. In particular, this paper makes the
following contributions:

• We advance the state-of-the-art in neural network-based
prefetching by presenting Voyager,4 a neural network model
that can perform temporal prefetching. Our model uses a
novel attention-based embedding layer to solve key chal-
lenges that arise from handling the large input and output
spaces of correlation-based prefetchers.

• We outline the design space of temporal prefetchers by using
the notion of features and localization, and we show that

3An embedding is an internal representation of input features within a neural network,
and an embedding layer learns this representation during training such that features
that behave similarly have similar embeddings.
4We name our system after the Voyager space probes, which were launched to extend
the horizon of space exploration with no guarantees of what they would find.

neural networks are capable of exploiting rich features, such
as the history of data addresses.

• We are the first to demonstrate that LSTM-based prefetchers
can outperform existing hardware prefetchers (see Section 2).
Using a set of irregular benchmarks, Voyager achieves accu-
racy/coverage of 79.6%, compared with 57.9% for ISB [18],
and Voyager improves IPC over a system with no prefetcher
by 41.6%, compared with 28.2% for ISB. More significantly,
on Google’s search and ads, two applications that have
proven remarkably resilient against hardware data prefetch-
ers, our model achieves 37.8% and 57.5% accuracy/coverage,
respectively, where an idealized version of ISB sees accu-
racy/coverage of just 13.8% and 26.2%, respectively.
Thus, our solution shows that significant headroom still
exists for data prefetching, which is instructive for a problem
for which there is no optimal solution.

• We also show that Voyager significantly outperforms previ-
ous neural prefetchers [12], producing accuracy/coverage of
79.6%, compared with Delta-LSTM’s 56.8%, while also signifi-
cantly reducing overhead in training cost, prediction latency,
and storage overhead. For example, Voyager reduces train-
ing and prediction cost by 15-20×, and it reduces model size
by 110-200×. Voyager’s model size is smaller than those of
non-neural state-of-the-art temporal prefetchers [3, 53, 56].

The remainder of this paper is organized as follows. Section 2
contrasts our work with both traditional data prefetchers and ma-
chine learning-based prefetchers. Section 3 then presents our prob-
abilistic formulation of data prefetching, which sets the stage for
the description of our our new neural prefetcher in Section 4. We
then present our empirical evaluation in Section 5, before providing
concluding remarks.

2 RELATEDWORK
We now discuss previous work in data prefetching, which can
be described as either rule-based or machine learning-based. The
vast majority of prefetchers are rule-based, which means that they
predict future memory accesses based on pre-determined learning
rules.

2.1 Rule-Based Data Prefetchers
Many data prefetchers use rules that target sequential [15, 26, 43]
or strided [2, 10, 16, 36, 40] memory accesses. For example, stream
buffers [2, 26, 36] confirm a constant stride if some fixed number
of consecutive memory accesses are the same stride apart. More
recent prefetchers [31, 39] improve upon these ideas by testing
a few pre-determined strides to select an offset that provides the
best coverage. Offset-based prefetchers are simple and powerful,
but their coverage is limited because they apply a single offset to
all accesses. By contrast, Voyager can employ different offsets for
different memory references.

Instead of predicting constant offsets, another class of prefetchers
uses delta correlation to predict recurring delta patterns [35, 41]. For
example, Nesbit et al.’s PC/DC prefetcher [35] and Shevgoor et al.’s
Variable Delta Length Prefetcher predict these patterns by tracking
deltas between consecutive accesses by the same PC. The Signature
Path Prefetcher uses compressed signatures that encapsulate past
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addresses and strides within a page to generate the next stride [28].
Voyager is better equipped to predict these delta patterns, as it can
take longer context—potentially spanning multiple spatial regions—
to make a stride prediction.

Irregular prefetchers move beyond sequential and strided access
patterns. Some irregular accesses can be captured by predicting
recurring spatial patterns across different regions in memory [4, 6,
7, 24, 30, 46]. For example, the SMS prefetcher [46] learns recurring
spatial footprints within page-sized regions and applies old spatial
patterns to new unseen regions, and the Bingo prefetcher [4] uses
longer address contexts to predict footprints.

Temporal prefetchers learn irregular memory accesses by mem-
orizing pairs of correlated addresses, a scheme that is commonly
referred to as address correlation [8, 52]. Early temporal prefetch-
ers keep track of pairwise correlation of consecutive memory ad-
dresses in the global access stream [9, 14, 25, 34, 44, 53], but these
prefetchers suffer from poor coverage and accuracy due to the poor
predictability of the global access stream. More recent temporal
prefetchers look for pairwise correlations of consecutive addresses
in a PC-localized stream [18, 55, 56], which improves coverage
and accuracy due to the superior predictability of the PC-localized
stream. Instead of using PC-localization, Bakhshalipour, et al, im-
prove the predictability in the global stream by extending pairwise
correlation with one more address as features [3]. In particular,
their Domino prefetcher predicts the next address by memoriz-
ing its correlation to the two past addresses in the global stream.
All of these temporal prefetchers use a fixed localization scheme
and a fixed method of correlating addresses. By contrast, Voyager
leverages richer features and localizers in a data-driven fashion.

