
0018-9162/04/$20.00 © 2004 IEEE44 Computer

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Scaling to the End of
Silicon with EDGE
Architectures

I nstruction set architectures have long lifetimes
because introducing a new ISA is tremendously
disruptive to all aspects of a computer system.
However, slowly evolving ISAs eventually
become a poor match to the rapidly changing

underlying fabrication technology. When that gap
eventually grows too large, the benefits gained by
renormalizing the architecture to match the under-
lying technology make the pain of switching ISAs
well worthwhile.

Microprocessor designs are on the verge of a
post-RISC era in which companies must introduce
new ISAs to address the challenges that modern
CMOS technologies pose while also exploiting the
massive levels of integration now possible. To meet
these challenges, we have developed a new class of
ISAs, called Explicit Data Graph Execution
(EDGE), that will match the characteristics of semi-
conductor technology over the next decade.

TIME FOR A NEW ARCHITECTURAL MODEL?
The “Architecture Comparisons” sidebar pro-

vides a detailed view of how previous architectures
evolved to match the driving technology at the time
they were defined.

In the 1970s, memory was expensive, so CISC
architectures minimized state with dense instruction
encoding, variable-length instructions, and small
numbers of registers. In the 1980s, the number of
devices that could fit on a single chip replaced
absolute transistor count as the key limiting resource.
With a reduced number of instructions and modes

as well as simplified control logic, an entire RISC
processor could fit on a single chip. By moving to a
register-register architecture, RISC ISAs supported
aggressive pipelining and, with careful compiler
scheduling, RISC processors attained high perfor-
mance despite their reduction in complexity.

Since RISC architectures, including the x86
equivalent with µops, are explicitly designed to sup-
port pipelining, the unprecedented acceleration of
clock rates—40 percent per year for well over a
decade—has permitted performance scaling for the
past 20 years with only small ISA changes. For
example, Intel has scaled its x86 line from 33 MHz
in 1990 to 3.4 GHz today—more than a 100-fold
increase over 14 years. Approximately half of that
increase has come from designing deeper pipelines.
However, recent studies show that pipeline scaling
is nearly exhausted,1 indicating that processor
design now requires innovations beyond pipeline-
centric ISAs. Intel’s recent cancellation of its high-
frequency Pentium 4 successors is further evidence
of this imminent shift.

Future architectures must support four major
emerging technology characteristics:

• Pipeline depth limits mean that architects must
rely on other fine-grained concurrency mecha-
nisms to improve performance.

• The extreme acceleration of clock speeds has
hastened power limits; in each market, future
architectures will be constrained to obtain as
much performance as possible given a hard

The TRIPS architecture is the first instantiation of an EDGE instruction set,
a new, post-RISC class of instruction set architectures intended to match
semiconductor technology evolution over the next decade, scaling to new
levels of power efficiency and high performance.

Doug Burger
Stephen W.
Keckler
Kathryn S.
McKinley
Mike Dahlin
Lizy K. John
Calvin Lin
Charles R.
Moore
James Burrill
Robert G.
McDonald
William
Yoder, and
the TRIPS
Team
The University of
Texas at Austin

July 2004 45

Comparing EDGE with historic architectures illus-
trates that architectures are never designed in a vac-
uum—they borrow frequently from previous archi-
tectures and can have many similar attributes.

• VLIW: A TRIPS block resembles a 3D VLIW
instruction, with instructions filling fixed slots in a
rigid structure. However, the execution semantics
differ markedly. A VLIW instruction is statically
scheduled—the compiler guarantees when it will
execute in relation to all other instructions.1 All
instructions in a VLIW packet must be indepen-
dent. The TRIPS processor is a static placement,
dynamic issue (SPDI) architecture, whereas a VLIW
machine is a static placement, static issue (SPSI)
architecture. The static issue model makes VLIW
architectures a poor match for highly communica-
tion-dominated future technologies. Intel’s family
of EPIC architectures is a VLIW variant with simi-
lar limitations.

• Superscalar: An out-of-order RISC or x86 super-
scalar processor and an EDGE processor traverse
similar dataflow graphs. However, the superscalar
graph traversal involves following renamed point-
ers in a centralized issue window, which the hard-
ware constructs—adding instructions individually—
at great cost to power and scalability. Despite
attempts at partitioned variants,2 the scheduling
scope of superscalar hardware is too constrained
to place instructions dynamically and effectively. In
our scheduling taxonomy, a superscalar processor
is a dynamic placement, dynamic issue (DPDI)
machine.

