
Efficient and Extensible Security Enforcement Using
Dynamic Data Flow Analysis

Walter Chang
walter@cs.utexas.edu

Brandon Streiff
bstreiff@mail.utexas.edu

Calvin Lin
lin@cs.utexas.edu

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712

ABSTRACT
Current taint tracking systems suffer from high overhead and a lack
of generality. In this paper, we solve both of these issues with an
extensible system that is an order of magnitude more efficient than
previous software taint tracking systems and is fully general to dy-
namic data flow tracking problems. Our system uses a compiler
to transform untrusted programs into policy-enforcing programs,
and our system can be easily reconfigured to support new analyses
and policies without modifying the compiler or runtime system.
Our system uses a sound and sophisticated static analysis that can
dramatically reduce the amount of data that must be dynamically
tracked.

For server programs, our system’s average overhead is 0.65%
for taint tracking, which is comparable to the best hardware-based
solutions. For a set of compute-bound benchmarks, our system pro-
duces no runtime overhead because our compiler can prove theab-
sence of vulnerabilities, eliminating the need to dynamically track
taint. After modifying these benchmarks to contain format string
vulnerabilities, our system’s overhead is less than 13%, which is
over 6× lower than the previous best solutions. We demonstrate
the flexibility and power of our system by applying it to file dis-
closure vulnerabilities, a problem that taint tracking cannot handle.
To prevent such vulnerabilities, our system introduces an average
runtime overhead of 0.25% for three open source server programs.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Informa-
tion Flow Controls

General Terms
Reliability, Security, Verification

Keywords
Dynamic Data Flow Analysis, Security Enforcement, Static Anal-
ysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’08,October 27–31, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

Traditional Tainted Data Attacks
Format String Attacks
SQL Injection
Command Injection
Cross-Site Scripting
Privilege Escalation
Other Security Problems
File Disclosure Vulnerabilities
Labeled Security Enforcement
Role-Based Access Control
Mandatory Access Control
Accountable Information Flow

Table 1: A sampling of the kinds of problems that our system can
handle. Taint tracking can only handle the top set of problems.

1. INTRODUCTION
Many security attacks rely on the ability to pass carefully crafted

hostile data to vulnerable portions of a target program. Onemethod
of preventing such attacks is to performdynamic taint analysis[46,
37, 44, 16, 38, 10, 39, 48, 31]. Dynamic taint analysis marks un-
trusted data as tainted, tracks the flow of tainted data through the
system, and checks that tainted data is not misused. Existing taint
analysis research has largely followed one of two directions: (1)
improving runtime overhead and (2) extending the generality of
taint tracking.

Significant progress has been made in the first direction. Recent
work [39] has reduced the extreme overheads of early systems[37]
by performing taint-specific optimizations, but performance still re-
mains a challenge, with average overheads of 260% for compute-
bound applications [39]. Alternative techniques [48] can reduce the
average overhead to 75% for compute-bound applications, but this
result requires processor and OS-specific assumptions thatare not
generally applicable.

The second direction, which has received less attention, extends
the generality of taint analysis, recognizing that taint tracking is a
special case of data flow tracking. Whereas taint analysis tracks
one bit of information, data flow tracking can track multiplebits
of information and can combine the information in more flexible
ways than taint analysis. More concretely, taint-based systems are
limited to the top set of exploits listed in Table 1, while general
data flow tracking, which is based on the more general notion of
data flow analysis [29], can handle all of them. Such generality will
become particularly important as developers move to memory-safe
languages such as Java and C#, where the use of taint trackingto
enforce secure control flow is not needed.

Source Code Enhanced Program

Policy Specification

Broadway Compiler
Static Vulnerability Analysis
Dependence Analysis

Our System

Figure 1: The overall structure of our system. The compiler takes a
source program and a security policy and produces an enhanced ver-
sion of the program that enforces the policy by performing dynamic
data flow analysis.

In this paper, we describe an extensible compiler-based system
that simultaneously advances the state of the art in both directions.
The performance of our system is an order of magnitude betterthan
any previous software taint tracking system. The generality of our
system allows it to support all of the problems listed in Table 1.
Moreover, this generality is easily accessible, as we now explain.

Figure 1 shows the overall architecture of our system. The in-
put is an untrusted program. The output is an enhanced program
that enforces some specified security policy, which is selected by
the end-user at compile time. To enforce the desired policy,the
compiler first performs a static vulnerability analysis that identi-
fies whether the input program might violate the policy; the com-
piler then performs an analysis that identifies those locations in the
input program that require dynamic analysis. The appropriately
enhanced program then dynamically enforces the policy by per-
forming a tag-baseddynamic data flow analysis, discussed in Sec-
tion 4.1.

The policy itself is defined in an annotation file that describes
the policy and the effects of standard library calls on the policy.
Thus, the policy is entirely separate from the data flow tracking
mechanism, so in addition to the existing security policiesthat we
have already defined, new security policies can be specified without
modifying either the compiler or the runtime system.

The key to our system’s low overhead is our compiler’s ability
to identify many innocuous flows of data that provably do not need
to be tracked. For example, a program might read data into several
different buffers, only one of which is used in a way that violates
the policy. It is therefore not necessary to track the other buffers and
everything they flow into. In cases where the compiler can prove
that no policy violations are possible, the resulting output program
contains no instrumentation and thus incurs no runtime overhead.
Our compiler can precisely identify innocuous data flow because
(1) our system’s security policy can be interpreted as a static data-
flow analysis that determines whether the policy was violated, and
(2) our compiler performs an interprocedural analysis thatuses a
precise and scalable pointer analysis [23]. By contrast, other cur-
rent systems do not attempt to statically detect the policy violation,
and they perform static analysis that is limited in scope (they are
intraprocedural) and precision.

This paper makes three main contributions:

• We introduce a system that accepts untrusted C programs
as input and produces C programs that can enforce any pol-
icy that can be expressed as data flow tracking. Our system
comes with predefined policies for taint and file disclosure,
and our system can be easily extended to handle other prob-
lems and security policies without modifying our system im-
plementation. Our system uses sophisticated static analysis
to minimize the amount of dynamic analysis that is needed.

• We show that our system is general by using it enforce file
disclosure vulnerabilities—a privacy problem that taint track-
ing cannot handle—as well as to perform traditional taint
tracking. Our system is as general as GIFT [31], but our
system is configured through an existing declarative annota-
tion language [21] rather than by writing wrapper functions
or new code.

• We demonstrate our system’s performance advantages by eval-
uating it on both server programs and compute-bound pro-
grams. For common open-source server programs, our sys-
tem’s average overhead is 0.65%, compared with 6% for the
previous best reported results [48]. For compute-bound SPECint
benchmarks, our system is able to prove the absence of for-
mat string errors entirely, giving a true overhead of 0%. Af-
ter inserting vulnerabilities into these programs, our system’s
average overhead for compute-bound programs is less than
13%, compared with 75-260% for previous systems [48, 39].

The remainder of this paper is organized as follows. Section2
discusses related work, Section 4 describes our solution, and Sec-
tion 5 presents our evaluation.

2. RELATED WORK
Our work is a generalization of dynamic taint tracking [46, 37,

38, 44, 16, 10, 12, 48, 39, 31, 11], which has been used to protect
against buffer overflows, stack smashing, and format stringattacks,
and which covers attacks previously addressed separately by vari-
ous different solutions [15, 14, 4, 13]. Taint tracking is a practical
realization of some of the concepts of information flow control [5,
18] and integrity [8], but it typically ignores implicit flows. Much
of the previous work in taint tracking has used dynamic binary
instrumentation frameworks [37, 12, 39, 11] or specializedhard-
ware [44, 16, 17]. Except where noted below, these systems are not
designed for more general data flow tracking problems, and core
components would need to be rewritten to accommodate such gen-
erality. Instead, these systems have focused on reducing runtime
overhead.