2.2 Machine Learning-Based Prefetchers
Peled et al., use a table-based reinforcement learning (RL) frame-
work to explore the correlation between richer program contexts
and memory addresses [37]. While the RL formulation is conceptu-
ally powerful, the use of tables is insufficient for RL because tables
are sample inefficient and sensitive to noise in contexts. To improve
the predictor, Peled et al. use a fully-connected feed-forward net-
work [38] instead, and they formulate prefetching as a regression
problem to train their neural network. Unfortunately, regression-
based models are trained to arrive close to the ground truth label,
but since a small error in a cache line address will prefetch the
wrong line, being close is not useful for prefetching.

Hashemi et al. [12] were the first to formulate prefetching as a
classification problem and to use LSTMs for building a prefetcher.
However, to reduce the size of the output space, their solution can
only learn deltas within a spatial region, so their LSTM cannot
perform irregular data prefetching. Moreover, their paper targets a
machine learning audience, so they use a machine learning evalua-
tion methodology: Training is performed offline rather than in a
microarchitectural simulator, and their metrics do not include IPC
and do not translate to a practical setting. For example, a prefetch
is considered correct if any one of the ten predictions by the model
match the next address, thus ignoring practical considerations of
accuracy and timeliness. Recent work improves the efficiency of
this delta-based LSTM at the cost of lower coverage [47].

Our work differs from prior work in several ways. First, our work
is the first to show the IPC benefits of using an LSTM prefetcher.
Second, our work is the first neural model that combines both delta
patterns and address correlation. Third, our multi-labeling scheme
can provide a richer set of labels, while allowing the model to pick
the label that it finds the most predictable. Finally, our model is
significantly more compact and significantly less computationally
expensive than prior neural solutions.

3 PROBLEM FORMULATION
To lay a strong foundation for our ML solution, we first formulate
data prefetching as a probabilistic prediction problem and view its
output as a probability distribution. This formulation will help us
motivate the use of ML models, because machine learning, espe-
cially deep learning, provides a flexible framework for modeling
probability distributions. It will also allow us to view a wide range
of existing data prefetchers—including temporal prefetchers and
stride prefetchers—within a unified framework.

3.1 Probabilistic Formulation of Temporal
Prefetching

The goal of temporal prefetching is to exploit correlations between
consecutive addresses to predict the next address. Therefore, tempo-
ral prefetching can be viewed as a classification problemwhere each
address is a class, and the learning task is to learn the probability that
an addressAddr will be accessed given a history of past events, such
as the occurrence of memory accesses Access1,Access2, ...,Accesst
up to the current timestamp t :

P(Addr |Access1,Access2, ...,Accesst ) (1)
In ML terminology, the historical events (Access1, Access2 ...,

Accesst ) are known as input features, and the future event (Addr )
is known as the model’s output label.

All previous temporal prefetchers [3, 18, 45, 52, 53, 55, 56] can be
viewed as instances of this formulation with different input features
and output labels. For example, STMS [53] learns the temporal
correlation between consecutive addresses in the global memory
access stream, so its output label is the next address in the global
memory access stream. Thus, STMS tries to learn the following
probability distribution:

P(Addrt+1 |Addrt ) (2)
ISB [18] implements PC localization, which improves upon STMS

by providing a different output label, namely, the next address by the
same program counter (PC). Thus, ISB tries to learn the following
probability distribution:

P(AddrPC |Addrt ) (3)
where AddrPC is the next address that will be accessed by the PC
that just accessed Addrt .

Domino [3] instead improves upon STMS by using a different
input feature, using the previous two addresses to predict the next
address in the global memory access stream:

P(Addrt+1 |Addrt−1,Addrt ) (4)
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3.2 Probabilistic Formulation of Stride
Prefetching

Stride prefetchers can also be described under this probabilistic
framework by incorporating strides or deltas in our formulation.
For example, a stride prefetcher detects the constant stride pattern
by observing the strides at consecutive timestamps t and t + 1:

P(Stridet+1 |Stridet ) (5)
As with ISB, the idea of using a per-PC output (PC localization)

is also used by the IP stride prefetcher.

P(StridePC |Stridet ) (6)
The VLDP prefetcher [41] looks at a history of past deltas and

selects the most likely deltas.

P(Stridet+1 |Stridet0 , Stridet1 , ..., Stridetn ) (7)

Hashemi et al.’s neural prefetcher [12] adopts a similar formula-
tion. Given a history length l , it learns the following distribution:

P(Stridet+1 |Stridet−l , Stridet−l+1, ..., Stridet ) (8)

In general, our probabilistic formulation of prefetching defines
the input features (the historical event) and the output label (the
future event). Unlike previous learning-based work that focuses on
limited features and focuses on the prediction of the global stream,
we seek to improve the prediction accuracy by exploring the design
choices of both the input features and the output labels.

4 OUR SOLUTION: VOYAGER
This section describes Voyager, our neural model for performing
data prefetching. We start by presenting a high-level overview of
the model. We then describe the three key innovations in Voyager’s
model design. First, to enable the model to learn temporal corre-
lations among millions of addresses, Voyager uses a hierarchical
neural structure, with one part of the model predicting page ad-
dresses and the other part predicting offsets within a page. This
hierarchical structure is described in Section 4.2. Second, to cover
compulsory misses, Voyager uses a vocabulary5 that includes both
addresses and deltas. This ability to use both addresses and deltas
is described in Section 4.3. Third, Voyager adopts a multi-label
training scheme, so that instead of predicting the next address in
the global address stream, Voyager is trained to predict the most
predictable address from multiple possible labels. This multi-label
training scheme is described in Section 4.4.

