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ABSTRACT

Current taint tracking systems suffer from high overheadiatack

of generality. In this paper, we solve both of these issudis an
extensible system that is an order of magnitude more effitiiem
previous software taint tracking systems and is fully gehtr dy-
namic data flow tracking problems. Our system uses a compiler
to transform untrusted programs into policy-enforcingguams,
and our system can be easily reconfigured to support newsewrly
and policies without modifying the compiler or runtime st
Our system uses a sound and sophisticated static analgsisai
dramatically reduce the amount of data that must be dyndignica
tracked.

Traditional Tainted Data Attack$
Format String Attacks

SQL Injection

Command Injection
Cross-Site Scripting

Privilege Escalation

Other Security Problems

File Disclosure Vulnerabilities
Labeled Security Enforcement
Role-Based Access Control
Mandatory Access Control
Accountable Information Flow

For server programs, our system’s average overhead is 0.65%

for taint tracking, which is comparable to the best hardwsased
solutions. For a set of compute-bound benchmarks, ourrayste-
duces no runtime overhead because our compiler can proadthe
sence of vulnerabilities, eliminating the need to dynathidaack
taint. After modifying these benchmarks to contain formaing
vulnerabilities, our system’s overhead is less than 13%chwis
over 6x lower than the previous best solutions. We demonstrate
the flexibility and power of our system by applying it to filesdi
closure vulnerabilities, a problem that taint trackingmatrhandle.
To prevent such vulnerabilities, our system introduces\ameae
runtime overhead of 0.25% for three open source server pnegr

Categories and Subject Descriptors

D.4.6 [Operating System$: Security and Protection+aforma-
tion Flow Controls

General Terms
Reliability, Security, Verification
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Dynamic Data Flow Analysis, Security Enforcement, StatiaA
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Table 1: A sampling of the kinds of problems that our system can
handle. Taint tracking can only handle the top set of problens.

1. INTRODUCTION

Many security attacks rely on the ability to pass carefutbfied
hostile data to vulnerable portions of a target program. @ethod
of preventing such attacks is to perfodynamic taint analysigt6,

37, 44, 16, 38, 10, 39, 48, 31]. Dynamic taint analysis marks u
trusted data as tainted, tracks the flow of tainted data gtrdbe
system, and checks that tainted data is not misused. Exitstint
analysis research has largely followed one of two direstiofi)
improving runtime overhead and (2) extending the gengralit
taint tracking.

Significant progress has been made in the first directionetec
work [39] has reduced the extreme overheads of early syq&fhs
by performing taint-specific optimizations, but perforroaustill re-
mains a challenge, with average overheads of 260% for canput
bound applications [39]. Alternative techniques [48] cadiuce the
average overhead to 75% for compute-bound applicatiorighisu
result requires processor and OS-specific assumptionsut@atot
generally applicable.

The second direction, which has received less attentidgends
the generality of taint analysis, recognizing that taiatking is a
special case of data flow tracking. Whereas taint analyaisksr
one bit of information, data flow tracking can track multifdits
of information and can combine the information in more fléxib
ways than taint analysis. More concretely, taint-basetesys are
limited to the top set of exploits listed in Table 1, while gea
data flow tracking, which is based on the more general notfon o
data flow analysis [29], can handle all of them. Such gertgnaiil
become particularly important as developers move to mersafy
languages such as Java and C#, where the use of taint traoking
enforce secure control flow is not needed.
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Figure 1: The overall structure of our system. The compiler takes a
source program and a security policy and produces an enhandever-
sion of the program that enforces the policy by performing dyamic
data flow analysis.

In this paper, we describe an extensible compiler-basegsys
that simultaneously advances the state of the art in bo#ttiins.
The performance of our system is an order of magnitude kiter
any previous software taint tracking system. The gengrafibur
system allows it to support all of the problems listed in Eabl
Moreover, this generality is easily accessible, as we ngre@x.

Figure 1 shows the overall architecture of our system. The in
put is an untrusted program. The output is an enhanced progra
that enforces some specified security policy, which is seteby
the end-user at compile time. To enforce the desired paliwy,
compiler first performs a static vulnerability analysisttidenti-
fies whether the input program might violate the policy; tbene
piler then performs an analysis that identifies those logatin the
input program that require dynamic analysis. The approggia
enhanced program then dynamically enforces the policy Iy pe
forming a tag-basedynamic data flow analysisliscussed in Sec-
tion 4.1.

The policy itself is defined in an annotation file that desesib
the policy and the effects of standard library calls on thicpo
Thus, the policy is entirely separate from the data flow tirmgk
mechanism, so in addition to the existing security politied we
have already defined, new security policies can be specifibdut
modifying either the compiler or the runtime system.

The key to our system’s low overhead is our compiler's apilit
to identify many innocuous flows of data that provably do rexch
to be tracked. For example, a program might read data in&rakv
different buffers, only one of which is used in a way that atek
the policy. Itis therefore not necessary to track the othéebs and
everything they flow into. In cases where the compiler cavepro
that no policy violations are possible, the resulting otgmegram
contains no instrumentation and thus incurs no runtimetmaa.
Our compiler can precisely identify innocuous data flow lbsea
(1) our system'’s security policy can be interpreted as &siata-
flow analysis that determines whether the policy was vidladad
(2) our compiler performs an interprocedural analysis tis#s a
precise and scalable pointer analysis [23]. By contrakgratur-
rent systems do not attempt to statically detect the polickation,
and they perform static analysis that is limited in scopeythre
intraprocedural) and precision.

This paper makes three main contributions:

e We show that our system is general by using it enforce file
disclosure vulnerabilities—a privacy problem that taiatk-
ing cannot handle—as well as to perform traditional taint
tracking. Our system is as general as GIFT [31], but our
system is configured through an existing declarative annota
tion language [21] rather than by writing wrapper functions
or new code.

e \We demonstrate our system’s performance advantages by eval
uating it on both server programs and compute-bound pro-
grams. For common open-source server programs, our sys-
tem’s average overhead is 0.65%, compared with 6% for the
previous best reported results [48]. For compute-boundC3RE
benchmarks, our system is able to prove the absence of for-
mat string errors entirely, giving a true overhead of 0%. Af-
ter inserting vulnerabilities into these programs, outesyss
average overhead for compute-bound programs is less than
13%, compared with 75-260% for previous systems [48, 39].

The remainder of this paper is organized as follows. Se@ion
discusses related work, Section 4 describes our solutiahSac-
tion 5 presents our evaluation.

2. RELATED WORK

Our work is a generalization of dynamic taint tracking [48, 3
38, 44, 16, 10, 12, 48, 39, 31, 11], which has been used togirote
against buffer overflows, stack smashing, and format saitagks,
and which covers attacks previously addressed separatelsrb
ous different solutions [15, 14, 4, 13]. Taint tracking israqgical
realization of some of the concepts of information flow cohfb,

18] and integrity [8], but it typically ignores implicit flogx Much

of the previous work in taint tracking has used dynamic kjinar
instrumentation frameworks [37, 12, 39, 11] or specialihedd-
ware [44, 16, 17]. Except where noted below, these systeanscr
designed for more general data flow tracking problems, ame co
components would need to be rewritten to accommodate sueh ge
erality. Instead, these systems have focused on reducitgne
overhead.