Many taint tracking systems based on binary instrumentation,
such as TaintCheck [37] or Dytan [11], have enormous overheads,
as high as 37×. More recent binary instrumentation systems such
as LIFT [39] have significantly improved performance, but over-
head for compute-bound programs remains as high as 7.9×.

Xu, et al. present a high-performance compiler-based taint track-
ing system [48], which achieves an average overhead of 6% for
server applications. However, to achieve this performance, the sys-
tem exploits assumptions about the memory layout in 32-bit x86
Linux, allowing it to write the tag map directly to unused mem-
ory at fixed addresses. Even with this optimization, their average
overhead for compute-bound applications is 75%. Without this op-
timization, their overhead is “unacceptable” [48].

Hardware-based taint tracking [44, 16, 17] can in most cases
eliminate the overhead associated with software-based taint track-
ing. However, overhead can still occasionally be as high as 23% [44]
due to cache performance degradation. Furthermore, most hardware-
based systems only defend against memory and control flow errors.
Raksha [17] provides additional flexibility by using tag propagation
registers and OS traps, but this comes at a high cost, with average
overhead exceeding 3×.

Lam and Chiueh’s General Information Flow Tracking [31] is a
framework that uses a compiler to automatically add code to prop-
agate and check tags associated with data, allowing it to handle
a wide range of problems beyond overwrite attacks. GIFT can
be extended to handle new policies by defining wrapper functions

and transformations for the the GIFT compiler that implement the
policy and related tag management. However, the policies are de-
fined operationally by writing code that implements transforma-
tions. Without an understanding of the semantics of the policy it-
self, the compiler is limited in its ability to analyze and optimize
the added code, leading to an average CPU time overheads of 82%
for the sandboxing of client applications.

Inline reference monitors [19, 41] use security automata tode-
fend against attacks. However, finite state automata are awkward
and unsuitable for addressing problems that require the tracking
of information flow. PQL [32] presents a more flexible scheme
based on pattern matching of event sequences on objects. This sys-
tem can track direct information flows and uses static analysis to
reduce overhead a including direct information flows. However,
their techniques require type safety and work only on heap objects,
so their techniques are unsound for programs with flows through
scalar variables.

Static analysis can be used to find bugs and potential security
vulnerabilities in software [42, 2, 20, 23]. While extremely valu-
able, such systems still require that software developers expend sig-
nificant effort to verify and fix any vulnerabilities reported by the
tool. For example, CQUAL has been used to find format string
vulnerabilities [42]. However, to use their results, programmers
must examine the output and the original source program using
an advanced graphical interface and attempt to determine manu-
ally whether the reported vulnerability is real or a false positive.
Moreover, they report a false positive rate of approximately 84%,
so considerable programmer effort is wasted. In contrast, our sys-
tem uses statically identified vulnerabilities to determine where dy-
namic guards are required, producing a system protected from the
vulnerability without additional programmer effort. Thus, our sys-
tem complements static tools by guaranteeing that possiblevulner-
abilities are prevented even if the programmer has not yet fixed the
problem.

Language-based security solutions range from type-safe C [35,
27] and bounds checking for C [28] to full language support for
information flow [33, 40]. These systems can provide strong guar-
antees at compile time, but they either impose significant perfor-
mance overhead or require significant developer effort to rewrite
and redesign current programs. The “safe-C” approaches cannot
handle errors like SQL injection that do not violate language se-
mantics. By contrast, JiF [33] supports complex information flow
policies that our system cannot support.

Finally, static analysis can also be used to construct static mod-
els of program behavior that can then be enforced dynamically. For
example, control [30, 1] and data flow integrity [9] ensure that the
program never deviates from statically computed models of control
and data flow, respectively. However, these systems are not gen-
eralizable to security problems that do not violate controlor data
flow integrity, and they are of limited use in languages that already
provide similar guarantees. In contrast, our system is capable of
handling a far broader class of problems that plague even safe lan-
guages.

3. MOVING BEYOND TAINT ANALYSIS
Before we describe the details of our system, we will explainthe

importance of moving beyond taint analysis into a realm of richer
data flow tracking problems.

With respect to properties, taint tracking does not providesuf-
ficient information to handle many attacks. In Section 4.3.2, we
discuss the problem of file disclosure vulnerabilities. Taint track-
ing cannot handle this problem because it requires the simultaneous
tracking of two different properties. In addition, taint tracking is too

simplistic for problems in privacy and access control. For example,
to enforce a policy based on labeled security [34], the system must
simultaneously track hierarchical levels and non-hierarchical cate-
gories. To meet future challenges, systems must be able to track
multiple complex properties at the same time.

With respect to policies, most taint tracking systems enforce “low-
level” policies that prevent overwrite attacks. While overwrite at-
tacks are a major concern in unsafe languages, they are not a sig-
nificant concern in managed languages and scripting languages that
already guarantee memory safety. For example, SQL injection
and cross-site scripting attacks do not overwrite pointersbut do
occur in safe languages. Moreover, privacy breaches and infor-
mation breaches are usually accomplished without memory errors,
and they represent a serious challenge for current and future web
applications. To meet these and future attacks, systems must sup-
port higher-level policies that are aware of higher-level application
semantics.

With respect to performance, any system the performs taint-specific
optimizations is likely to suffer when applied to problems beyond
taint. To maintain high performance in a general setting, the tech-
niques and optimizations must be generally applicable to all data
flow tracking problems.

4. OUR SOLUTION
Our system takes a C program as input and produces as output

a modified version of the program that enforces a selected security
policy. Our system does not require hardware or operating sys-
tem changes, is easy to use and extend, and exploits a powerful
interprocedural data flow analysis to eliminate unnecessary instru-
mentation. While our specific implementation targets C code, our
techniques are not specific to taint tracking or C and can be applied
to a wide array of current and future problems and languages.

Our system is easy to deploy: theend userof our system needs
only to recompile a program and select a security policy to create a
secure program. Asecurity expertcan extend our system—which
currently includes policies for taint tracking and the prevention of
file disclosure vulnerabilities—with new analyses and policies by
providing a annotation file that is independent of any specific ap-
plication.

Our policies use a simple and flexible dynamic model similar to
General Information Flow [31]. Our system associates symbolic
tags with data objects at runtime, it updates the tags as the program
executes, and it enforces policies based on the tag values. Unlike
prior systems, our system is explicitly based ondata flow analy-
sis [29], a technique for computing facts about data by observing
how it flows through the program. This design allows our system
to both statically check for and dynamically guard against policy
violations from the same specification. A static data flow analysis
computes an approximate solution that holds over all possible exe-
cutions of the program because a fully precise solution is undecid-
able [29]. In contrast, a dynamic data flow analysis [26] computes
precise facts but only about the current execution. These comple-
mentary characteristics allow our system to use a static data flow
analysis, discussed in Section 4.4, to compute a conservative solu-
tion at compile time and to refine the result at runtime to enforce a
policy efficiently and precisely.

To perform the dynamic data flow analysis that actually enforces
the policy, our compiler inserts into the source program calls to a
small runtime library that manages tag information along with any
required checks necessary to enforce the policy. Since nothing in
our system is specific to taint tracking, our system and our opti-
mizations apply to all general data flow tracking problems.

1 char input[1024];
2 char buf[1024];
3 char otherbuf[1024];
4 char buf1[1024];
5 ...
6 read_from_network(input);
7 read_from_network(otherbuf);
8 ...
9 memcpy(buf, input, 1024);

10 memcpy(buf1, otherbuf, 1024);
11 process(buf);
12 process(buf1);
13 ...
14 printf(buf);

Figure 2: A simple example illustrating the benefits of our static
analysis. Current systems must track all objects, while our
static analysis can eliminate tracking on all exceptbuf.