4.1 Overall Design and Workflow
Figure 1 shows that Voyager takes as input a sequence of memory
accesses and produces as output the next address to be prefetched.
Each memory access in the input is represented by a PC and an
address, and each address is split into a page address and an offset
within the page.

5A neural network’s vocabulary is the set of words that the model can admit as input
and can produce as output.

Voyager
PC1 PC2 PC3 PC4

A1 A2 A3 A4

PC Sequence

Address Sequence

Prefetch Address

Figure 1: Overview of Voyager.

Figure 2 shows Voyager’s neural architecture. Since the inputs
(PCs, page addresses, offsets) have no numerical meaning, the first
layer computes embeddings that translate each input into a real num-
ber such that inputs that behave similarly have similar embeddings.
Our first embedding layer computes independent embeddings for
PCs, pages, and offsets, and our second embedding layer (shown in
purple) is the novel page-aware offset embedding layer that revises
the offset’s representation (or embedding) to be page-aware. (See
Section 4.2 for details.) The next layer takes these embeddings as
input and uses two separate LSTMs to predict the embeddings for
candidate output pages and offsets, respectively. Finally, the candi-
dates from the two LSTMs are fed into a linear layer with a softmax
activation function,6 producing a probability distribution over the
predicted pages and offsets. The page and offset pair with the high-
est probability is chosen as the address to prefetch. Table 1 shows
all the hyperparameters used in Voyager. To emulate a hardware
prefetcher, the entire model is trained online, which means that it is
trained continuously as the program runs (see Section 5.1 for more
details).

Table 1: Hyperparameters for training Voyager.

Sequence length (i.e. history length) 16
Learning rate 0.001

Learning rate decay ratio 2
Embedding size for PC 64
Embedding size of page 256
Embedding size of offset 25600

# Experts 100
Page and offset LSTM # layers 1
Page and offset LSTM # units 256

Dropout keep ratio 0.8
Batch size 256
Optimizer Adam

4.2 Hierarchical Neural Structure
Before explaining our novel page-aware offset embedding layer,
this section first motivates the need for a hierarchical neural model.

4.2.1 Motivation. Table 2 shows that the number of unique
addresses in our benchmark programs ranges from hundreds of
thousands to tens of millions. These numbers greatly surpass the
number of unique categories in traditional ML tasks, such as natu-
ral language processing, where the typical vocabulary size is 100K.

6The softmax function converts a vector of real numbers into an equal-sized vec-
tor whose values sum to 1. Thus, the softmax function produces values that can be
interpreted as probabilities.
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Large vocabularies are problematic for two reasons: (1) The explo-
sion of memory addresses leads to an increase in memory usage
that precludes the training of neural networks [12, 42], and (2) the
large number of unique memory addresses makes it difficult to
train the model because each address appears just a few times. By
contrast, Table 2 shows that the number of pages is in the tens of
thousands and is therefore much more manageable.

Table 2: Benchmark statistics.

Benchmark # PCs # Addresses # Pages
astar 192 0.15M 29.9K
bfs 828 0.16M 4.1K
cc 529 0.26M 4.3K
mcf 169 4.58M 91.1K

omnetpp 1101 0.48M 36.3K
pr 650 0.27M 4.2K

soplex 2129 0.36M 12.3K
sphinx 1519 0.13M 4.3K

xalancbmk 2071 0.34M 25.3K
search 6729 0.91M 22.4K
ads 21159 1.4M 28.7K

A naive model would treat page prediction and offset prediction
as independent problems: At each step of the memory address
sequence, the input would be represented as a concatenation of
the page address and the offset address, each of which would be
fed to two separate LSTMs—a page LSTM and an offset LSTM—to
generate the page and offset of the future address.

Unfortunately, the naive splitting of addresses into pages and
offsets leads to a problem that we refer to as offset aliasing. To
understand this aliasing problem, consider two addresses X and
Y that have different page numbers but the same offset O . With a
naive splitting, the offset LSTM will see the same input O for both
X and Y and will be unable to distinguish the offest of X from the
offest of Y , leading to incorrect predictions. Because there are only
64 possible offsets, the offset aliasing problem is quite common.
Our novel page-aware offset embedding layer resolves this issue by
providing every offset with context about the page of the input
address.

4.2.2 Page-Aware Offset Embedding. The ideal offset embedding
not only represents the offset but also includes some context about
the page that it resides on. The analogy in natural language is pol-
ysemy where multiple meanings exist for a word, and the actual
meaning depends on the context in which the word is used; with-
out this context, the models learn an average behavior of multiple
distinct meanings, which is not useful. To make the offset (word)
aware of the page (context), we take inspiration from the machine
learning notion of mixtures of experts [17]. Intuitively, a word with
multiple meanings can be handled by multiple experts, with each
expert corresponding to one meaning. Depending on the context
in which the word is used, the appropriate expert will be chosen
to represent the specific meaning. Thus, our page-aware offset em-
bedding mechanism uses a mixture of experts, where each expert
for an offset represents a specific page-aware characteristic of that
offset. In the worst case, the number of experts would equal to the

number of pages, but in reality, the number of experts only needs to
be large enough to capture the important behaviors. We empirically
find that this number varies from 5 to 100 across benchmarks.