Many taint tracking systems based on binary instrumentatio
such as TaintCheck [37] or Dytan [11], have enormous ovel$ea
as high as 3%. More recent binary instrumentation systems such
as LIFT [39] have significantly improved performance, bueev
head for compute-bound programs remains as high as.7.9

Xu, et al. present a high-performance compiler-based taint track-
ing system [48], which achieves an average overhead of 6% for
server applications. However, to achieve this performatheesys-
tem exploits assumptions about the memory layout in 32-8@ x
Linux, allowing it to write the tag map directly to unused mem
ory at fixed addresses. Even with this optimization, thegrage
overhead for compute-bound applications is 75%. Withostdp-
timization, their overhead is “unacceptable” [48].

Hardware-based taint tracking [44, 16, 17] can in most cases
eliminate the overhead associated with software-basatittack-
ing. However, overhead can still occasionally be as higt8és [24]
due to cache performance degradation. Furthermore, mabthee-
based systems only defend against memory and control fl@sserr

e We introduce a system that accepts untrusted C programsRaksha [17] provides additional flexibility by using tag pagation
as input and produces C programs that can enforce any pol-registers and OS traps, but this comes at a high cost, witlagee
icy that can be expressed as data flow tracking. Our system overhead exceeding<3

comes with predefined policies for taint and file disclosure,

Lam and Chiueh’s General Information Flow Tracking [31] is a

and our system can be easily extended to handle other prob-framework that uses a compiler to automatically add codedp-p

lems and security policies without modifying our system im-
plementation. Our system uses sophisticated static agalys
to minimize the amount of dynamic analysis that is needed.

agate and check tags associated with data, allowing it tolban
a wide range of problems beyond overwrite attacks. GIFT can
be extended to handle new policies by defining wrapper fansti



and transformations for the the GIFT compiler that impletitee
policy and related tag management. However, the policieslar
fined operationally by writing code that implements transfa-
tions. Without an understanding of the semantics of thecpatt
self, the compiler is limited in its ability to analyze andtiopize

the added code, leading to an average CPU time overhead&wf 82
for the sandboxing of client applications.

Inline reference monitors [19, 41] use security automatdeto
fend against attacks. However, finite state automata arevamk
and unsuitable for addressing problems that require trokitrg
of information flow. PQL [32] presents a more flexible scheme
based on pattern matching of event sequences on objectssyii
tem can track direct information flows and uses static amalgs
reduce overhead a including direct information flows. Hosvev
their techniques require type safety and work only on heggctd)
so their techniques are unsound for programs with flows tifvou
scalar variables.

Static analysis can be used to find bugs and potential sgcurit
vulnerabilities in software [42, 2, 20, 23]. While extremehlu-
able, such systems still require that software developgrarel sig-
nificant effort to verify and fix any vulnerabilities repodtéy the
tool. For example, CQUAL has been used to find format string
vulnerabilities [42]. However, to use their results, pragmers
must examine the output and the original source prograngusin
an advanced graphical interface and attempt to determimaima
ally whether the reported vulnerability is real or a falsesipee.
Moreover, they report a false positive rate of approxinyag%,
so considerable programmer effort is wasted. In contrastsys-
tem uses statically identified vulnerabilities to deterenivhere dy-
namic guards are required, producing a system protected tfre
vulnerability without additional programmer effort. Thumir sys-
tem complements static tools by guaranteeing that posaittesr-
abilities are prevented even if the programmer has not yed fike
problem.

Language-based security solutions range from type-safébC [
27] and bounds checking for C [28] to full language support fo
information flow [33, 40]. These systems can provide stromarg
antees at compile time, but they either impose significarfope
mance overhead or require significant developer effort werite
and redesign current programs. The “safe-C” approacheasotan
handle errors like SQL injection that do not violate langeiag-
mantics. By contrast, JiF [33] supports complex informafilow
policies that our system cannot support.

Finally, static analysis can also be used to constructcstaid-
els of program behavior that can then be enforced dynamidadir
example, control [30, 1] and data flow integrity [9] ensuratttihe
program never deviates from statically computed modelsnofrol
and data flow, respectively. However, these systems areemnt g
eralizable to security problems that do not violate controtlata
flow integrity, and they are of limited use in languages ttaealy
provide similar guarantees. In contrast, our system is ldepaf
handling a far broader class of problems that plague evenlaaf
guages.

3. MOVING BEYOND TAINT ANALYSIS

Before we describe the details of our system, we will expte
importance of moving beyond taint analysis into a realm cffier
data flow tracking problems.

With respect to properties, taint tracking does not prowde
ficient information to handle many attacks. In Section 4.8v2
discuss the problem of file disclosure vulnerabilities. nTaiack-
ing cannot handle this problem because it requires the famebdus
tracking of two different properties. In addition, tairatking is too

simplistic for problems in privacy and access control. Bameple,
to enforce a policy based on labeled security [34], the systeist
simultaneously track hierarchical levels and non-hidriaal cate-
gories. To meet future challenges, systems must be abladh tr
multiple complex properties at the same time.

With respect to policies, most taint tracking systems ex&@élow-
level” policies that prevent overwrite attacks. While avéte at-
tacks are a major concern in unsafe languages, they are fpt a s
nificant concern in managed languages and scripting lamguhgt
already guarantee memory safety. For example, SQL injectio
and cross-site scripting attacks do not overwrite poinkersdo
occur in safe languages. Moreover, privacy breaches amd-inf
mation breaches are usually accomplished without memooyser
and they represent a serious challenge for current andefuteb
applications. To meet these and future attacks, systemssups
port higher-level policies that are aware of higher-leyalaation
semantics.

With respect to performance, any system the performs sgatific
optimizations is likely to suffer when applied to problemeybnd
taint. To maintain high performance in a general setting,téch-
nigues and optimizations must be generally applicable ltdath
flow tracking problems.

4. OUR SOLUTION

Our system takes a C program as input and produces as output
a modified version of the program that enforces a selectadisec
policy. Our system does not require hardware or operatitsg sy
tem changes, is easy to use and extend, and exploits a pbwerfu
interprocedural data flow analysis to eliminate unnecgssatru-
mentation. While our specific implementation targets C cade
techniques are not specific to taint tracking or C and can pkeab
to a wide array of current and future problems and languages.

Our system is easy to deploy: tead userof our system needs
only to recompile a program and select a security policy ¢at= a
secure program. Aecurity expertan extend our system—uwhich
currently includes policies for taint tracking and the mnetion of
file disclosure vulnerabilities—with new analyses and gie§ by
providing a annotation file that is independent of any specifi-
plication.