Eliminating Unnecessary Tracking.
The naive insertion of calls throughout the program inevitably

leads to high overhead, so to achieve good performance, it iscritical
that unnecessary calls be eliminated. To illustrate some ofthe lim-
itations and difficulties encountered by current systems, consider
the code in Figure 2. This code contains a format string vulnerabil-
ity where a tainted buffer is printed. Assuming a policy thatuses
taint analysis to guard against format string attacks, current taint
tracking systems, including those that perform some staticanaly-
sis, would track taintedness on all buffers in this example,as well
as anything that theprocess function touches and anything that
those variables affect. However, very little tracking is actually re-
quired. Our system can prove that tracking onbuf1 is not required
because it is never passed toprintf or any other sensitive func-
tion. Additionally, if tracking onbuf1 is not required, neither
is tracking onotherbuf, becausebuf1 receives its value only
from otherbuf. We also do not need to track anything in the
call to process(buf1) because none of its results is used by
printf. Moreover, we do not need to track the originalinput
buffer because we know that it is always tainted; it is sufficient to
simply markbuf as tainted at the call tomemcpy. Finally, we do
not need to track anything else thatprocess(buf) can affect if
none of the resulting values is misused.

The keys to removing this type of unnecessary tracking are an
interprocedural static analysis that leverages semantic information
about the security policy and a sophisticated interprocedural pointer
analysis to perform policy-specific optimizations. Without seman-
tic information about the policy, our system could not distinguish
possible violations from safe events. Without a precise pointer
analysis, our system could not account for flows between objects
in an effective manner. Without a dependence analysis that builds
on the pointer analysis and knowledge of the policy, our system
could not determine which objects are involved in possible vulner-
abilities. Moreover, all of these analyses must be interprocedural to
eliminate flows among functions.

More specifically, our system operates by first performing a static
data flow analysis and a highly precise and scalable pointer analy-
sis to determine where possible policy violations lie. Our system
then instruments the program to ensure that all policy enforcement
checks are performed correctly. Because the portion of a program
involved in any given attack is typically exceedingly small[36], our
system typically adds very little code and incurs negligible over-
head. Identifying this portion, however, requires a powerful static

analysis.
Our system is built on the Broadway static data flow analysis

and error checking system [21], which is a source-to-sourcetrans-
lator for C. We use the Broadway annotation language and analy-
sis infrastructure, enhancing it with our own dependence analysis
(described in Section 4.4.3) and dynamic data flow analysis com-
ponent (described in Section 4.1).

The remainder of this section discusses the components of our
system in more detail. We will begin with an overview of our
compiler-based dynamic data flow analysis system, followedby a
discussion of our policy specification mechanism. Finally,we will
discuss the details of our static analysis.

4.1 Dynamic Data Flow Analysis
The dynamic data flow analysis that we perform is a typestate

analysis [43], which is an analysis that associates an abstract value,
called typestate, with objects in a program. Unlike types, the type-
state of an object can change during execution. For example,a file
handle or a string maintains the same type throughout its lifetime,
but its typestate—open or closed, tainted or untainted—canchange
as the program executes. Typestate is a general model capable of
supporting a wide variety of security analyses and policies, includ-
ing all those supported by general data flow tracking [31].

Our implementation of dynamic data flow analysis treats type-
states as flow values in a data flow analysis and represents them
at runtime with a map that associates 32-bit tags with data. As
execution proceeds and data are used, the tag map is updated in
accordance with the property being analyzed. To enforce a partic-
ular security policy, checks that use these tags are inserted into the
program.

The map is implemented using a very small runtime library that
includes functions for initializing, checking, updating,and delet-
ing entries from the map. Our implementation tracks tags at the
byte granularity, providingfine-grainedtracking of data flow prop-
erties, which is necessary because the tracking of flow values at
the level of variables is unsafe in a type-unsafe language like C,
especially in the presence of aliasing. Our map uses a sparserepre-
sentation similar to tree-like structures previously usedfor memory
leak profiling [25]. Each node in the tree represents an address
range, with child nodes representing finer subdivisions of the range
of their parent nodes. The leaf nodes contain arrays which record
flow values associated with memory at a byte granularity. Forex-
ample, to record the taintedness of a byte of memory at address a,
the library traverses the tree to find the leaf node representing the
smallest address range that containsa, and it then record tainted-
ness in that node’s array of flow values. In addition, to save mem-
ory and decrease lookup times, our implementation also allows us
to store flow values in the interior nodes when the entire subtree
contains only one flow value, which can occur when large regions
are marked entirely with the same typestate.

4.2 Code Instrumentation
To use the map to track flow values at runtime, the compiler in-

struments the original program with calls to functions thatmanage
the map. This process is straightforward. Like most compilers,
our system first transforms C to a simpler intermediate representa-
tion before performing analysis and transformations. At this level,
the compiler only needs to consider assignments, basic operators,
pointer dereferences, and function calls. Our transformation for
inserting code is as follows:

• Constants are given the default flow value.
• Assignments transfer the flow value of the source to the tar-

get.

• Operators (such as arithmetic operators and array accesses)
have the flow value of themeet of the operands. Themeet

operator in data flow analysis combines flow values based on
their position in the lattice [29].

• Any address or pointer dereference that is used or assigned
to acts on the corresponding entry in the map.

• In keeping with C’s call-by-value semantics, function calls
transfer flow values to the arguments in the function body,
and function calls return any flow values through the return
value.

These rules are analogous to the standard rules for applyingdata
flow analysis [29] and remain the same for the wide variety of
security problems that lattices naturally model [18]. Whenap-
plied to taintedness, these rules are the same code insertion rules
used by other compiler-based systems [48, 31] (although ourad-
ditional analysis and optimizations often allow us to remove con-
siderable amounts of instrumentation). These rules trackexplicit
flows, which are information flows that occur because of assign-
ments or arithmetic operations. Like taint tracking systems, our
system does not track implicit flows [44, 16, 37, 48, 39, 31].

4.3 Policy Specification
In most taint tracking systems, the semantics of taint analysis

are hardcoded into the system. Because our system is designed to
handle general data flow problems, our system instead factors out
the semantics of the analysis and policy to an external file that con-
tains annotations describing the property to analyze, the policy to
enforce, and the effects of library procedures on the property. This
file contains thesame informationthat would have been hardcoded
into a compiler-based taint tracking system, but it provides the ca-
pability to extend our system to other problems without changing
the core analysis. Unlike in-lined annotations, our annotations de-
fine an analysis that isindependentof the input program, enabling
reuse across many programs. A typical user does not have to write
any annotations to use an existing policy. The creation of new pol-
icy files is a careful activity that is only necessary when defining a
new analysis or security policy.

Our system uses the Broadway declarative annotation language [22,
21], which has been previously used for static error checking [23]
and library-level optimizations [24]. The annotation file tells the
compiler how to perform a specific data flow analysis by supplying
the specifics for the rules in Section 4.2. The rules fall intothree
categories:

• Defining the Lattice. The lattice for each typestate prop-
erty must be defined. The tags used at runtime correspond to
the flow values, while the lattice itself defines the meet func-
tion that specifies how flow values should be combined when
used together in arithmetic and other operations.

• Describing Effects of Library Calls. The compiler also
needs to know how the various library calls affect tag val-
ues. For each external function that affects the flow values,
a brief summary annotation must be provided that describes
how the function can affect the flow values of globals and
arguments.

• Defining Security Policies. Lastly, the compiler needs to
be given the definition of policy violations. Violations are
defined as predicates over flow values that are checked at
procedure boundaries, most commonly a check on the flow
value of an argument. By default, violations trigger our de-
fault error handler, which logs the violation and blocks the
operation, but the user can supply a custom error recovery
function, which can be application-specific.

1 property Taint : { Tainted, { Untainted } }
2 initially Untainted
3

4 procedure recv(s, buf, len, flags) {
5 on_entry { buf --> buffer }
6 modify { buffer }
7 analyze Taint { buffer <- Tainted }
8 }
9

10 procedure strdup(s) {
11 on_entry { s --> string }
12 access { string }
13 modify { string_copy }
14 on_exit { return --> new string_copy }
15 analyze Taint { string_copy <- string }
16 }
17

18 procedure printf(format, args) {
19 on_entry { format --> format_string }
20 access { format_string }
21 error if (Taint: format_string could-be Tainted)
22 "Error: tainted format string!"
23 }

Figure 3: Example syntax for defining a policy that prevents
format string attacks. First, the concept of taintedness isde-
fined. Then, we specify the introduction of taint through I/O
functions such asrecv() and the propagation of taint through
functions such asstrdup(). Finally, we prevent the use of
tainted format strings in functions such asprintf(). The
forward arrows in the syntax allow us to distinguish between
pointers and pointed-to objects.