Figure 3 illustrates the page-aware offset embedding mechanism
in more detail. The core mechanism is an attention layer [51] that
takes as input a query, a set of keys and a set of values, and it mea-
sures the correlation between the query and the keys. The output
of the attention layer is a weighted sum of the values, such that
the weights are the learned correlations between the query and
keys. In our case, the attention layer is optimized using a scoring
function that takes the page as the query, and the offset embeddings
for each expert as both the keys and values. Given a query (the page
embedding), the layer computes the page’s correlation with each
key (the offset embedding) and produces a probability vector that
represents this correlation. The final output offset embedding is a
sum over the input page-agnostic embeddings, weighted by these
correlation probabilities. This mechanism is known as soft atten-
tion and allows us to use backpropagation to learn the correlation
vectors.

Formally, we can think of the offset embedding as one large
vector, and we can think of each expert as being one partition of
this vector (see Figure 3). When we set the ratio between page em-
bedding size and total offset embedding size to be n, corresponding
to n experts, the mechanism can be defined as

at (o, s) =
exp(f · score(hp ,ho,s ))∑
s ′ exp(f · score(hp ,ho,s ′)

(9)

h′o =
∑
s

at (o, s)ho,s (10)

where f is a scaling factor that ranges from 0 to 1;hp is the page em-
bedding; ho = [ho,0,ho,1, ...,ho,n ] is the offset embedding, where
ho,i is the embedding of the ith expert; and h′o is the page-aware
offset embedding generated by the attention mechanism. Empiri-
cally, we set the size of the offset embedding |ho | to be 5-100× of
that of the page embedding |hp |. In the example in Figure 3, we
use a dot-product attention layer with a 200-dimension (d) page
embedding (|hp | = 200) and 1000-dimension (d) offset embedding
(|ho | = 1000). The 1000-d offset embedding |ho | is divided into 5
expert embeddings (n = 5), each of which is the same size as the
page embedding used to perform the attention operation. Atten-
tion weights at (o, s) are computed as the dot product of the page
embedding and each of the offset expert embeddings, and a final
page-aware offset embedding h′o is obtained by a weighted sum of
all the offset expert embeddings ho,k ,k = 0, 1, ...,n.

Since the embedding layer is the primary storage and computa-
tion bottleneck for networks with a large number of classes, the
page-aware offset embedding dramatically reduces Voyager’s size
and dramatically reduces the number of parameters to learn. This
reduction thus simplifies the model and reduces training overhead.
In Section 5 we show that Voyager improves model efficiency—in
terms of computational cost and storage overhead—by an order of
magnitude when compared to previous neural-based solutions [12].

4.3 Covering Compulsory Misses
We have so far explained how Voyager can learn address correla-
tions, but address correlation-based prefetching has two limitations.
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Figure 2: Voyager’s Model Architecture.

Scaled Dot-Product Attention

Weighted Sum

0.3, 0.1, 0.2, -0.2, 0.8, -0.4, 0.1, 0.1, 0, -0.2

0.1 0.2 0.6 0.0 0.1

0.5, -0.5

0.55, -0.29

Input Page Embedding (dim: d=2) Input Offset Embedding (dim: 5d=10)

Query Key Value

Corresponding Attention Weights

Page-Aware Offset Embedding 
(dim: d=2)

Figure 3: Page-aware offset embedding with the dot-product
attention mechanism. The vector values are calculated with
a simplified dot-product attention without the scale factor
or linearmappings. In this example, the 3rd chunk of the off-
set embedding (0.8,−0.4) correlates the most with the page
embedding (0.5,−0.5) and therefore contributes the most
(normalized attention weight: 0.6) to the final page-aware
offset embedding (0.55,−0.29).

First, it cannot handle compulsory misses, which are common in
benchmarks with large memory footprints, such as mcf and search.
Second, it is not worth learning correlations for addresses that occur
infrequently. Since delta correlations can be used to prefetch com-
pulsory misses, we address both issues by using deltas to represent
correlations involving infrequently appearing addresses.

In particular, we enhance Voyager’s vocabulary to include deltas.
Addresses that have low frequency (they occur fewer than 2 times)
are represented using the deltas of their page and offset from the
previous page and offset respectively; infrequent addresses are
identified by a profiling pass over the trace. To distinguish addresses
from deltas, the delta page entries in the vocabulary are marked
with a special symbol (e.g. the entry value starts with ’d’). For
example, if X is an address that occurs infrequently, then we would
represent the address sequence A,B,X as A,B,d : X − B, where X
has been replaced by a delta value. In this way, our neural model will

not attempt to learn address correlations for infrequent addresses,
and it will be able to learn some delta correlations that can be
used to prefetch some compulsory misses. Since we use deltas
for infrequent addresses, our model needs just a small number of
deltas. For example, we find that 10 deltas can cover 99% of the
compulsory misses in mcf, whereas previous solutions [12] need
millions of deltas.

4.4 Multi-Label Training Scheme
As explained in Section 1, data prefetchers do not have access
to ground truth labels for training. We find that different labeling
schemes workwell for different workloads: Spatial labeling schemes
work well for workloads that have spatial memory access patterns,
and PC-based labeling schemes work well on pointer-based work-
loads. Some workloads have a mix of access patterns that require
multiple labeling schemes.