Our policies use a simple and flexible dynamic model simdar t
General Information Flow [31]. Our system associates syimbo
tags with data objects at runtime, it updates the tags agtigggm
executes, and it enforces policies based on the tag valuelgkeU
prior systems, our system is explicitly based data flow analy-
sis [29], a technique for computing facts about data by obsgrvin
how it flows through the program. This design allows our gyste
to both statically check for and dynamically guard agairadicy
violations from the same specification. A static data flomysia
computes an approximate solution that holds over all ptessike-
cutions of the program because a fully precise solution deait-
able [29]. In contrast, a dynamic data flow analysis [26] cotap
precise facts but only about the current execution. Thesgkn
mentary characteristics allow our system to use a stati flaw
analysis, discussed in Section 4.4, to compute a consex\sdiu-
tion at compile time and to refine the result at runtime to erd@
policy efficiently and precisely.

To perform the dynamic data flow analysis that actually evésr
the policy, our compiler inserts into the source prograntsdal a
small runtime library that manages tag information alonthwvainy
required checks necessary to enforce the policy. Sincaengpth
our system is specific to taint tracking, our system and otir op
mizations apply to all general data flow tracking problems.



char
char
char
char

i nput [ 1024] ;
buf [ 1024] ;

ot her buf [ 1024] ;
buf 1[ 1024] ;

;’.eéd_f rom networ k(i nput);
read_from net wor k( ot her buf);

© o N O s W NP

mencpy( buf, input, 1024);
mermcpy(buf 1, otherbuf, 1024);
process(buf);

process(bufl);

11
12
13
14

printf(buf):

Figure 2: A simple example illustrating the benefits of our satic
analysis. Current systems must track all objects, while our
static analysis can eliminate tracking on all excepbuf .

Eliminating Unnecessary Tracking.

The naive insertion of calls throughout the program indhta
leads to high overhead, so to achieve good performanceyiticsal
that unnecessary calls be eliminated. To illustrate sontleofim-
itations and difficulties encountered by current systerssitier
the code in Figure 2. This code contains a format string \ralsié
ity where a tainted buffer is printed. Assuming a policy thaes
taint analysis to guard against format string attacks,enurtaint
tracking systems, including those that perform some statady-
sis, would track taintedness on all buffers in this examatewell
as anything that thpr ocess function touches and anything that
those variables affect. However, very little tracking isuadly re-
quired. Our system can prove that trackingoarf 1 is not required
because it is never passedpoi nt f or any other sensitive func-
tion. Additionally, if tracking onbuf 1 is not required, neither
is tracking onot her buf , becauséduf 1 receives its value only
from ot her buf . We also do not need to track anything in the
call to pr ocess( buf 1) because none of its results is used by
printf. Moreover, we do not need to track the originalput
buffer because we know that it is always tainted; it is siéficito
simply markbuf as tainted at the call toencpy. Finally, we do
not need to track anything else thmtocess( buf) can affect if
none of the resulting values is misused.

The keys to removing this type of unnecessary tracking are an
interprocedural static analysis that leverages semanfticrnation
about the security policy and a sophisticated interprocdghointer
analysis to perform policy-specific optimizations. Withseman-
tic information about the policy, our system could not digtiish
possible violations from safe events. Without a preciseteoi
analysis, our system could not account for flows betweenctbje
in an effective manner. Without a dependence analysis thiktsh
on the pointer analysis and knowledge of the policy, ouresyst
could not determine which objects are involved in possibieer-
abilities. Moreover, all of these analyses must be interpdaral to
eliminate flows among functions.

More specifically, our system operates by first performingtc
data flow analysis and a highly precise and scalable pointdya
sis to determine where possible policy violations lie. Ogstem
then instruments the program to ensure that all policy eefoent
checks are performed correctly. Because the portion of grano
involved in any given attack is typically exceedingly snja8], our
system typically adds very little code and incurs negligibler-
head. Identifying this portion, however, requires a powlestatic

analysis.

Our system is built on the Broadway static data flow analysis
and error checking system [21], which is a source-to-sotreres-
lator for C. We use the Broadway annotation language and-anal
sis infrastructure, enhancing it with our own dependencdyais
(described in Section 4.4.3) and dynamic data flow analysis-c
ponent (described in Section 4.1).

The remainder of this section discusses the componentsrof ou
system in more detail. We will begin with an overview of our
compiler-based dynamic data flow analysis system, folloled
discussion of our policy specification mechanism. Finallg,will
discuss the details of our static analysis.

4.1 Dynamic Data Flow Analysis

The dynamic data flow analysis that we perform is a typestate
analysis [43], which is an analysis that associates anaistalue,
called typestate, with objects in a program. Unlike typhs,type-
state of an object can change during execution. For examaie,
handle or a string maintains the same type throughout @trie,
but its typestate—open or closed, tainted or untainted—ebange
as the program executes. Typestate is a general model eagfabl
supporting a wide variety of security analyses and poljdregud-
ing all those supported by general data flow tracking [31].

Our implementation of dynamic data flow analysis treats type
states as flow values in a data flow analysis and represents the
at runtime with a map that associates 32-hit tags with data. A
execution proceeds and data are used, the tag map is updated i
accordance with the property being analyzed. To enforceticpa
ular security policy, checks that use these tags are irtsgrte the
program.

The map is implemented using a very small runtime library tha
includes functions for initializing, checking, updatinand delet-
ing entries from the map. Our implementation tracks tagdat t
byte granularity, providindine-grainedtracking of data flow prop-
erties, which is necessary because the tracking of flow sahtie
the level of variables is unsafe in a type-unsafe langudge@,
especially in the presence of aliasing. Our map uses a spEnse
sentation similar to tree-like structures previously usganemory
leak profiling [25]. Each node in the tree represents an addre
range, with child nodes representing finer subdivisionfefrange
of their parent nodes. The leaf nodes contain arrays whicbrde
flow values associated with memory at a byte granularity. exer
ample, to record the taintedness of a byte of memory at asldres
the library traverses the tree to find the leaf node represgtite
smallest address range that containgnd it then record tainted-
ness in that node’s array of flow values. In addition, to sagenm
ory and decrease lookup times, our implementation alswalles
to store flow values in the interior nodes when the entirersebt
contains only one flow value, which can occur when large regio
are marked entirely with the same typestate.