• CMP: Many researchers have remarked that a
TRIPS-like architecture resembles a chip multi-
processor (CMP) with 16 lightweight processors.
In an EDGE architecture, the global control maps
irregular blocks of code to all 16 ALUs at once, and
the instructions execute at will based on dataflow
order. In a 16-tile CMP, a separate program counter
exists at each tile, and tiles can communicate only
through memory. EDGE architectures are finer-
grained than both CMPs and proposed specula-
tively threaded processors.3

• RAW processors: At first glance, the TRIPS
microarchitecture bears similarities to the RAW
architecture. A RAW processor is effectively a 2D,
tiled static machine, with shades of a highly parti-
tioned VLIW architecture. The main difference
between a RAW processor and the TRIPS architec-

ture is that RAW uses compiler-determined issue
order (including the inter-ALU routers), whereas
the TRIPS architecture uses dynamic issue, to tol-
erate variable latencies. However, since the RAW
ISA supports direct communication of a producer
instruction in one tile to a consuming instruction’s
ALU on another tile, it could be viewed as a stati-
cally scheduled variant of an EDGE architecture,
whereas TRIPS is a dynamically scheduled EDGE
ISA.

• Dataflow machines: Classic dataflow machines,
researched heavily at MIT in the 1970s and 1980s,4

bear considerable resemblances to intrablock exe-
cution in EDGE architectures. Dataflow machines
were originally targeted at functional programming
languages, a suitable match because they have
ample concurrency and have side-effect free, “write-
once” memory semantics. However, in the context
of a contemporary imperative language, a dataflow
architecture would need to store and process many
unnecessary instructions because of complex con-
trol-flow conditions. EDGE architectures use con-
trol flow between blocks and support conventional
memory semantics within and across blocks, per-
mitting them to run traditional imperative lan-
guages such as C or Java, while gaining many of the
benefits of more traditional dataflow architectures.

• Systolic processors: Systolic arrays are a special his-
torical class of multidimensional array processors5

that continually process the inputs fed to them. In
contrast, EDGE processors issue the set of instruc-
tions dynamically in mapped blocks, which makes
them considerably more general purpose.

References
1. J.A. Fisher et al., “Parallel Processing: A Smart Compiler

and a Dumb Machine,” Proc. 1984 SIGPLAN Symp.
Compiler Construction, ACM Press, 1984, pp. 37-47.

2. K.I. Farkas et al., “The Multicluster Architecture: Reduc-
ing Cycle Time Through Partitioning,” Proc. 30th Ann.
IEEE/ACM Int’l Symp. Microarchitecture (MICRO-30),
IEEE CS Press, 1997, pp. 149-159.

3. G.S. Sohi, S.E. Breach, and T.N. Vijaykumar, “Multiscalar
Processors,” Proc. 22nd Int’l Symp. Computer Architec-
ture (ISCA 95), IEEE CS Press, 1995, pp. 414-425.

4. Arvind, “Data Flow Languages and Architecture,” Proc.
8th Int’l Symp. Computer Architecture (ISCA 81), IEEE
CS Press, 1981, p. 1.

5. H.T. Kung, “Why Systolic Architectures?” Computer, Jan.
1982, pp. 37-46.

Architecture Comparisons

46 Computer

power ceiling; thus, they must support
power-efficient performance.

• Increasing resistive delays through global
on-chip wires means that future ISAs must
be amenable to on-chip communication-
dominated execution.

• Design and mask costs will make running
many application types across a single
design desirable; future ISAs should sup-
port polymorphism—the ability to use
their execution and memory units in dif-
ferent ways and modes to run diverse
applications.

The ISA in an EDGE architecture supports
one main characteristic: direct instruction com-
munication. Direct instruction communication
means that the hardware delivers a producer
instruction’s output directly as an input to a con-
sumer instruction, rather than writing it back to a
shared namespace, such as a register file. Using this
direct communication from producers to con-
sumers, instructions execute in dataflow order, with
each instruction firing when its inputs are available.
In an EDGE architecture, a producer with multi-
ple consumers would specify each of those con-
sumers explicitly, rather than writing to a single
register that multiple consumers read, as in a RISC
architecture.

The advantages of EDGE architectures include
higher exposed concurrency and more power-effi-
cient execution. An EDGE ISA provides a richer
interface between the compiler and the microarchi-
tecture: The ISA directly expresses the dataflow
graph that the compiler generates internally, instead
of requiring the hardware to rediscover data depen-
dences dynamically at runtime, an inefficient
approach that out-of-order RISC and CISC archi-
tectures currently take.

Today’s out-of-order issue RISC and CISC designs
require many inefficient and power-hungry struc-
tures, such as per-instruction register renaming, asso-
ciative issue window searches, complex dynamic
schedulers, high-bandwidth branch predictors, large
multiported register files, and complex bypass net-
works. Because an EDGE architecture conveys the
compile-time dependence graph through the ISA, the
hardware does not need to rebuild that graph at run-
time, eliminating the need for most of those power-
hungry structures. In addition, direct instruction
communication eliminates the majority of a con-
ventional processor’s register writes, replacing them
with more energy-efficient delivery directly from pro-
ducing to consuming instructions.