Our system readily supports domain-specific annotations that go
beyond the standard library functions. For example, if the appli-
cation calls an input sanitization function, we can add an annota-
tion for that function that untaints the sanitized output. Our sys-
tem can also support policies that depend on concrete values. For
example, a naive policy that rejects tainted SQL query strings is
inappropriate for detecting SQL injection attacks becausequery
strings always contain tainted characters. To handle SQL injection
attacks, we can supply a custom handler in the form of a C func-
tion that checks the taintedness of the keywords in the querystring,
accepting strings with untainted keywords. To ensure soundness,
we require that a user-defined handler never reject an event that the
typestate analysis accepts, which ensures that the typestate analysis
over-approximates the actual policy.

A key advantage of our system is the compiler’s access to the
semantics of the security analysis. Our annotations definewhat
analysis to perform, nothowto perform the analysis. In addition to
being simpler to reason about, declarative policies allow our system
to perform an efficient static analysis, described in Section 4.4, that
over-approximates dynamic behavior. It is this static analysis that
allows our system to achieve the low overheads that we will discuss
in Section 5

4.3.1 Specifying Taintedness
In this section, we will use taint tracking and format stringat-

tacks to briefly illustrate the annotation language in Figure 3. The
annotations on lines 1-16 describe a data flow analysis, in this case
a taint analysis, as we now explain.

On line 1, theproperty keyword defines one lattice with two
possible values,TaintedandUntainted. We placeUntaintedabove
Taintedon the lattice so thatTaintedandUntaintedvalues combine
to yieldTaintedvalues.

We then annotate the library procedures that introduce tainted-

ness, such asrecv on line 4. Here, theon_entry keyword at
line 5 allows us to assign a name,buffer, to the object pointed
to by the pointerbuf. Theanalyze keyword indicates that when
therecv routine is invoked,buffer (notbuf, which is a pointer)
becomes tainted. In addition, we inform the compiler that this pro-
cedure modifiesbuffer.

Similarly, we also annotate library procedures that propagate
taintedness, such asstrdup. Again, theon_entryandon_exit
keywords (lines 11–14) describe relations between pointers and the
objects they point to, while theaccess andmodify lines specify
that the function reads fromstring and writes tostring_copy.

The policy itself is defined on line 21 by using the results of the
taint analysis whenprintf is called. Here, we specify that an er-
ror occurs ifformat_string (the string thatformat points to)
could be tainted. This line specifies the entire policy with respect to
theprintf procedure–other taint-based policies could be added
that would reuse all the taint tracking annotations as-is.

Similar annotations have been used in other systems for error
checking. For example, CQUAL [42] uses type qualifier annota-
tions on library functions to statically check for format string vul-
nerabilities. Although slightly less verbose than the Broadway an-
notation language, their type system permits “reverse flows” and
other artifacts that increase the false positive rate. Because our sys-
tem is based on a more precise data flow analysis, we are able to
avoid such anomalies while also being able to leverage far more
precise pointer analysis (see Section 4.4.2). The actual annotation
burden—which is only incurred when defining new policies—is
discussed in Section 5.4

4.3.2 Specifying File Disclosure
To illustrate the flexibility of our system, we also apply it to file

disclosure vulnerabilities. File disclosure can occur when a remote
user can connect and download the contents of arbitrary files, thus
improperly revealing sensitive information. This vulnerability can
be present when a program behaves unintentionally like an FTP
server; that is, if the remote user can specify the name of a file
whose contents are then sent over the network. Note that sending
data from files not directly specified by the user is fine, as is sending
responses constructed from user input. In essence, file disclosure
is a simple privacy protection problem where the goal is to ensure
that untrusted users cannot directly specify data to access. These at-
tacks are not well-studied on C programs because overwrite attacks
account for the majority of C vulnerabilities. However, these vul-
nerabilities are common among web applications written in script-
ing languages such as PHP, Python, and Perl. Thus, our techniques
remain relevant and applicable to safe languages.

File disclosure cannot be modeled with only taint tracking be-
cause taint tracking does not distinguish between the source of data
and the trustedness of data. A taint tracking system could disal-
low the transmission of tainted data, but such a policy wouldalso
prevent legitimate echoes of network input. The taint tracker could
also disallow transmission of any file data, but such a policyalso
eliminates legitimate transfers and would even prevent most query
services from operating. To model file disclosure accurately, the
system must track both the trustedness (whether the data is under
attacker control) and the origin (whether the data comes from a file)
of data within the system.

File disclosure is straightforward to model in our system. We
first define two properties,Trust and Kind. Trust represents the
trustworthiness of the data source, which can beInternal to the pro-
gram,Externalto the program but on the local system, or obtained
from aRemotesource.Kind denotes the possible source of the data,
be it from aFile, standard I/O, the network, or otherwise. A file dis-

closure attack occurs whenFile data withRemotetrustworthiness
is written to aRemotely opened socket. The required procedure
summary annotations themselves are similar to those for format
string attacks and are omitted here. This policy precisely models
the FTP-like behavior described earlier, disallowing file disclosure
while permitting other file data or other user-derived data to be sent.

4.3.3 Other Problems
Although we focus on the above two problems in this paper, our

system can be used to enforce a wide variety of problems. Lat-
tices are a natural model for many security problems [5, 18, 8].
For example, multilevel security can be implemented with a lattice
representing hierarchical levels, such asUnclassified, Classified, or
TopSecret, along with properties representing categories, such as
Army, Navy, etc. Library I/O functions would be annotated to call
a user-provided helper function to read the appropriate label from
the file, while the annotations for operations like string copy would
remain essentially identical to those for taint tracking orfile disclo-
sure. For additional information on the Broadway language and its
capabilities, please refer to prior work [22, 23, 21].

4.4 Static Data Flow Analysis
To avoid the cost of tracking all objects at runtime, our com-

piler statically performs an interprocedural data flow analysis that
identifies program locations where policy violations mightoccur.
Starting from these possible violations, a subsequent interprocedu-
ral analysis identifies statements in the program that affect the flow
values—and therefore the policy decision—at these violations. Other
statements do not require instrumentation because they cannot af-
fect the relevant flow values and thus cannot affect policy enforce-
ment decisions. This analysis is supported by a fast and precise
pointer analysis, which is critical because a less precise pointer
analysis would identify many more program locations as possibly
violating the specified policy [23], leading to higher runtime over-
head. We now discuss these steps in detail in the following subsec-
tions.

4.4.1 Static Vulnerability Analysis
The first step is to statically check the program to identify all

possible violations of the security policy as defined by the anno-
tations [23]. If the compiler can prove that there are no suchvi-
olations in the program,no further analysis or code insertion is
required. However, in cases where the compiler identifies possible
violations, additional analysis is needed to determine where instru-
mentation should be inserted.

To perform this first step, our system uses an iterative static data
flow analysis that is performed by the Broadway static analysis sys-
tem [21]. Because the analysis is sound, these locations arethe only
locations where violations of the policy can occur. In Section 4.4.3,
we explain how our system ensures that all of these possible viola-
tions are guarded against.

4.4.2 Pointer Analysis
A significant obstacle to interprocedural program analysisis the

use of pointers. To reason precisely about the flow of data, the
compiler must know which objects a pointer could point to. The
limited scalability of pointer analysis has stymied previous attempts
to apply interprocedural analysis to dynamic taint tracking [31], so
interprocedural analysis is not commonly used.