4.2 Code Instrumentation

To use the map to track flow values at runtime, the compiler in-
struments the original program with calls to functions tinainage
the map. This process is straightforward. Like most comgijle
our system first transforms C to a simpler intermediate sepre-
tion before performing analysis and transformations. A tével,
the compiler only needs to consider assignments, basiatper
pointer dereferences, and function calls. Our transfaonafor
inserting code is as follows:

e Constants are given the default flow value.
e Assignments transfer the flow value of the source to the tar-
get.



property Taint : { Tainted, { Untainted } }

e Operators (such as arithmetic operators and array acgesses
initially Untainted

1
have the flow value of theieet of the operands. Theweet §
opefrator.ir} dqtaflow analysis combines flow values basedon  , |procedure recv(s, buf, len, flags) {
their position in the lattice [29]. 5 on_entry { buf --> buffer }

; ; : 6 nodi fy { buffer }

e Any address or pointer df_ereferencg that is used or assigned anal yze Taint { buffer < Tainted }
to acts on the corresponding entry in the map. 8

e In keeping with C’s call-by-value semantics, function sall o
transfer flow values to the arguments in the function body,

}

10 procedure strdup(s) {

. 11 on_entry { s --> string }
and function calls return any flow values through the return 1, access { string }
value. 13 nodi fy { string_copy }
14 on_exit { return --> new stri ng_copy }
These rules are analogous to the standard rules for appigiiag 15 anal yze Taint { string_copy <- string }
flow analysis [29] and remain the same for the wide variety of ij }
security problems that lattices naturally model [18]. Wlegn 18 |procedure printf(formt, args) {
plied to taintedness, these rules are the same code imseutiEs 19 on_entry { format --> format_string }
used by other compiler-based systems [48, 31] (althoughadur 20 access { formt_string }
= A T i ! 21 error if (Taint: format_string coul d-be Tainted)
ditional analysis and optimizations often allow us to remoon- 2 "Error: tainted format string!"
siderable amounts of instrumentation). These rules texghicit 3 |}

flows which are information flows that occur because of assign-
ments or arithmetic operations. Like taint tracking sysewur

system does not track implicit flows [44, 16, 37, 48, 39, 31]. Figure 3: Example syntax for defining a policy that prevents
; ifs ; format string attacks. First, the concept of taintedness igle-

4.3 POII(,:y Speqﬁcaﬂon . . ) fined. Then, we specify the introduction of taint through /O
In most taint tracking systems, the semantics of taint @®ly  fynctions such ag ecv() and the propagation of taint through
are hardcoded into the system. Because our sy§tem is dédigne  functions such asst r dup(). Finally, we prevent the use of
handle general data flow problems, our system instead faotdr tainted format strings in functions such asprintf(). The

the semantics of the analysis and policy to an external féedon- forward arrows in the syntax allow us to distinguish between
tains annotations describing the property to analyze, tiieypto pointers and pointed-to objects.

enforce, and the effects of library procedures on the ptgp&his
file contains thesame informationhat would have been hardcoded
into a compiler-based taint tracking system, but it prositlee ca-
pability to extend our system to other problems without cjiaa
the core analysis. Unlike in-lined annotations, our antiata de-
fine an analysis that imdependenof the input program, enabling
reuse across many programs. A typical user does not havet wr
any annotations to use an existing policy. The creation of pa-

icy files is a careful activity that is only necessary whenrdef a
new analysis or security policy.

Our system uses the Broadway declarative annotation laedaa,
21], which has been previously used for static error cherk23]
and library-level optimizations [24]. The annotation fildl$ the
compiler how to perform a specific data flow analysis by suipgly
the specifics for the rules in Section 4.2. The rules fall itieee
categories:

Our system readily supports domain-specific annotaticaisgty
beyond the standard library functions. For example, if thplia
cation calls an input sanitization function, we can add amotax
tion for that function that untaints the sanitized outputur Gys-
tem can also support policies that depend on concrete vakars
example, a naive policy that rejects tainted SQL query g#riis
inappropriate for detecting SQL injection attacks becamsery
strings always contain tainted characters. To handle S{gktion
attacks, we can supply a custom handler in the form of a C func-
tion that checks the taintedness of the keywords in the cgteng,
accepting strings with untainted keywords. To ensure soess|
we require that a user-defined handler never reject an dvattie
typestate analysis accepts, which ensures that the typestalysis
over-approximates the actual policy.

e Defining the Lattice. The lattice for each typestate prop- A key advantage of our system is the compiler's access to the
erty must be defined. The tags used at runtime correspond toSemantics of the security analysis. Our annotations detimat
the flow values, while the lattice itself defines the meet func  analysis to perform, ndtowto perform the analysis. In addition to
tion that specifies how flow values should be combined when being simpler to reason about, declarative policies allonsystem
used together in arithmetic and other operations. to perform an efficient static analysis, described in Sectid, that

e Describing Effects of Library Calls. The compiler also over-approximates dynamic behavior. It is this static wsialthat
needs to know how the various library calls affect tag val- allows our system to achieve the low overheads that we veidutis
ues. For each external function that affects the flow values, in Section 5
a brief summary annotation must be provided that describes L .
how the function can affect the flow values of globals and 4.3.1 Specifying Taintedness
arguments. In this section, we will use taint tracking and format strizig

e Defining Security Policies. Lastly, the compiler needs to  tacks to briefly illustrate the annotation language in Fég8r The
be given the definition of policy violations. Violations are annotations on lines 1-16 describe a data flow analysisjsrctse
defined as predicates over flow values that are checked ata taint analysis, as we now explain.
procedure boundaries, most commonly a check on the flow  Online 1, thepr oper t y keyword defines one lattice with two
value of an argument. By default, violations trigger our de- possible valuesTaintedandUntainted We placeUntaintedabove
fault error handler, which logs the violation and blocks the Taintedon the lattice so thakaintedandUntaintedvalues combine
operation, but the user can supply a custom error recovery to yield Taintedvalues.
function, which can be application-specific. We then annotate the library procedures that introduceetdin



ness, such asecv on line 4. Here, th@n_ent ry keyword at
line 5 allows us to assign a nanteyf f er, to the object pointed
to by the pointebuf . Theanal yze keyword indicates that when
ther ecv routine is invokedbuf f er (notbuf , which is a pointer)
becomes tainted. In addition, we inform the compiler that fino-
cedure modifiebuf f er .

Similarly, we also annotate library procedures that prapag
taintedness, such as r dup. Again, theon_ent r y andon_exi t
keywords (lines 11-14) describe relations between parated the
objects they point to, while theccess andnodi f y lines specify
that the function reads frost r i ng and writestast ri ng_copy.

The policy itself is defined on line 21 by using the resultshef t
taint analysis whepr i nt f is called. Here, we specify that an er-
ror occurs iff or mat _st ri ng (the string thaf or mat points to)
could be tainted. This line specifies the entire policy wébpect to
thepri nt f procedure—other taint-based policies could be added
that would reuse all the taint tracking annotations as-is.

Similar annotations have been used in other systems for erro
checking. For example, CQUAL [42] uses type qualifier annota
tions on library functions to statically check for formatisg vul-
nerabilities. Although slightly less verbose than the Birgay an-
notation language, their type system permits “reverse flawsl
other artifacts that increase the false positive rate. Bszaur sys-

closure attack occurs whéile data withRemotetrustworthiness

is written to aRemotty opened socket. The required procedure
summary annotations themselves are similar to those fondbr
string attacks and are omitted here. This policy precisetgels
the FTP-like behavior described earlier, disallowing filgctbsure
while permitting other file data or other user-derived datag sent.