TRIPS: AN EDGE ARCHITECTURE
Just as MIPS was an early example of a RISC

ISA, the TRIPS architecture is an instantiation of
an EDGE ISA. While other implementations of
EDGE ISAs are certainly possible, the TRIPS archi-
tecture couples compiler-driven placement of
instructions with hardware-determined issue order
to obtain high performance with good power effi-
ciency. At the University of Texas at Austin, we are
building both a prototype processor and compiler
implementing the TRIPS architecture, to address
the above four technology-driven challenges as
detailed below:

• To increase concurrency, the TRIPS ISA in-
cludes an array of concurrently executing
arithmetic logic units (ALUs) that provide both
scalable issue width and scalable instruction
window size; for example, increasing the
processor’s out-of-order issue width from 16
to 32 is trivial.

• To attain power-efficient high performance, the
architecture amortizes the overheads of sequen-
tial, von Neumann semantics over large, 100-
plus instruction blocks.

• Since future architectures must be heavily par-
titioned, the TRIPS architecture uses compile-
time instruction placement to mitigate com-
munication delays, which minimizes the phys-
ical distance that operands for dependent
instruction chains must travel across the chip
and thus minimizes execution delay.

• Because its underlying dataflow execution
model does not presuppose a given application
computation pattern, TRIPS offers increased
flexibility. The architecture includes config-
urable memory banks, which provide a gen-
eral-purpose, highly programmable spatial
computing substrate. The underlying dataflow-
like execution model, in which instructions fire
when their operands arrive, is fundamental to
computation, efficiently supporting vectors,
threads, dependence chains, or other compu-
tation patterns as long as the compiler can
spatially map the pattern to the underlying exe-
cution substrate.

To support conventional languages such as C,
C++, or Fortran, the TRIPS architecture uses
block-atomic execution. In this model, the com-
piler groups instructions into blocks of instruc-
tions, each of which is fetched, executed, and
committed atomically, similar to the conventional
notion of transactions: A block may either be com-

An EDGE ISA
provides a richer

interface
between the

compiler and the
microarchitecture.

July 2004 47

mitted entirely or rolled back; a fraction of a block
may not be committed. Each of these TRIPS blocks
is a hyperblock2 that contains up to 128 instruc-
tions, which the compiler maps to an array of exe-
cution units. The TRIPS microarchitecture behaves
like a conventional processor with sequential
semantics at the block level, with each block
behaving as a “megainstruction.” Inside executing
blocks, however, the hardware uses a fine-grained
dataflow model with direct instruction communi-
cation to execute the instructions quickly and effi-
ciently.

TRIPS instructions do not encode their source
operands, as in a RISC or CISC architecture.
Instead, they produce values and specify where the
architecture must route them in the ALU array. For
example, a RISC ADD instruction adds the values
in R2 and R3, and places the result in R1:

ADD R1, R2, R3

The equivalent TRIPS instruction specifies only the
targets of the add, not the source operands:

ADD T1, T2

where T1 and T2 are the physical locations
(assigned by the compiler) of two instructions
dependent on the result of the add, which would
have read the result in R1 in the RISC example
above. Each instruction thus sends its values to the
consumers, and instructions fire as soon as all of
their operands arrive.

The compiler statically determines the locations
of all instructions, setting the consumer target loca-
tion fields in each instruction appropriately.
Dynamically, the processor microarchitecture fires
each instruction as soon as it is ready. When fetch-
ing and mapping a block, the processor fetches the
instructions in parallel and loads them into the
instruction buffers at each ALU in the array. This

N N N N N

0 8 16 24

1 9 17 23

2 10 18 24

3 11 19 25

4 12 20 26

5 13 21 27

7 15 23 31

N N N N N

N

N

N

N

N

N

N

6 14 22 28N

S CS

P

S CW CN S

250 MHz
(2:1)

250 MHz
(2:1)

CPU 0
500 MHz

CPU 1
500 MHz

J Interrupts

Clk/Tst

8 120 120

20

40

CE S

148 148

148 148120 120

GMI

N

125 MHz
DDR

125 MHz
DDR

125 MHz
DDR

125 MHz
DDR

4

Total signal pin
count: ~1,144

Global control:
 Protocols: fill, flush, commit
 Contains I-cache tags,
 block header state, r/w instructions
 branch predictor
Register banks:
 32 registers per bank x 4 threads
 64 static rename registers per bank
 Dynamically forwards interblock values
Execution nodes:
 Single-issue ALU tile
 Full-integer and floating-point units (no FDIV)
 Buffers 64 instructions (8 insts x 8 blocks) per tile