Our system uses a scalable and preciseclient-driven pointer anal-
ysis[23, 21]. The client-driven analysis is able to match the preci-
sion of a fully flow- and context-sensitive pointer analysiswithout
requiring significantly more runtime than a fast and imprecise flow-

and context-insensitive analysis. Unlike most pointer analyses, the
client-driven analysis cannot be used as a stand-alone pointer anal-
ysis. Instead, it requires aclient that uses the results of the analysis,
which in our system is the static data flow analysis that identifies
possible policy violations. By identifying locations where impre-
cision in the pointer analysis affects the precision of the client’s
results, the client-driven analysis is able to selectivelyincrease pre-
cision for the pointer analysis in places where it will improve the
results of the client analysis. Because the amount of extra pre-
cision is typically small [23], the client-driven analysisis able to
avoid analyzing pointer relations that do not affect the client, dra-
matically improving scalability without sacrificing precision with
respect to the client. The client itself must be a lattice-based data
flow analysis, so we see now how our annotation language’s declar-
ative specification of data flow analysis plays an important role in
minimizing runtime overhead.

Finally, we note that the client-driven approach does not impact
the soundness of the pointer analysis. Precise pointer analysis is
an undecidable problem, so almost all pointer analyses, including
ours, compute a conservative over-approximation of the actual re-
sult. In particular, our pointer analysis is sound under theassump-
tion that displacements between objects are undefined, a necessary
assumption common to C pointer analyses [3].

4.4.3 Data Flow Slicing
The static error checker identifies possible vulnerabilities by lo-

cation and memory object. Our system must ensure that all the
dynamic checks that are required to prevent possible vulnerabili-
ties are performed correctly. We refer to the process of computing
the statements that require instrumentation asdata flow slicing, by
analogy with program slicing [47].

We define adata flow slicewith respect to some objecto at some
program locationl to be the setS of statements and locations that
affect a setO of objects, computed by the transitive closure as fol-
lows:

• l is in S ando is in O.
• If statements′ defines the flow value of somev ∈ O, thens

′

is in S.
• If statements ∈ S uses the flow value of someo′, theno

′ is
in O.

In contrast with a program slice, which is the portion of the program
necessary for computing the value ofo at locationl, a data flow
slice is the portion of the program that affects theflow valueof o at
l. For example, a statement that increments a counter will change
the counter’s concrete value but not its taintedness. Sincethe flow
value does not change, this statement is not part of the data flow
slice. Moreover, implicit flows and branch conditions are not part
of the data flow slice because they cannot affect the flow values
for a tag-based data flow analysis, but theyare a part of a program
slice.

As long as the underlying pointer analysis is sound, data flow
slicing is a sound method for identifying statements that affect flow
values: A statement can affect flow values only by defining them.
If statements affects the flow value of objecto at locationl, it is
by definition in the data flow slice, and statements that affect o at
l through intermediate assignments are also included because the
data flow slice is a transitive closure.

Data flow slicing is an interprocedural dependence analysisthat
tracks dependences in terms of flow values instead of concrete val-
ues. Our compiler computes data flow slices by first constructing
interprocedural use-def chains, which allows it to identify all pos-
sible definitions for any given use of an object. The data flow slice

is always a subset of the locations in the use-def chains, as aflow
value cannot change without a def (but as we have mentioned, not
all defs change the flow value).

Our data flow slicing algorithm is also able to truncate the slice
when flow values are definitely known. Since the static data flow
analysis is an over-approximation of possible dynamic behavior, a
statically computed exact flow value means that the object will al-
ways have that flow value at that location at runtime. For server
programs and taint tracking, this optimization has the effect of
moving instrumentation away from input functions and closer to
the data directly involved in checks. In several of our programs,
input is read into a buffer, which is immediately copied to another
buffer. The copy is then used for subsequent operations. Ourstatic
analysis can determine that the copy is always tainted, rendering
further backwards tracing unnecessary. The resulting program thus
does not need to instrument the input buffer, instead directly mark-
ing the copy as tainted.

This optimization has an interesting side effect: At times,the
tags of some addresses will not be up-to-date. However, we can
guarantee that any piece of information will be up-to-date when it
is used to make a security decision. Thus, the system is as secure
as a fully instrumented system, but it does not pay the performance
penalty of keeping all tags up-to-date at all times.

Another consequence of our technique is that a more complex
policy or program does not necessarily result in higher overhead.
The actual overhead depends on the policy, the program, and the
way in which the program might violate the policy. A more com-
plex policy can result in lower overhead when the portion of the
program involved is smaller or off the critical path. In Section 5.3,
we see that guarding against file disclosure vulnerabilities can of-
ten have even lower overhead than taint tracking despite being a
significantly more complex problem. Larger programs also donot
necessarily experience higher overhead; in fact, in our results (Sec-
tion 5.1.3), the highest overhead for server programs is forthe
smallest program.

Once the data flow slice from a potential vulnerability is com-
puted, it is straightforward to add instrumentation to these program
locations. The data flow slice includes all information thatimpacts
the flow value at the potential vulnerability, so the check will eval-
uate to the same result as a fully-instrumented system.

4.5 Security Discussion
We now examine the security-related assumptions and advan-

tages of our system.

4.5.1 Trusted Computing Base
As with other software taint tracking solutions, our systemin-

creases the size of the TCB, in our case adding the compiler to
the TCB. Although there are security implications [45] to trusting
the compiler, the additional trust required by our approachis mit-
igated by two factors. First, in typical modern environments, the
compiler (usuallygcc or some other widely used compiler) isal-
ready trustedto compile the server programs that are actually run.
Second, oursource-to-sourcetranslator relies on the user’s already
trusted compiler for generating binary code. The changes and mod-
ifications that our system makes to programs are thus transparent
and human-readable, making it difficult to insert undetected ma-
licious code. Thus, our system requires minimal additionaltrust
beyond that which is already present in most deployed systems.

Like any system based on user-defined policies, the policiesthem-
selves are also a part of the trusted computing base. If the annota-
tions that summarize the effects of external functions are incorrect
or incomplete, the system may miss important data flow. Such an

error is analogous to a bug or omission in a hardcoded taint track-
ing system. Fortunately, frequently-used external code resides in
libraries like the C Standard Library that are relatively robust and
whose semantics are well-understood, and we have found thatpro-
viding accurate annotations for these functions is straightforward.

4.5.2 Attacks Detected
Our system is capable of detecting attacks that depend on the

propagation of data through the system. More specifically, we can
enforce any typestate policy, which includes traditional taint-based
attacks as well as general information flow tracking [31]. These
attacks include those that do not overwrite control data or violate
data flow integrity and thus are problems even in safe languages.

In our evaluation, we enforce a taint-based policy that prevents
format string attacks, similar to the format string policies used by
existing taint tracking systems, such as TaintCheck [37], as well
as interpreters with taint tracking modes [46, 38]. In addition, our
system can enforce a policy that prevents attacker-controlled data
leaks such as file disclosure vulnerabilities; this policy cannot be
enforced precisely by an ordinary taint tracking system.

Our system only guarantees that violations of the specified policy
do not occur. This situation is shared by all enforcement mechanisms—
for example, a memory-safe database server can still be compro-
mised by an SQL injection attack because such attacks do not vi-
olate memory safety. The soundness of our analysis preventsany
attacks that violate the policy. However, if it is possible for the at-
tacker to gain control through an attack that does not violate the
policy, it may be possible to compromise the application.

4.5.3 Alternate Attack Channels
Like other taint tracking systems, we do not concern ourselves

with implicit flows. Implicit flows occur when control flow influ-
ences the possible values of data. For example, informationmay be
implicitly passed along branches of the formif(x==0) y=1;
else y=0; which allows the user to influence the value ofy by
modifying the value ofx. Taint tracking systems usually do not
considery tainted even ifx is tainted. Although such cases result
in implicit information flows that are theoretically exploitable, the
majority of attacks depend on direct flow of data [16, 10], which
our system does guard against.