4.3.3 Other Problems

Although we focus on the above two problems in this paper, our
system can be used to enforce a wide variety of problems. Lat-
tices are a natural model for many security problems [5, 18, 8
For example, multilevel security can be implemented withtiade
representing hierarchical levels, suchalassified Classified or
TopSecretalong with properties representing categories, such as
Army, Navy, etc. Library 1/O functions would be annotated to call
a user-provided helper function to read the appropriatel ftbm
the file, while the annotations for operations like stringyavould
remain essentially identical to those for taint trackindjlerdisclo-
sure. For additional information on the Broadway languautits
capabilities, please refer to prior work [22, 23, 21].

4.4 Static Data Flow Analysis

To avoid the cost of tracking all objects at runtime, our com-

tem is based on a more precise data flow analysis, we are able toyjjer statically performs an interprocedural data flow gsial that

avoid such anomalies while also being able to leverage faemo
precise pointer analysis (see Section 4.4.2). The actuaitation
burden—which is only incurred when defining new policies—is
discussed in Section 5.4

4.3.2 Specifying File Disclosure

To illustrate the flexibility of our system, we also applyatfile
disclosure vulnerabilities. File disclosure can occur wagemote
user can connect and download the contents of arbitrary files
improperly revealing sensitive information. This vulnigtiy can
be present when a program behaves unintentionally like & FT
server; that is, if the remote user can specify the name ofa fil
whose contents are then sent over the network. Note thaingend
data from files not directly specified by the user is fine, asigling
responses constructed from user input. In essence, fillosise
is a simple privacy protection problem where the goal is teues
that untrusted users cannot directly specify data to acG@émse at-
tacks are not well-studied on C programs because ovenvititela
account for the majority of C vulnerabilities. However, gshevul-
nerabilities are common among web applications writtercitps
ing languages such as PHP, Python, and Perl. Thus, our teefmi
remain relevant and applicable to safe languages.

File disclosure cannot be modeled with only taint trackieg b
cause taint tracking does not distinguish between the sairdata
and the trustedness of data. A taint tracking system couddl-di
low the transmission of tainted data, but such a policy walbd
prevent legitimate echoes of network input. The taint teacould
also disallow transmission of any file data, but such a pdisp
eliminates legitimate transfers and would even prevent qosry
services from operating. To model file disclosure accuyatee
system must track both the trustedness (whether the datadées u
attacker control) and the origin (whether the data comen fdile)
of data within the system.

File disclosure is straightforward to model in our systeme W
first define two propertiesTrust and Kind. Trust represents the
trustworthiness of the data source, which catribernalto the pro-
gram,Externalto the program but on the local system, or obtained
from aRemotesource Kind denotes the possible source of the data,
be it from aFile, standard 1/O, the network, or otherwise. A file dis-

identifies program locations where policy violations migltur.
Starting from these possible violations, a subsequentprdeedu-
ral analysis identifies statements in the program that etffexcflow
values—and therefore the policy decision—at these viatati Other
statements do not require instrumentation because theyotaft
fect the relevant flow values and thus cannot affect polidgres-
ment decisions. This analysis is supported by a fast andsgrec
pointer analysis, which is critical because a less prectieter
analysis would identify many more program locations as ipbss
violating the specified policy [23], leading to higher rumé& over-
head. We now discuss these steps in detail in the followibgest+
tions.

4.4.1 Static Vulnerability Analysis

The first step is to statically check the program to identify a
possible violations of the security policy as defined by thama
tations [23]. If the compiler can prove that there are no suieh
olations in the programno further analysis or code insertion is
required However, in cases where the compiler identifies possible
violations, additional analysis is needed to determinere/hestru-
mentation should be inserted.

To perform this first step, our system uses an iterativecstiatia
flow analysis that is performed by the Broadway static angkss-
tem [21]. Because the analysis is sound, these locationkaomly
locations where violations of the policy can occur. In Sat#.4.3,
we explain how our system ensures that all of these possitile-v
tions are guarded against.

4.4.2 Pointer Analysis

A significant obstacle to interprocedural program analigssthe
use of pointers. To reason precisely about the flow of dat, th
compiler must know which objects a pointer could point to.eTh
limited scalability of pointer analysis has stymied predattempts
to apply interprocedural analysis to dynamic taint tragKBil], so
interprocedural analysis is not commonly used.

Our system uses a scalable and precisat-driven pointer anal-
ysis[23, 21]. The client-driven analysis is able to match thecpre
sion of a fully flow- and context-sensitive pointer analysighout
requiring significantly more runtime than a fast and impsediow-



and context-insensitive analysis. Unlike most pointefys®s, the
client-driven analysis cannot be used as a stand-alonégpainal-
ysis. Instead, it requiresdientthat uses the results of the analysis,
which in our system is the static data flow analysis that ifiest
possible policy violations. By identifying locations wieeimpre-
cision in the pointer analysis affects the precision of thent's
results, the client-driven analysis is able to selectiuetyease pre-
cision for the pointer analysis in places where it will impeahe
results of the client analysis. Because the amount of exea p
cision is typically small [23], the client-driven analyssable to
avoid analyzing pointer relations that do not affect thertlj dra-
matically improving scalability without sacrificing pregdn with
respect to the client. The client itself must be a latticedohdata
flow analysis, so we see now how our annotation languagelardec
ative specification of data flow analysis plays an importafe n
minimizing runtime overhead.

Finally, we note that the client-driven approach does ngiziot
the soundness of the pointer analysis. Precise pointeysinas
an undecidable problem, so almost all pointer analysefjding
ours, compute a conservative over-approximation of theahce-
sult. In particular, our pointer analysis is sound underassump-
tion that displacements between objects are undefined ez sey
assumption common to C pointer analyses [3].

4.4.3 Data Flow Slicing
The static error checker identifies possible vulnerabgitdy lo-

is always a subset of the locations in the use-def chains flasva
value cannot change without a def (but as we have mentioméd, n
all defs change the flow value).

Our data flow slicing algorithm is also able to truncate theesl
when flow values are definitely known. Since the static data flo
analysis is an over-approximation of possible dynamic bienaa
statically computed exact flow value means that the objeltialvi
ways have that flow value at that location at runtime. Forewerv
programs and taint tracking, this optimization has the ctffaf
moving instrumentation away from input functions and ciase
the data directly involved in checks. In several of our pavgs,
input is read into a buffer, which is immediately copied toter
buffer. The copy is then used for subsequent operationsstatic
analysis can determine that the copy is always tainted,eramgl
further backwards tracing unnecessary. The resultingrproghus
does not need to instrument the input buffer, instead dyretark-
ing the copy as tainted.

This optimization has an interesting side effect: At timéws
tags of some addresses will not be up-to-date. However, we ca
guarantee that any piece of information will be up-to-datemwit
is used to make a security decision. Thus, the system is asesec
as a fully instrumented system, but it does not pay the pmaidoce
penalty of keeping all tags up-to-date at all times.

Another consequence of our technique is that a more complex
policy or program does not necessarily result in higher loead.
The actual overhead depends on the policy, the program,hend t

cation and memory object. Our system must ensure that all the way in which the program might violate the policy. A more com-

dynamic checks that are required to prevent possible vaitrier
ties are performed correctly. We refer to the process of cdimg
the statements that require instrumentatiodats: flow slicing by
analogy with program slicing [47].