We formulate this problem as multi-label classification [50]. Un-
like traditional single-label multi-class classification, where each
training sample is associated with a single output label, in multi-
label classification, each training sample is associated with a set
of labels. In our formulation, we provide each training sample in
Voyager with the following candidate labels: (1) global represents
the next address in the global stream, (2) PC represents the next
address by the same PC, (3) basic block represents the next address
by the PCs from the current basic block, (4) spatial represents the
next address within a spatial offset of 256 [31], and (5) co-occurrence
represents the address that occurs most often in the future window
of 10 memory accesses. Figure 4 shows an example with multiple
labeling schemes: When address A is seen, each of the candidates
(B, C, E) are provided as a label for A.

To train with multiple labels, the main modification in the neural
network is the design of the loss function. Instead of using the
softmax loss function that normalizes the probability distribution
over all potential outputs, the model is trained with the binary
cross entropy (BCE) loss function [33]. BCE uses a sigmoid function
to estimate the binary probability distribution of each individual
candidate label, predicting whether or not it is likely to appear.
Voyager’s inference differs slightly from a typical multi-label classi-
fication task, as it selects the candidate with the highest probability
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Address sequence:     A B C D E …

Addresses that correlate with A through different labeling/localization scheme:
B: globally localized (the next address in the global sequence)
C: spatially localized (the next address within the spatial range)
E: PC localized (the next address issued by the PC that issues A)

Figure 4: An example of multiple labeling schemes. At ad-
dress A, multiple future addresses are correlated with ad-
dress A through different labeling schemes and they all are
considered as potential outputs.

instead of all candidates that pass a pre-determined threshold [50].
Thus, Voyager leverages the benefits of different labeling schemes
and selects the most predictable label to make its prediction.
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Figure 5: Accuracy.
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Figure 6: Coverage.

5 EVALUATION
This section evaluates our ideas by comparing Voyager against both
practical prefetchers and neural prefetchers.
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Figure 7: Unified accuracy/coverage, including Google’s
search and ads.
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Figure 8: IPC.

5.1 Methodology
Neural networks are typically trained offline on a corpus of inputs,
but since we want to evaluate Voyager as a hardware prefetcher,
we train it online as the program executes. In particular, Voyager
(and the baseline machine learning-based prefetchers) is trained for
an epoch of 50 million instructions, and it uses this trained model
to make predictions for the next epoch of 50 million instructions.
Thus, the model is constantly being trained in one epoch for use
in the next epoch. No inference is performed in the first epoch.
This evaluation methodology contrasts sharply with that used by
prior evaluations of machine learning-based prefetchers, where
the models are trained offline on one portion of the benchmark’s
execution and tested on a different portion of the benchmark’s
execution.

Simulator. We evaluate our models using the simulation frame-
work released by the 2nd JILP Cache Replacement Championship
(CRC2), which is based on ChampSim [20]. ChampSim models a
4-wide out-of-order processor with an 8-stage pipeline, a 128-entry
reorder buffer and a three-level cache hierarchy. Table 3 shows the
parameters for our simulated memory hierarchy.
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Table 3: Simulation configuration.

L1 I-Cache 64 KB, 4-way, 3-cycle latency
L1 D-Cache 64 KB, 4-way, 3-cycle latency
L2 Cache 512 KB, 8-way, 11-cycle latency

LLC per core 2MB, 16-way, 20-cycle latency

DRAM
tRP=tRCD=tCAS=20

2 channels, 8 ranks, 8 banks
32K rows, 8GB/s bandwidth per core

All prefetchers are situated at the last-level cache (LLC), which
means that their inputs are LLC accesses, and the prefetched entries
are also inserted in the LLC.

Benchmarks. We evaluate Voyager and the baselines on a set
of irregular benchmarks from the SPEC06 and GAP benchmark
suites [5]. In particular, we use irregular benchmarks on which an
oracle prefetcher that always correctly prefetches the next load
produces at least a 10% IPC improvement over a baseline with no
prefetching. This is the same methodology as used by previous
work [18, 55, 56]. For each benchmark, we use SimPoint [11] to
generate traces of length 250 million instructions. We use the refer-
ence input set for SPEC06 and input graphs of size 217 nodes for
GAP.

To evaluate Voyager on more challenging workloads, we also
use Google’s search and ads, two state-of-the-art enterprise-scale
applications. Our search and ads results come from memory traces
of production Google servers; the traces use virtual addresses and
only include memory instructions. With just memory instructions,
the traces are not suitable for ChampSim, so we cannot simulate
IPC numbers, just accuracy and coverage.

Baseline Prefetchers. We compare Voyager against spatial
prefetchers (the Best Offset Prefetcher (BO) [31]), temporal prefetch-
ers (STMS [53], ISB [18] and Domino [3]), and impractical neural
prefetchers (Delta-LSTM [12]). Since our goal is to evaluate the
prediction capabilities of different solutions, we use idealized imple-
mentations of all baselines, so there are no constraints onmodel storage
or off-chip metadata, and all storage is accessed with no cost. Our
baselines are particularly optimistic for the temporal prefetchers,
which typically require 10-100M of off-chip metadata, so practical
implementations would incur the latency and traffic overhead of
accessing this off-chip metadata.