Our system also does not defend against attacks that are not
based on information flows in program code. For example, dis-
tributed denial of service attacks can harm systems withoutcreat-
ing any individually anomalous information flows. Information can
also be leaked via covert timing channels, which we also do not de-
tect, although our requirement for source code limits the ability of
malicious developers to introduce malicious code. Finally, our so-
lution only defends against attacks, not arbitrary memory errors. A
buggy program can still experience segmentation faults andother
errors using only untainted data.

4.5.4 Defending the Enforcement Mechanism
The design of our system makes it difficult in practice for an

attacker to subvert the enforcement mechanism itself. First, like
other compiler-based systems [48, 31], the original program is writ-
ten before the enforcement code is added, so the original program
cannot directly access enforcement data. Moreover, unliketaint
tracking systems that track taintedness using stack-allocated vari-
ables or fixed addresses [48], all of our structures are dynamically
allocated on the heap and concealed behind function calls. Point-
ers to enforcement data never appear in application code, sothe
attacker cannot obtain a pointer to our enforcement data without
sophisticated heap attacks. Thus, the attacker will not be able cor-

rupt enforcement data without first hijacking the program byex-
ploiting some vulnerability that the user’s security policy does not
guard against. Attacks that the user’s policy do guard against are
prevented.

For additional protection, our mechanism can be easily com-
bined with various defenses against memory errors. For example,
address space randomization [7] or heap randomization [6] can be
used to defend our system against corruption attacks.

5. EVALUATION
In this section, we evaluate the effectiveness of our systemby

using it to prevent format string attacks and file disclosurevulnera-
bilities. We verify attack prevention, measure static codeexpan-
sion, and measure runtime overhead for five open-source server
programs and four compute-bound SPECint 2000 benchmarks. Since
our system is a source-to-source translator, we compile theen-
hanced C programs usinggcc-3.3 on Linux with the default
compiler options and optimization levels that were supplied by the
original developers of the benchmark programs. The programs are
then run on a 2.4 GHz Pentium 4 with 1 GB of RAM, running Linux
2.6.17. For each benchmark, we use the program’s documentation
and examples to run the program with a reasonable configuration.

5.1 Taint Analysis for Server Programs
We evaluate our system with a taint checking policy that prevents

the use of tainted format strings in exploitable functions.This strict
policy is similar to that enforced in the TaintCheck system [37].

Our policy distrusts all inputs that can be under user-control, in-
cluding the file system and environmental variables. Our policy is
significantly stronger than the default “trust everything except net-
work input” policy used by some other systems [37, 39] for servers.
This stronger policy is necessary to detect uses of tainted data that
are cached in the file system, an actual problem in one of our bench-
marks, as we discuss in Section 5.1.1.

We apply our system to five commonly-used open source server
programs:pfingerd,muh,wu-ftpd,BIND, andapache. These
programs are, respectively, a finger daemon, an IRC proxy, anFTP
server, a name server, and a web server. Several are widely de-
ployed and typically run in privileged mode, so their robustness
and integrity are critical.

We use our system to produce a modified version of each pro-
gram that contains additional code to perform dynamic tainttrack-
ing. In our tables, we refer to this version asDDFA. The actual
analysis time, while not negligible, is no worse than four minutes
for apache, our largest benchmark with nearly 67K lines of code,
and thus does not pose a serious obstacle to deployment.

Finally, we note that these programs were selected in part be-
cause our static data flow analysis identified potential vulnerabili-
ties in them. Our test programs were selected from a suite of open-
source server programs that was previously used for static pro-
gram checking research [23]. For nine other programs in thissuite,
our compiler analysis determines that there are no improperuses
of tainted data and therefore no instrumentation whatsoever is re-
quired. These programs includeBlackHole,privoxy,sqlite,
andpureftpd, and indeed there are no known applicable tainted-
data attacks against our tested versions in the CVE database. For
these nine programs, our system does not modify the program and
therefore exhibits 0% runtime overhead and 0% code expansion.
Only a system that performs a static interprocedural taint analy-
sis can achieve these overheads.We have chosen to exclude these
nine programs from our results and to instead focus on those pro-
grams that have possible vulnerabilities, but these results neverthe-
less highlight an important advantage of our approach.

Program Version Exploit Ref Detected
pfingerd 0.7.8 NISR16122002B Yes
muh 2.05c CAN-2000-0857 Yes
wu-ftpd 2.6.0 CVE-2000-0573 Yes
bind 4.9.4 CVE-2001-0013 Yes

Table 2: Evaluation of our system’s ability to detect actual attacks. All
attacks are detected successfully.

Program Original DDFA Code Overhead
pfingerd 49655 49655 0%
muh 59880 60488 1.01%
wu-ftpd 205487 207997 1.22%
bind 215669 219765 1.90%
apache 552114 554514 0.43%
Average Code Expansion 0.91%

Table 3: The static code expansion required for dynamic taint track-
ing, as measured by compiled binary size (bytes).

5.1.1 Security Evaluation
We first evaluate our system’s ability to detect attacks. Four of

our benchmark programs contain known vulnerabilities thatare ex-
ploitable. For example,pfingerd improperly trusts hostnames,
while muh does not properly check format strings when reading
or writing log files. The SITE EXEC format string vulnerability
in wu-ftpd is actually the first discovered format string vulnera-
bility [13]. BIND improperly writes requests tosyslog when an
authoritative nameserver is malicious. Our particular configuration
of apache (core only without optional modules) does not contain
any known format string vulnerabilities; it is included because our
static analysis was not able to completely eliminate that possibility.

To test whether our system correctly detects the use of tainted
data, we send malicious input to the instrumented programs.Ta-
ble 2 shows the vulnerable programs, shows the vulnerability in
question, and indicates that in each case our system successfully
detects these attacks. In each case, it detects that tainteddata is
about to be used improperly and identifies the potentially malicious
data.

The case ofmuh deserves special attention. The vulnerability ex-
ists becausemuh writes logged messages verbatim to disk. Later,
when a user requests log information,muh reads the message back
from disk and prints it directly usingprintf. Thus, if the origi-
nal message contained dangerous format specifiers,muh could be
compromised when the message is printed back. If the policy is to
trust local files, then this attack will go undetected, whichcan be
a serious problem in servers that cache data on disk. Severaltaint
tracking systems trust local files by default [37, 39]; theirperfor-
mance when applying our more aggressive policy is unknown but
likely to be worse due to the greater presence of tainted data. Our
system can enforce this stronger policy without fear of incurring
significant additional overhead because our interprocedural analy-
sis can frequently prove that most uses of local file data are safe.

5.1.2 Code Expansion
Because our system adds instrumentation to the source program,

it introduces some static code expansion over unmodified code. We
measure this expansion by comparing the sizes of the original and
modified binary executables. Binary code size provides a more ac-
curate measure of code overhead than source code size, because the

Program Original DDFA Runtime Overhead
pfingerd 3.07s 3.19s 3.78%
muh 11.23ms 11.23ms 0.0%
wu-ftpd 2.745MB/s 2.742MB/s 0.10%
bind 3.580ms 3.566ms -0.38%
apache 6.048MB/s 6.062MB/s -0.24%
Average Overhead 0.65%

Table 4: Runtime overhead for performing dynamic taint tracking on
server programs. This table shows the response time or throughput
overhead for our DDFA system running on a 100mbps ethernet net-
work.

binary code size includes the effects of standard compiler optimiza-
tions.

From Table 3, we see that the average code expansion for our
benchmarks is less than 1%. In several cases, the compiled binary
size does not actually increase because the added code fallsin the
padding thatgcc adds. To place our results in context, LIFT with
hot path optimizations can at least double the size of the code due to
the need to maintain separate “fast” and “check” copies [39], while
compiler-based systems like GIFT [31] report 30-60% increases in
binary size.

5.1.3 Runtime Overhead
The tracking of data flows incurs a runtime cost. For our set

of server programs, we measure this cost by measuring serverre-
sponse time or throughput, as appropriate for the particular pro-
gram.