We define alata flow slicewith respect to some objeatat some
program locatiori to be the sef of statements and locations that
affect a seD of objects, computed by the transitive closure as fol-
lows:

e [isinSandoisinO.

o If statements’ defines the flow value of somee O, thens’
isinS.

¢ If statements € S uses the flow value of som#, theno' is
in O.

In contrast with a program slice, which is the portion of thegsam
necessary for computing the value @fit locationl, a data flow
slice is the portion of the program that affects flosv valueof o at

l. For example, a statement that increments a counter witigdna
the counter’s concrete value but not its taintedness. Shrec@ow
value does not change, this statement is not part of the data fl
slice. Moreover, implicit flows and branch conditions aré part

of the data flow slice because they cannot affect the flow galue
for a tag-based data flow analysis, but tlaeg a part of a program
slice.

As long as the underlying pointer analysis is sound, data flow
slicing is a sound method for identifying statements thistcafflow
values: A statement can affect flow values only by definingrthe
If statements affects the flow value of object at location, it is
by definition in the data flow slice, and statements that afeat
[ through intermediate assignments are also included bedhes
data flow slice is a transitive closure.

Data flow slicing is an interprocedural dependence anatisis
tracks dependences in terms of flow values instead of cancadt
ues. Our compiler computes data flow slices by first constrgict
interprocedural use-def chains, which allows it to idenéfi pos-
sible definitions for any given use of an object. The data flbees

plex policy can result in lower overhead when the portionhaf t
program involved is smaller or off the critical path. In Sent5.3,
we see that guarding against file disclosure vulneralsliti@n of-
ten have even lower overhead than taint tracking despitegheei
significantly more complex problem. Larger programs alsmoto
necessarily experience higher overhead; in fact, in oultetSec-
tion 5.1.3), the highest overhead for server programs isttfer
smallest program.

Once the data flow slice from a potential vulnerability is eom
puted, it is straightforward to add instrumentation to ¢heogram
locations. The data flow slice includes all information timapacts
the flow value at the potential vulnerability, so the check swal-
uate to the same result as a fully-instrumented system.

4.5 Security Discussion

We now examine the security-related assumptions and advan-
tages of our system.

4.5.1 Trusted Computing Base

As with other software taint tracking solutions, our system
creases the size of the TCB, in our case adding the compiler to
the TCB. Although there are security implications [45] tastiing
the compiler, the additional trust required by our approaatmit-
igated by two factors. First, in typical modern environnserihe
compiler (usuallygcc or some other widely used compiler)as
ready trustedo compile the server programs that are actually run.
Second, ousource-to-sourcéranslator relies on the user’s already
trusted compiler for generating binary code. The changdsraod-
ifications that our system makes to programs are thus tresispa
and human-readable, making it difficult to insert undetctea-
licious code. Thus, our system requires minimal additidnast
beyond that which is already present in most deployed system

Like any system based on user-defined policies, the polices-
selves are also a part of the trusted computing base. If thetan
tions that summarize the effects of external functions acerrect
or incomplete, the system may miss important data flow. Sach a



error is analogous to a bug or omission in a hardcoded taiok+r
ing system. Fortunately, frequently-used external codales in

libraries like the C Standard Library that are relativelfpust and

whose semantics are well-understood, and we have foungribrat
viding accurate annotations for these functions is sttéigivard.

4.5.2 Attacks Detected

rupt enforcement data without first hijacking the programelzy
ploiting some vulnerability that the user’s security pplaoes not
guard against. Attacks that the user’s policy do guard agaire
prevented.

For additional protection, our mechanism can be easily com-
bined with various defenses against memory errors. For pbaam
address space randomization [7] or heap randomizatiorajtpe

Our system is capable of detecting attacks that depend on theused to defend our system against corruption attacks.

propagation of data through the system. More specificalycan
enforce any typestate policy, which includes traditioaait-based
attacks as well as general information flow tracking [31].e3é
attacks include those that do not overwrite control dataiaiate
data flow integrity and thus are problems even in safe larggiag

In our evaluation, we enforce a taint-based policy that gnev
format string attacks, similar to the format string policigsed by
existing taint tracking systems, such as TaintCheck [33]wall
as interpreters with taint tracking modes [46, 38]. In ddditour
system can enforce a policy that prevents attacker-cdedralata
leaks such as file disclosure vulnerabilities; this polieyimot be
enforced precisely by an ordinary taint tracking system.

Our system only guarantees that violations of the specifiéidyp
do not occur. This situation is shared by all enforcementrarisms—
for example, a memory-safe database server can still berceamp
mised by an SQL injection attack because such attacks doinot v
olate memory safety. The soundness of our analysis preaegts
attacks that violate the policy. However, if it is possibte the at-
tacker to gain control through an attack that does not \éolhe
policy, it may be possible to compromise the application.

4 5.3 Alternate Attack Channels

Like other taint tracking systems, we do not concern oueselv
with implicit flows Implicit flows occur when control flow influ-
ences the possible values of data. For example, informatanbe
implicitly passed along branches of the foirh( x==0) y=1,;
el se y=0; which allows the user to influence the valueyoby
modifying the value ofx. Taint tracking systems usually do not
considery tainted even ik is tainted. Although such cases result
in implicit information flows that are theoretically explable, the
majority of attacks depend on direct flow of data [16, 10], ethi
our system does guard against.

5. EVALUATION

In this section, we evaluate the effectiveness of our sydtgm
using it to prevent format string attacks and file disclosur@era-
bilities. We verify attack prevention, measure static cespan-
sion, and measure runtime overhead for five open-sourcerserv
programs and four compute-bound SPECint 2000 benchmairkse S
our system is a source-to-source translator, we compileethe
hanced C programs usimgcc- 3. 3 on Linux with the default
compiler options and optimization levels that were sumphbg the
original developers of the benchmark programs. The progiam
thenrun on a 2.4 GHz Pentium 4 with 1 GB of RAM, running Linux
2.6.17. For each benchmark, we use the program’s docuri@ntat
and examples to run the program with a reasonable configarati

5.1 Taint Analysis for Server Programs

We evaluate our system with a taint checking policy that @nés
the use of tainted format strings in exploitable functiofiis strict
policy is similar to that enforced in the TaintCheck syst&m][

Our policy distrusts all inputs that can be under user-obnim-
cluding the file system and environmental variables. Ouicpas
significantly stronger than the default “trust everythixgept net-
work input” policy used by some other systems [37, 39] fovees.

This stronger policy is necessary to detect uses of tairdéal tthat
are cached in the file system, an actual problem in one of awatbhe
marks, as we discuss in Section 5.1.1.

We apply our system to five commonly-used open source server
programspf i nger d, muh,wu- f t pd, Bl ND, andapache. These
programs are, respectively, a finger daemon, an IRC proxyT&h
server, a hame server, and a web server. Several are widely de
ployed and typically run in privileged mode, so their rolmesis
and integrity are critical.