Metrics. We evaluate our solutions by comparing their accuracy,
coverage, and IPC over a system with no prefetcher. For a fair eval-
uation, our IPC numbers do not consider the latency or storage cost
of generating a prefetch address for any of the evaluated prefetch-
ers. However, all prefetch requests are simulated accurately, and the
IPC numbers accurately capture the impact of prefetcher accuracy
and timeliness. We also include a comparison at higher degrees to
evaluate the impact of aggressive prefetching.

Unfortunately, it’s difficult to simulate Google’s search and ads
in a microarchitectural simulator, so we cannot directly compute
coverage, accuracy, and IPC for these workloads. Therefore, to eval-
uate Voyager’s effectiveness outside a microarchitectural simulator,
we follow Srivastava et al. [47] and present additional data using a

new unified definition of accuracy/coverage, in which the model’s
prediction is considered to be correct only when it correctly predicts
the next load address. This metric unifies accuracy and coverage
because each correct prediction improves both accuracy (as it is
correct) and coverage (as the next address is covered). The value of
this metric can also be interpreted as the percentage of addresses
that are predicted to be prefetched.

This combined metric is also important for training Voyager,
because neural models need to be trained using a single objective
function—as opposed to having separate objective functions for
coverage and accuracy. From a prediction perspective, this unified
metric means that Voyager is designed to improve both accuracy
and coverage simultaneously.

We also compare the overhead of Voyager, including computa-
tional cost and model size, against both a non-hierarchical neural
network implementation [12] and a temporal prefetcher [18].

5.2 Comparison With Prior Art
Figures 5 and 6 show that Voyager improves the accuracy of our
SPEC and GAP benchmarks from 81.6% to 90.2% and coverage from
47.2% to 65.7%.

Figure 7 compares the unified accuracy/coverage metric on all
benchmarks, including Google’s search and ads benchmarks. We
see that Voyager is particularly effective for Google’s search and ads
where it improves accuracy/coverage to 37.8% and 57.5%, respec-
tively, compared to 27.9% and 43.1% by Delta-LSTM. On average,
Voyager achieves 73.9% accuracy/coverage, compared with 38.6%
for STMS, 43.3% for Domino, 51.1% for ISB, 28.8% for BO, and 52.9%
for the Delta-LSTM.

Figure 8 shows that Voyager provides significantly greater IPC
improvements than prior art. Normalized to a baseline that has
no prefetcher, Voyager improves performance by 41.6%, compared
with 14.9% for STMS, 21.7% for Domino, 28.2% for ISB, 13.3% for
BO, and 24.6% for Delta-LSTM.

Higher Degree Prefetching. We have so far assumed that all
prefetches have a degree of 1, which means that a single prefetch is
issued on every trigger access. Coverage can often be improved by
increasing the degree to issue multiple prefetches on every trigger
address, so we now evaluate Voyager at higher prefetch degrees.
To extend Voyager to a degree-k prefetcher, instead of choosing
the candidate with the highest probability, we prefetch the top k
candidates.

Figure 9 shows that as we increase degree from 1 to 8, Voyager’s
coverage improves to 65.8%, and it continues to outperform ISB. In
fact, we see that Voyager at a degree of 1 outperforms ISB with a
degree of 8, which suggests that Voyager can achieve high coverage
without being overly aggressive.

Since Voyager can capture both compulsory misses and address
correlations, whereas ISB can only capture address correlations, we
next compare Voyager with a hybrid of ISB and BO prefetcher [32],
which is capable of capturing both compulsory misses and address
correlations. The red line in Figure 9 shows that even with a degree
of 8, a hybrid of ISB+BO can barely reach the coverage of Voyager
with a degree of 1, which again reinforces the observation that
Voyager is superior to even the most aggressive versions of prior
art. (In the hybrid ISB+BO prefetcher, ISB and BO equally share the
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available degree, and with a degree of 1, the hybrid falls back to
ISB.)
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Figure 9: Sensitivity to Prefetch degree.

5.3 Understanding Voyager’s Benefits
This section analyzes our results to illustrate the sources of Voy-
ager’s benefits. We focus on (1) the memory access patterns that
account for Voyager’s improved coverage and (2) the effectiveness
of Voyager’s use of different features and labels.

5.3.1 Access Patterns Breakdown. We first show that Voyager
is much more effective than ISB at learning temporal correlations
and that Voyager is able to learn a wide variety of temporal access
patterns. To isolate Voyager’s benefits for temporal access patterns,
we first create a crippled version of Voyager that cannot prefetch
compulsory misses and is directly comparable to ISB; this version
of Voyager does not include deltas in its vocabulary, and we call it
Voyager w/o delta. We find that Voyager w/o delta achieves 19.4%
better coverage than ISB, confirming that Voyager is more effective
at learning temporal correlations than ISB.

We further classify the coverage for both prefetchers into spatial
and non-spatial patterns and show that Voyager is better than ISB
for both spatial and non-spatial patterns. A prefetch candidate is
considered to be spatial if the distance between the last address and
the prefetched address is less than a certain threshold (256 cache
lines [31]). Figures 10 and 11 show that compared to ISB, Voyager
w/o delta improves the prediction of spatial patterns from 45.2% to
56.8%, and it improves the prediction of non-spatial patterns from
13.1% to 22.2%.