The pfingerd, muh, andbind servers deal with short re-
quests, so the end user is most directly impacted by increases in
response time. For these programs, we measure the time between
the sending of the request and the receipt of the entire response,
averaged over one hundred requests. On the other hand,wu-ftpd
andapache are used to serve files of varying sizes, so the pri-
mary metric of concern to end users is throughput (MB/sec). We
measure throughput by downloading files with sizes uniformly dis-
tributed among 4KB, 8KB, 16KB, and 512KB over one minute.

To avoid local resource contention, our benchmarking client runs
on a different machine from the server, interacting over a local
100mbps Ethernet connection. As shown in Table 4, our solution
has an average overhead of 0.65%. In all instances, the overhead is
lost within the noise. In fact, in three instances, average server per-
formance actually improves by small amounts when we perform
taint tracking. This improvement may be due to differences in
memory layout induced by our runtime system and the resulting
effect on cache performance. As a point of comparison, the pre-
vious fastest compiler-based and dynamically optimized systems
report server application overhead of 3-7% [48] and 6% [39],re-
spectively.

5.2 Taint Analysis for Compute-Bound Appli-
cations

In this section, we evaluate our system’s performance on compute-
bound applications by applying the format string policy to four
SPECint 2000 benchmarks, with all I/O marked as tainted. These
benchmarks were chosen because it was possible to inject realistic
format string vulnerabilities into them, a task that can be challeng-
ing for the other SPECint benchmarks. In each case, our static
analysis determines that the programs contain no such vulnerabil-
ity. Thus,our true overhead for these examples is 0%.

To study the performance impact that our system would have on

Program Code Expansion Overhead
gzip 0.0% 51.35%
vpr 0.0% 0.44%
mcf 0.0% -0.32%
crafty 0.36% 0.25%
Average 0.09% 12.93%

Table 5: Runtime overhead for performing dynamic taint tracking on
compute-bound programs. These versions of the SPECint benchmarks
were modified to introduce a format string vulnerability.

Program Code Expansion Response time
pfingerd 0% 0%
muh 2.67% 2.13%
bind 0.10% -1.38%
Average 0.92% 0.25%

Table 6: Servers augmented by our system to guard against file dis-
closure vulnerabilities exhibit negligible overhead and code expansion.

compute-bound programs that do contain vulnerabilities, we man-
ually insert a vulnerability into each of the benchmarks. Toensure
that these injected vulnerabilities are realistic and representative of
real vulnerabilities, we use the following guidelines in selecting the
locations for the artificial vulnerabilities. (1) We chooselocations
where actualprintf/scanf calls are being made, ensuring that
our injected vulnerability appears at a location where it might be
possible. (2) We preferentially choose calls that operate on charac-
ter data, eliminating unrealistic vulnerabilities, such as the use of
integers as format strings. (3) Finally, we check that our injected
vulnerability is not eliminated by our static analysis.

Table 5 presents our results with the standard SPEC workloads.
In all of the benchmarks, we demonstrate significant performance
improvements over current software-based systems. The average
overhead of 12.9% improves upon the best previously reported av-
erages of 75-260% [48, 39]. Furthermore, in most cases, our sys-
tem’s overhead for compute-bound applications is essentially zero
even when the application does contain vulnerabilities. Thus, our
approach is less adversely affected by CPU-intensive programs than
all current software-based techniques.

The gzip benchmark is a worst case for taint tracking sys-
tems [44, 48, 39, 17] due to its complex behavior and sensitivity to
memory bandwidth. It operates on character data extensively and
propagates tainted data everywhere, reducing the flows thatour sys-
tem can statically eliminate and negatively impacting performance.
Nevertheless, our system’s overhead of 51% represents a signifi-
cant improvement over prior software systems, with overheads of
106% for a compiler-based system [48] to over 600% for dynamic
instrumentation [39], and our result compares favorably with the
31% overhead for the most recent hardware-based solution [17].

5.3 File Disclosure Attacks
In addition to taint tracking, we evaluate our system’s ability to

prevent file disclosure attacks, as discussed in Section 4.3.2. Ta-
ble 6 shows our results. Forpfingerd, our static analysis was
able to determine that it contained no FTP-like behaviors and there-
fore no instrumentation was required. Formuh and bind, out
system was unable to rule out this possibility and thereforehad
to insert a small amount of additional code. However, the delay in
response time was so small as to not be consistently measurable.

These results highlight the advantages of our system. First, in

some cases all instrumentation can be eliminated, giving 0%over-
head. Second, in the cases where some tracking is required, our
analysis is able to keep the additional code to a minimum, imposing
only a small or negligible overhead. Finally, this example shows
that without rewriting the compiler or its static analysis,our sys-
tem can be applied to complex problems that taint tracking cannot
directly handle. Moreover, if existing taint tracking systems were
extended to cover richer problems, they would require significantly
greater memory usage to track additional bits of data, whileour
system’s memory usage is not adversely affected by these richer
policies.

5.4 Policy Annotation Burden
We now briefly evaluate the burden of providing the policy an-

notations that are required by our system. Our annotations come in
three types: (1)pointer annotations, which describe pointer rela-
tions; (2)analysis annotations, which define a data flow analysis;
and (3)policy annotations, which use the results of the data flow
analysis to enforce a policy.

Pointer annotations are common to all policies, because they de-
scribe the pointer relations of the arguments of each function, spec-
ifying what the function accesses and modifies; this information is
used by the pointer analysis. Once a library has been annotated—
in our case the Standard C library—pointer annotations neednot
be rewritten unless the library interface changes. For the Standard
C library, there are pointer annotations for 116 procedures, with a
median size of 3 lines and an average size of 4.68 lines.

Analysis and policy annotations can differ for different security
policies. For the format string policy, there are 44 annotations of
these types, with a median size of 6 lines each and an average size
of 5.75 lines each. However, the vast majority of these are essen-
tially duplicates. For example, the annotations for each member of
the printf family of functions are essentially identical. When
these “cut-and-paste” duplicates are eliminated, the total number is
only 21. For the file disclosure policy, there are 65 such annota-
tions, with a median size of 7 lines each and an average size of6.52
lines. Again, the majority of these are essentially duplicates. When
these are accounted for, there are only 36 unique annotations.

To understand the difference between analysis and policy anno-
tations, we now discuss several different use cases. In the simplest
case, the desired policy exists and there is no need to touch any an-
notation file. In other cases, a security expert may wish to modify
an existing policy, for example, by calling a sanitization function
when a violation is detected. Here, only the policy annotations re-
quire changes to account for the sanitization code. Finally, in the
most invasive case, a new data flow analysis must be defined, in
which case new analysis and policy annotations must be written.

The annotations themselves are not difficult to write. Our anno-
tation files only use seven major constructs, so the languageis easy
to understand. All of these constructs are shown in the example in
Section 4.3.1, and the annotations shown are representative of the
kind that must be written. In any case, the information provided by
the annotations is required by any policy-enforcing system; in our
system such information is specified by annotation files rather than
being imbedded in the code.

6. CONCLUSIONS
In this paper we have presented a compiler-based system thaten-

forces security policies by tracking dynamic data flow through pro-
grams. We have demonstrated the generality of our system by using
it to enforce two security policies, one that prevents unwanted file
disclosure and another that prevents format string attacks. We have
also shown that our system produces low overhead when applied

to both compute-bound applications and I/O bound server applica-
tions.

Although our current implementation is a source-to-sourcetrans-
lator for the C language, our techniques are applicable to other
modern languages and even binary code. For example, our static
data flow analysis could be implemented in a static binary rewriting
system, producing a system that protects binary code from attacks
while using static analysis to reduce the runtime cost. Sucha sys-
tem would have to deal with the difficulty of building the control
flow graph (i.e., the difficulty of discovering all instructions), so in
many cases it would not produce the same low overheads that we
report in this paper.

Acknowledgments
This work was supported by NSF grant CNS-0509354, Air Force
Research Laboratory contract FA8750-07-C-0035 from the Disrup-
tive Technology Office, and a grant from the Intel Research Coun-
cil. We thank Vitaly Shmatikov, Lili Qiu, and E Lewis for their
helpful comments on this paper.