Our system also does not defend against attacks that are not e use our system to produce a modified version of each pro-

based on information flows in program code. For example, dis-
tributed denial of service attacks can harm systems withcaat-

ing any individually anomalous information flows. Infornmat can
also be leaked via covert timing channels, which we also ddeo
tect, although our requirement for source code limits thbtyalof
malicious developers to introduce malicious code. Finally so-
lution only defends against attacks, not arbitrary memargre. A
buggy program can still experience segmentation faultscdiner
errors using only untainted data.

4.5.4 Defending the Enforcement Mechanism

The design of our system makes it difficult in practice for an
attacker to subvert the enforcement mechanism itself.t,Hike
other compiler-based systems [48, 31], the original progeawrit-
ten before the enforcement code is added, so the origingtgmo
cannot directly access enforcement data. Moreover, umdike
tracking systems that track taintedness using stacka#dcvari-
ables or fixed addresses [48], all of our structures are digzdin
allocated on the heap and concealed behind function catlsit-P
ers to enforcement data never appear in application codéheso
attacker cannot obtain a pointer to our enforcement dathowit
sophisticated heap attacks. Thus, the attacker will nobhe cor-

gram that contains additional code to perform dynamic taatk-
ing. In our tables, we refer to this version BBFA. The actual
analysis time, while not negligible, is no worse than founutes
for apache, our largest benchmark with nearly 67K lines of code,
and thus does not pose a serious obstacle to deployment.
Finally, we note that these programs were selected in part be
cause our static data flow analysis identified potential enahili-
ties in them. Our test programs were selected from a suitperfi-o
source server programs that was previously used for static p
gram checking research [23]. For nine other programs irsthite,
our compiler analysis determines that there are no impropes
of tainted data and therefore no instrumentation whatsdeue-
quired. These programs incluBeackHol e,pri voxy,sqlite,
andpur ef t pd, and indeed there are no known applicable tainted-
data attacks against our tested versions in the CVE datalbase
these nine programs, our system does not modify the prognaim a
therefore exhibits 0% runtime overhead and 0% code expansio
Only a system that performs a static interprocedural tainalg-
sis can achieve these overheallge have chosen to exclude these
nine programs from our results and to instead focus on thase p
grams that have possible vulnerabilities, but these reselterthe-
less highlight an important advantage of our approach.



Program Version | Exploit Ref Detected
pfingerd | 0.7.8 NISR16122002B| Yes
nuh 2.05¢c CAN-2000-0857 | Yes
wu-ftpd | 2.6.0 CVE-2000-0573 | Yes
bi nd 4.9.4 CVE-2001-0013 | Yes

Table 2: Evaluation of our system’s ability to detect actual attacks All
attacks are detected successfully.

Program Original [ DDFA | Code Overhead
pfi ngerd 49655 49655 0%
muh 59880| 60488 1.01%
wu-f t pd 205487 | 207997 1.22%
bi nd 215669 219765 1.90%
apache 552114 | 554514 0.43%
Average Code Expansion 0.91%

Table 3: The static code expansion required for dynamic taint track-
ing, as measured by compiled binary size (bytes).

5.1.1 Security Evaluation

We first evaluate our system’s ability to detect attacks. rFdu
our benchmark programs contain known vulnerabilities dnatex-
ploitable. For examplepf i nger d improperly trusts hostnames,
while muh does not properly check format strings when reading
or writing log files. The SITE EXEC format string vulnerabjli
in wu- f t pd is actually the first discovered format string vulnera-
bility [13]. Bl ND improperly writes requests ®ys| og when an
authoritative nameserver is malicious. Our particularfigomation
of apache (core only without optional modules) does not contain
any known format string vulnerabilities; it is included bese our
static analysis was not able to completely eliminate thasjtmlity.

To test whether our system correctly detects the use ofeint
data, we send malicious input to the instrumented prograras.
ble 2 shows the vulnerable programs, shows the vulnenaliilit
question, and indicates that in each case our system sfidbess
detects these attacks. In each case, it detects that talatads
about to be used improperly and identifies the potentiallijaicais
data.

The case ofruh deserves special attention. The vulnerability ex-
ists becauseuh writes logged messages verbatim to disk. Later,
when a user requests log informatiomh reads the message back
from disk and prints it directly usingr i nt f . Thus, if the origi-
nal message contained dangerous format specifieits,could be
compromised when the message is printed back. If the pdity i
trust local files, then this attack will go undetected, whieim be
a serious problem in servers that cache data on disk. Sewéaral
tracking systems trust local files by default [37, 39]; theérfor-
mance when applying our more aggressive policy is unknowin bu
likely to be worse due to the greater presence of tainted d2ta
system can enforce this stronger policy without fear of iriog
significant additional overhead because our interprocdunaly-
sis can frequently prove that most uses of local file dataafee s

5.1.2 Code Expansion

Because our system adds instrumentation to the sourcegonogr
itintroduces some static code expansion over unmodified.cdg
measure this expansion by comparing the sizes of the otigith
modified binary executables. Binary code size provides araof
curate measure of code overhead than source code sizesbabau

Program Original DDFA | Runtime Overhead
pfingerd 3.07s 3.19s 3.78%
nmuh 11.23ms 11.23ms 0.0%
wu- f t pd 2.745MB/s | 2.742MB/s 0.10%
bi nd 3.580ms 3.566ms -0.38%
apache 6.048MB/s | 6.062MB/s -0.24%
Average Overhead 0.65%

Table 4: Runtime overhead for performing dynamic taint tracking on
server programs. This table shows the response time or thraghput
overhead for our DDFA system running on a 100mbps ethernet net-
work.

binary code size includes the effects of standard compitmiza-
tions.

From Table 3, we see that the average code expansion for our
benchmarks is less than 1%. In several cases, the compitadybi
size does not actually increase because the added codin feiks
padding thaggcc adds. To place our results in context, LIFT with
hot path optimizations can at least double the size of the doé to
the need to maintain separate “fast” and “check” copies, [g8]le
compiler-based systems like GIFT [31] report 30-60% insesan
binary size.

5.1.3 Runtime Overhead

The tracking of data flows incurs a runtime cost. For our set
of server programs, we measure this cost by measuring server
sponse time or throughput, as appropriate for the partiquia-
gram.

The pf i ngerd, muh, andbi nd servers deal with short re-
quests, so the end user is most directly impacted by incsdase
response time. For these programs, we measure the timedretwe
the sending of the request and the receipt of the entire nsspo
averaged over one hundred requests. On the other hand t pd
andapache are used to serve files of varying sizes, so the pri-
mary metric of concern to end users is throughput (MB/secg. W
measure throughput by downloading files with sizes unifgrdis-
tributed among 4KB, 8KB, 16KB, and 512KB over one minute.

To avoid local resource contention, our benchmarking tliens
on a different machine from the server, interacting over cllo
100mbps Ethernet connection. As shown in Table 4, our swluti
has an average overhead of 0.65%. In all instances, theeagib
lost within the noise. In fact, in three instances, averagees per-
formance actually improves by small amounts when we perform
taint tracking. This improvement may be due to differenaes i
memory layout induced by our runtime system and the regultin
effect on cache performance. As a point of comparison, the pr
vious fastest compiler-based and dynamically optimizestesyis
report server application overhead of 3-7% [48] and 6% [88],
spectively.