Finally, to understand uncovered cases, we further classify the
uncovered patterns of Voyager w/o delta and ISB into several cate-
gories: (1) uncovered spatial refers to spatial patterns that are not
covered, (2) uncovered co-occurrence-k refers to non-spatial patterns
whose addresses co-occur most commonly (we track the top 10
common occurrences), (3) uncovered others refers to the remaining
less frequent non-spatial patterns, and (4) uncovered compulsory
misses. Not surprisingly, Voyager w/o delta reduces the percentage
of all types of uncovered patterns except compulsory misses.

Of course, compulsorymisses are important for benchmarkswith
large memory footprints. Since machine learning frameworks are
flexible, Voyager can easily include the 10 most frequent deltas into
the vocabulary, which onmcf reduces the percentage of compulsory

misses from 21.6% to 0.2%, improving the overall coverage from
49.1% to 68%.
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Figure 10: Breakdown of the patterns of ISB.
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Figure 11: Breakdown of the patterns of Voyager w/o
delta.

5.3.2 Features and Labels. Voyager improves coverage and accu-
racy by introducing new features and a multi-label training scheme.
This section dives deeper into these two aspects and provides code
examples to illustrate the benefit of each of these two components.

Features. Compared to prior hardware prefetchers, such as STMS
and ISB, which use a single data address as a feature, Voyager’ neural
model utilizes a sequence of data addresses as features. We isolate
the effectiveness of Voyager’s new features by fixing the labeling
scheme: We compare STMS against a version of Voyager that uses
only the next address in the global stream as the label, which we
refer to as Voyager-global, and we compare ISB against a version
of Voyager that uses only the next address of the current PC as the
label; we refer to this version as Voyager-PC.

Figure 12 shows that Voyager-global improves coverage over
STMS by 19.8%, and Voyager-PC improves coverage over ISB by
16.4%. The right two bars represent two versions of Voyager-PC,
one that uses the PC history as a feature and one that does not.
We see that unlike with in branch prediction [21, 48, 57] and cache
replacement [42], control flow does not help prefetching. Thus,
we conclude that for prefetching, the PC is not a useful feature.
However, as we will see shortly, the PC is useful for labeling.

Figures 13 and 14 show concrete code examples that demonstrate
the benefit of utilizing the data address history as a feature. The
code is from the GAP benchmark PageRank, which takes graph-
structured inputs. Two loads appear in lines 44 and 48. The load in
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Figure 12: Comparison of different features. Voyager bene-
fits from using data address history as a feature.

line Code Prefetch Accuracy
(Baseline -> Voyager)

43 for (NodeID n=0; n < g.num_nodes(); n++)

44 outgoing_contrib[n] = scores[n] / 
g.out_degree(n); 99.5% -> 99.5%

45 for (NodeID u=0; u < g.num_nodes(); u++) {

46 ScoreT incoming_total = 0;

47 for (NodeID v : g.in_neigh(u))

48 incoming_total += outgoing_contrib[v]; 23.5% -> 95.1%

49 ScoreT old_score = scores[u];

50 scores[u] = base_score + kDamp * 
incoming_total;

51 error += fabs(scores[u] - old_score);

Figure 13: Code example from PageRank.

A

B C

D

            Accesses from line 44: ABCD
  Accesses from line 49: ABCBACDCBDBC

Figure 14: An example input graph to PageRank.

line 44 is easy to predict since it simply traverses all nodes, or ABCD
in the example input graph. Line 48 is more complex, as it traverses
all neighbors of all nodes, where each node can be a neighbor of
many other nodes. Thus, the next node to be accessed depends on
both the current neighbor node and the current neighbor’s parent
node (shown in bold in Figure 14). Thus, the prediction of the next
access by line 48’s load becomes more challenging since the notion
of a parent node does not exist from the hardware perspective. For
example, depending on the parent node, node B can be followed
by any other node, which confuses existing temporal prefetchers
that only look at one or two past data addresses. Voyager, however,
accurately prefetches line 48’s load, since it learns to recognize
the important sequence of neighbor nodes, which in this case goes
through the parent node.

Labeling. As explained in Section 4.4, Voyager is trained with
multiple labels, and it is designed to automatically pick the most
predictable of these labels.We now evaluate the benefit of this multi-
label training scheme. The first five bars in Figure 15 showVoyager’s
unified accuracy/coverage if it were to use a single labeling scheme,
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Figure 15: Comparison of different labeling schemes.

and the last bar shows the unified accuracy/coverage with the multi-
labeling scheme. We see that on average, the multi-labeling scheme
provides a small benefit.

However, we find that different individual benchmarks prefer dif-
ferent labeling schemes. A code example from soplex in the SPEC06
benchmark suite, shown in Figure 16, illustrates this point. The
lines the precede the code snippet compute the value of the leave
variable, which if greater than 0 is used in the code snippet to index
the arrays upd, ub, lb and vec. Voyager prefetches the load of upd, ub
and lb by learning from the data address sequence with PC localiza-
tion. One particularly interesting pattern corresponds to vec in lines
125 and 127. vec[leave] will be accessed regardless of whether the
branch is actually taken, but it will be accessed by one of the two
PCs (line 125 or 127), depending on the outcome of the branch. From
the perspective of either individual PC, the access to vec is hard
to predict, since the pattern is shared across the two different PCs.
However, our co-occurrence labeling scheme correlates vec[leave]
with upd[leave], since it is always accessed after upd[leave]. This
correlation makes the pattern more predictable, so by going beyond
PC-localization, Voyager significantly improves upon the baseline
by prefetching vec[leave] at the point of upd[leave].