7. REFERENCES
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity: Principles, implementations, and
applications. InProceedings of the ACM Conference on
Computer and Communication Security, pages 340–353,
2005.

[2] K. Ashcraft and D. Engler. Using programmer-written
compiler extensions to catch security holes. InProceedings
of the IEEE Symposium on Security and Privacy, pages
143–159, 2002.

[3] D. Avots, M. Dalton, V. B. Livshits, and M. S. Lam.
Improving software security with a C pointer analysis. In
Proceedings of the 27th International Conference on
Software Engineering, pages 332–341, 2005.

[4] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time
defense against stack smashing attacks. InProceedings of the
USENIX Annual Technical Conference, pages 251–262,
2000.

[5] D. E. Bell and L. J. LaPadula. Secure computer systems:
Mathematical foundations. Technical Report 2547, MITRE,
March 1973.

[6] E. D. Berger and B. G. Zorn. DieHard: Probabalistic
memory safety for unsafe languages. InProceedings of the
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 158–168, 2006.

[7] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient
techniques for comprehensive protection from memory error
exploits. InProceedings of the 14th USENIX Security
Symposium, pages 271–286, 2005.

[8] K. J. Biba. Integrity considerations for secure computer
systems. Technical Report ES-TR-76-372, Electronic
Systems Division, Hanscom Air Force Base, April 1977.

[9] M. Castro, M. Costa, and T. Harris. Securing software by
enforcing data-flow integrity. InProceedings of the 7th
USENIX Symposium on Operating Systems Design and
Implementation, pages 147–160, 2006.

[10] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. K. Iyer.
Defeating memory corruption attacks via pointer taintedness
detection. InProceedings of the International Conference on
Dependable Systems and Networks, pages 378–387, 2005.

[11] J. Clause, W. Li, and A. Orso. Dytan: A generic dynamic
taint analysis framework. InProceedings of the 2007

International Symposium on Software Testing, pages
196–206, 2007.

[12] M. Costa, J. Crowcroft, M. Castro, A. Rwostron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end containment
of Internet worms. InProceedings of the 20th ACM
Symposium on Operating System Principles, pages 133–147,
2005.

[13] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman,
M. Frantzen, and J. Lokier. FormatGuard: Automatic
protection from printf format string vulnerabilities. In
Proceedings of the 10th USENIX Security Symposium, pages
15–23, 2001.

[14] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointGuard:
Protecting pointers from buffer overflow vulnerabilities.In
Proceedings of the 12th USENIX Security Symposium, pages
91–104, 2003.

[15] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. StackGuard:
Automatic adaptive detection and prevention of
buffer-overflow attacks. InProceedings of the 7th USENIX
Security Symposium, pages 63–78, 1998.

[16] J. R. Crandall and F. T. Chong. Minos: Control data attack
prevention orthogonal to memory model. InProceedings of
the 37th International Symposium on Microarchitecture,
pages 221–232, 2004.

[17] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A flexible
information flow architecture for software security. In
Proceedings of the 34th International Symposium on
Computer Architecture, pages 482–493, 2007.

[18] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, May 1976.

[19] U. Erlingsson.The inlined reference monitor approach to
security policy enforcement. PhD thesis, Cornell University,
Ithaca, New York, 2003.

[20] D. Evans and D. Larochelle. Improving security using
extensible lightweight static analysis.IEEE Software,
19(1):42–51, January/February 2002.

[21] S. Z. Guyer.Incorporating Domain-Specific Information into
the Compilation Process. PhD thesis, The University of
Texas at Austin, Austin, TX, 2003.

[22] S. Z. Guyer and C. Lin. An annotation language for
optimizing software libraries. InProceedings of the 2nd
Conference on Domain-Specific Languages, pages 39–52,
1999.

[23] S. Z. Guyer and C. Lin. Client-driven pointer analysis.In
Proceedings of the 10th Annual Static Analysis Symposium,
pages 214–236, June 2003.

[24] S. Z. Guyer and C. Lin. Broadway: A compiler for exploiting
the domain-specific semantics of software libraries.
Proceedings of the IEEE, Special issue on program
generation, optimization and adaptation, 93(2):342–357,
January-February 2005.

[25] M. Hauswirth and T. M. Chilimbi. Low-overhead memory
leak detection using adaptive statistical profiling. In
Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 156–164, 2004.

[26] J. C. Huang. Detection of data flow anomaly through
program instrumentation.IEEE Transactions on Software
Engineering, SE-5(3):226–236, May 1979.

[27] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and

Y. Wang. Cyclone: A safe dialect of C. InProceedings of the
USENIX Annual Technical Conference, pages 275–288,
2002.

[28] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible
bounds checking for arrays and pointers in C programs. In
Proceedings of the 4th International Workshop on Automated
and Algorithmic Debugging, pages 13–26, 1997.

[29] J. B. Kam and J. D. Ullman. Global data flow analysis and
iterative algorithms.Journal of the ACM, 23(1):158–176,
January 1976.

[30] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure
execution via program shepherding. InProceedings of the
11th Annual USENIX Security Symposium, pages 191–206,
2002.

[31] L. C. Lam and T.-C. Chiueh. A general dynamic information
flow tracking framework for security applications. In
Proceedings of the 22nd Annual Computer Security
Applications Conference, pages 463–472, 2006.

[32] M. Martin, B. Livshits, and M. S. Lam. Finding application
errors and security flaws using PQL: A program query
language. InProceedings of the 20th Annual ACM SIGPLAN
Conference on Object Oriented Programming, Systems, and
Applications, pages 365–383, 2005.

[33] A. C. Myers. JFlow: Practical mostly-static information flow
control. InProceedings of the 26th ACM SIGPLAN
Symposium on Principles of Programming Languages, pages
228–241, 1999.

[34] National Security Agency Information Systems Security
Organization. Labeled security protection profile version1b,
October 1999.

[35] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. InProceedings of the
29th ACM SIGPLAN Symposium on Principles of
Programming Languages, pages 128–139, 2002.

[36] J. Newsome, D. Brumley, and D. Song.
Vulnerability-specific execution filtering for exploit
prevention on commodity software. InProceedings of the
Network and Distributed Security Symposium, 2006.

[37] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. InProceedings of the
Network and Distributed Security Symposium, 2005.

[38] A. Nguyen-Tong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically hardening web applications using
precise tainting. InProceedings of the 20th IFIP
International Information Security Conference, pages
295–308, 2005.

[39] F. Qin, C. Wang, Z. Li, H. seop Kim, Y. Zhou, and Y. Wu.
LIFT: A low-overhead information flow tracking system for
detecting security attacks. InProceedings of the 39th Annual
IEEE/ACM Symposium on Microarchitecture, pages
135–148, 2006.

[40] A. Sabelfeld and A. C. Myers. Language-based
information-flow security.IEEE Journal on Selected Areas in
Communications, 21(1):5–19, 2003.

[41] F. B. Schneider. Enforceable security policies.ACM
Transactions on Information and System Security,
3(1):30–50, February 2000.

[42] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting
format string vulnerabilities with type qualifiers. In
Proceedings of the 10th USENIX Security Symposium, pages
201–218, 2001.

[43] R. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability.IEEE
Transactions on Software Engineering, 12(1):157–171, 1986.

[44] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure
program execution via dynamic information flow tracking. In
Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 85–96, 2004.

[45] K. Thompson. Reflections on trusting trust.Communications
of the ACM, 27(8):761–763, August 1984.

[46] L. Wall, T. Christiansen, and J. Orwant.Programming Perl.
O’Reilly & Associates, Sebastopol, California, United
States, third edition, 2000.

[47] M. Weiser. Program slicing. InProceedings of the 5th
International Conference on Software Engineering, pages
439–449, 1981.

[48] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy
enforcement: A practical approach to defeat a wide range of
attacks. InProceedings of the 15th USENIX Security
Symposium, pages 121–136, 2006.