5.2 Taint Analysis for Compute-Bound Appli-
cations

In this section, we evaluate our system’s performance orpoten
bound applications by applying the format string policy tauif
SPECint 2000 benchmarks, with all I/O marked as tainted.s&he
benchmarks were chosen because it was possible to injdistirea
format string vulnerabilities into them, a task that can balleng-
ing for the other SPECint benchmarks. In each case, ourstati
analysis determines that the programs contain no such naldite
ity. Thus,our true overhead for these examples is.0%

To study the performance impact that our system would have on



Program | Code Expansior] Overhead
gzip 0.0% | 51.35%
vpr 0.0% 0.44%
ncf 0.0% -0.32%
crafty 0.36% 0.25%
Average 0.09% 12.93%

Table 5: Runtime overhead for performing dynamic taint tracking on
compute-bound programs. These versions of the SPECint behmarks
were modified to introduce a format string vulnerability.

Program Code Expansion] Response timd
pfi ngerd 0% 0%
nmuh 2.67% 2.13%
bi nd 0.10% -1.38%
Average 0.92% 0.25%

Table 6: Servers augmented by our system to guard against file dis-
closure vulnerabilities exhibit negligible overhead and ode expansion.

compute-bound programs that do contain vulnerabilities pvan-
ually insert a vulnerability into each of the benchmarks.efsure
that these injected vulnerabilities are realistic andesentative of
real vulnerabilities, we use the following guidelines itesting the
locations for the artificial vulnerabilities. (1) We chodseations
where actuapr i nt f /scanf calls are being made, ensuring that
our injected vulnerability appears at a location where igmibe
possible. (2) We preferentially choose calls that operateharac-
ter data, eliminating unrealistic vulnerabilities, suchthe use of
integers as format strings. (3) Finally, we check that ojedted
vulnerability is not eliminated by our static analysis.

Table 5 presents our results with the standard SPEC workload
In all of the benchmarks, we demonstrate significant peréoce
improvements over current software-based systems. Thagee
overhead of 12.9% improves upon the best previously reg@rie
erages of 75-260% [48, 39]. Furthermore, in most cases,ysr s
tem’s overhead for compute-bound applications is esdbnti@ro
even when the application does contain vulnerabilitiesusT tour
approach is less adversely affected by CPU-intensive progthan
all current software-based techniques.

The gzi p benchmark is a worst case for taint tracking sys-
tems [44, 48, 39, 17] due to its complex behavior and seirtyitiy
memory bandwidth. It operates on character data extegpsarel
propagates tainted data everywhere, reducing the flowstiay/s-
tem can statically eliminate and negatively impacting penance.
Nevertheless, our system’s overhead of 51% representdi-sig
cant improvement over prior software systems, with ovethes
106% for a compiler-based system [48] to over 600% for dyami
instrumentation [39], and our result compares favorablghithe
31% overhead for the most recent hardware-based solutin [1

5.3 File Disclosure Attacks

In addition to taint tracking, we evaluate our system’sigbtb
prevent file disclosure attacks, as discussed in Sectia@.4Ta-
ble 6 shows our results. F@f i nger d, our static analysis was
able to determine that it contained no FTP-like behaviodsthare-
fore no instrumentation was required. Fonh and bi nd, out
system was unable to rule out this possibility and therefae
to insert a small amount of additional code. However, thayl@i
response time was so small as to not be consistently medsurab

These results highlight the advantages of our system. , First

some cases all instrumentation can be eliminated, givingp@8¢-
head. Second, in the cases where some tracking is requined, o
analysis is able to keep the additional code to a minimumosiy
only a small or negligible overhead. Finally, this exampiews
that without rewriting the compiler or its static analysisir sys-
tem can be applied to complex problems that taint trackimgpeoa
directly handle. Moreover, if existing taint tracking ssists were
extended to cover richer problems, they would require Sianitly
greater memory usage to track additional bits of data, wiie
system’s memory usage is not adversely affected by thekerric
policies.

5.4 Policy Annotation Burden

We now briefly evaluate the burden of providing the policy an-
notations that are required by our system. Our annotatiomean
three types: (1pointer annotationswhich describe pointer rela-
tions; (2)analysis annotationswhich define a data flow analysis;
and (3)policy annotationswhich use the results of the data flow
analysis to enforce a policy.

Pointer annotations are common to all policies, becausedfe
scribe the pointer relations of the arguments of each fanctpec-
ifying what the function accesses and modifies; this infdromais
used by the pointer analysis. Once a library has been amdetat
in our case the Standard C library—pointer annotations metd
be rewritten unless the library interface changes. For thadard
C library, there are pointer annotations for 116 procedungth a
median size of 3 lines and an average size of 4.68 lines.

Analysis and policy annotations can differ for differencsety
policies. For the format string policy, there are 44 annotet of
these types, with a median size of 6 lines each and an averge s
of 5.75 lines each. However, the vast majority of these aseres
tially duplicates. For example, the annotations for eacmber of
thepri ntf family of functions are essentially identical. When
these “cut-and-paste” duplicates are eliminated, thé notaber is
only 21. For the file disclosure policy, there are 65 such &no
tions, with a median size of 7 lines each and an average s&&»f
lines. Again, the majority of these are essentially dupisaWhen
these are accounted for, there are only 36 unique annagation

To understand the difference between analysis and policg-an
tations, we now discuss several different use cases. Irirfgest
case, the desired policy exists and there is no need to toychre
notation file. In other cases, a security expert may wish tdifypo
an existing policy, for example, by calling a sanitizatiamétion
when a violation is detected. Here, only the policy annotegire-
quire changes to account for the sanitization code. Finallthe
most invasive case, a new data flow analysis must be defined, in
which case new analysis and policy annotations must beenritt

The annotations themselves are not difficult to write. Ourcan
tation files only use seven major constructs, so the langisaggsy
to understand. All of these constructs are shown in the elamp
Section 4.3.1, and the annotations shown are representdtihe
kind that must be written. In any case, the information puledi by
the annotations is required by any policy-enforcing systenour
system such information is specified by annotation fileseratian
being imbedded in the code.

6. CONCLUSIONS

In this paper we have presented a compiler-based systerrthat
forces security policies by tracking dynamic data flow tlylopro-
grams. We have demonstrated the generality of our systersibyg u
it to enforce two security policies, one that prevents uredifile
disclosure and another that prevents format string attabkshave
also shown that our system produces low overhead when dpplie
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tions. 196-206, 2007.
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modern languages and even binary code. For example, oig stat of Internet worms. IrProceedings of the 20th ACM
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system, producing a system that protects binary code freamokeat 2005.
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tem would have to deal with the difficulty of building the cosit M. Frantzen, and J. Lokier. FormatGuard: Automatic
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