Figure 16: Code example from Soplex.

5.4 Model Compression and Overhead
Compared to the Delta-LSTM prefetcher [12], Voyager’s hierar-
chical representation yields significant storage and computational
efficiency. In particular, Voyager reduces the training overhead by
15.1× and prediction latency by 15.6×. At 18,000 nanoseconds per
prediction, Voyager’s prediction latency is too slow for hardware
prediction. We expect that this latency can be reduce by 15× [29]
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by avoiding the invocation overhead of Tensorflow’s Python front-
end, but other techniques will be needed before the latencies are
practical.

Voyager also enjoys a dramatically lower storage overhead than
Delta-LSTM because of its hierarchical structure. Since the storage
cost for neural-prefetchers is dominated by the embedding layer,
Voyager’s hierarchical structure makes it 20-56× smaller than Delta-
LSTM.

To further reduce the storage of Voyager, we can apply standard
pruning and quantization methods of Tensorflow [1]. In particular,
we find that 80% of Voyager’s weights can be pruned, leading to
an additional compression of 5-7×. Quantization from 32 bits to 8
bits can provide another 4× compression. Together, these changes
result in minimal accuracy loss (less than 1%), and they allow Voy-
ager’s storage cost to be 110-200× smaller than that of Delta-LSTM.
Significantly, after these optimizations, Voyager is 5-10× smaller
than conventional temporal prefetchers, such as STMS, Domino,
and ISB.
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Figure 17: Voyager wins on accuracy, speedup, and storage
efficiency. Here storage efficiency is log-scaled and defined
as 1
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.

To summarize, Figure 17 shows that with these space optimiza-
tions, Voyager outperforms ISB and Delta-LSTM along multiple
dimensions.

5.5 Paths to Practicality
While Voyager is not practical, we see three possibles paths that
might lead to an eventual practical prefetcher.

Neural-Inspired Practical Prefetchers. Future work could use
insights gained from Voyager—and subsequent deep learning
research—to build a practical prefetcher that is not based on neural
networks. For example, for cache replacement, Glider [42] illus-
trates that LSTMs can be replaced by perceptrons to advance the
state-of-the-art. For data prefetching, the task is more challenging
but the potential performance benefit is much greater.

One example of such an insight is that formcf and search, two of
our hardest-to-predict benchmarks, temporal prefetching provides
context that improves delta prefetching. This observation indicates
that there is benefit in studying the closer interaction between tem-
poral and spatial prefetching beyond simple hybridization (and in a
more equal fashion than was done by the STeMS prefetcher [45]). A
second insight is our profitable use of a history of data addresses as
a feature, which can inform the feature selection of future hardware
prefetchers.

Moreover, our search and ads results show that there are impor-
tant workloads for which existing prefetchers perform poorly. The
fact that Voyager can do well on these workloads suggests that the
community should pay more attention to these Online Transaction
Processing workloads.

Profile-Driven Training with Online Inference. The training costs
of Voyager can be managed by training the neural model offline
during a profiling pass. The weights of the trained model can then
be communicated to the hardware with a new ISA interface. The
trained model can be used for online inference via a light-weight
dedicated hardware block for neural network inference. Zangeneh
et al., recently used such an approach to improve branch prediction
accuracy using CNNs [57].

Completely Online Neural Prefetchers. In the longer term, we
believe that the computational costs of ML will improve with tech-
niques such as few-shot learning and hierarchical softmax, which
trade off some accuracy for dramatic efficiency gains. For example,
few shot learning reduces the size of training data by 20-80×. We
estimate that hierarchical softmax will reduce both training and
inference time by 3-4× by further reducing the number of classes.
Related work also shows that by implementing neural networks
in languages such C++ instead of Tensorflow’s Python interface,
performance can be improved by 15× [29]. Efforts such as these
can eventually lead to neural prefetchers that have moderate com-
putation overheads for both training and inference.

6 CONCLUSIONS
In this paper, we have created a probabilistic model of data prefetch-
ing in terms of features and localization, and we have presented
a new neural model of data prefetching that accommodates both
delta patterns and address correlation. The key to accommodating
address correlation is our hierarchical treatment of data addresses:
We separate the addresses into pages and offsets, and our model
makes predictions for them jointly. Our neural model shows that
significant headroom remains for data prefetchers. For a set of irreg-
ular SPEC and graph benchmarks, Voyager achieves 79.6% coverage
and improves IPC over a baseline with no prefetching by 41.6%,
compared with 57.9% and 28.2%, respectively, for an idealized ISB
prefetcher. We also present results for two important commercial
programs, Google’s search and ads, which until now have seen little
benefit from any data prefetcher. Voyager gets 37.8% coverage for
search (13.8% for ISB) and 57.5% for ads (26.2% for ISB).

Work remains in further reducing the computational costs of our
neural prefetcher, but our analysis reveals some interesting insights
about temporal prefetching. For example, we find that a long data
address history serves as a good feature to predict irregular accesses,
and we find that multiple localizers provide significant benefits
for some hard-to-predict benchmarks. Thus, even if literal neural
models remain impractical, we hope that these insights will guide
the development of practical prefetchers in terms of features and
localization schemes.
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