G

E

R

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

D

D

D

D

I

I

I

I

GRR R R I

Router

Input ports

Output ports

Operand
buffers

integer
FP

64 instruction
buffers

H5
H6
H7

A0
A1

(a) TRIPS execution node (b) TRIPS processor core (c) TRIPS prototype chip

D-cache banks:
 16KB 2-way, 1-port, cache-line interleaved banks
 TLB, 8 MSHRs, LSQ, dependence pred. per bank
 Supports load speculation and distributed commit
I-cache banks:
 16KB 2-way, 1-port L1 instruction cache banks
 Each bank delivers four insts/cycle
 Banks are slaves to global control unit tag store
Memory:
 DDR SDRAM, PC2100 DiMMs likely
 4 channels w/ page interleave
 Synopsis memory controller MacroCell
 2 GB/s each channel

I

D

I

S

Chip-to-chip:
 Protocol: OCN extension
 64b data path each direction
 4 channels: N/S/E/W
 2 GB/s each direction on each channel
Control processor interface:
 Slave side of generic memory interface
 Source interrupts to get attention
 Runs like asynchronous memory
 Includes CP command handler
JTAG:
 Protocol: IEEE 1149
 4 channels w/ page interleave
 Includes scan intercept TAP controller
 Used for test and early low-level debug

C

P

J
Se

co
nd

ar
y

ca
ch

e
 in

te
rfa

ce

Figure 1. TRIPS prototype microarchitecture. (a) The prototype chip contains two processing cores, each of which is a 16-wide out-of-order
issue processor that can support up to 1,024 instructions in flight. Each chip also contains 2 Mbytes of integrated L2 cache, organized as 32
banks connected with a lightweight routing network, as well as external interfaces. (b) The processor core is composed of 16 execution
nodes connected by a lightweight network. The compiler builds 128-instruction blocks that are organized into groups of eight instructions per
execution node. (c) Each execution node contains a fully functional ALU, 64 instruction buffers, and a router connecting to the lightweight
inter-ALU network.

48 Computer

block mapping and execution model
eliminates the need to go through any
fully shared structures, including the
register file, for any instruction unless
instructions are communicating across
distinct blocks. The only exceptions
are loads and stores, which must
access a bank of the data cache and
memory ordering hardware.

To demonstrate the potential of
EDGE instruction sets, we are build-
ing a full prototype of the TRIPS
architecture in silicon, a compiler that

produces TRIPS binaries, and a limited runtime
system.

Figure 1a is a diagram of the prototype chip,
which will be manufactured in 2005 in a 130-nm
ASIC process and is expected to run at 500 MHz.
The chip contains 2 Mbytes of integrated L2 cache,
organized as 32 banks connected with a lightweight
routing network. Each of the chip’s two processing
cores is a 16-wide out-of-order issue processor that
can support up to 1,024 instructions in flight, mak-
ing TRIPS the first kiloinstruction processor to be
specified or built.

As Figure 1b shows, each processing core is com-
posed of a 4 × 4 array of execution nodes connected
by a lightweight network. The nodes are not
processors; they are ALUs associated with buffers
for holding instructions. There are four register file
banks along the top, and four instruction and data
cache banks along the right-hand side of the core,
as well as four ports into the L2 cache network.
The compiler builds 128-instruction blocks, orga-
nized into groups of eight instructions per node at
each of the 16 execution nodes.

To fetch a block of instructions, the global con-
trol tile (“G” in Figure 1b) accesses its branch pre-
dictor, obtains the predicted block address, and
accesses the I-cache tags in the G-tile. If the block’s
address hits in the I-cache, the G-tile broadcasts the
block address to the I-cache banks.

Each bank then streams the block instructions
for its respective row into the execution array and
into the instruction buffers at each node, shown in
Figure 1c. Since branch predictions need occur only
once every eight cycles, the TRIPS architecture is
effectively unconstrained by predictor or I-cache
bandwidth limitations.

Each block specifies register and memory inputs
and outputs. Register read instructions inject the
block inputs into the appropriate nodes in the exe-
cution array. Instructions in the block then execute
in dataflow order; when the block completes, the

control logic writes all register outputs and stores
to the register tiles and memory, then it removes
the block from the array. Each block emits exactly
one branch that produces the location of the sub-
sequent block.

To expose more instruction-level parallelism, the
TRIPS microarchitecture supports up to eight
blocks executing concurrently. When the G-tile
maps a block onto the array, it also predicts the
next block, fetching and mapping it as well. In
steady state, up to eight blocks can operate con-
currently on the TRIPS processor. The renaming
logic at the register file bank forwards register val-
ues that one block produces directly to consumers
in another block to improve performance further.

With this execution model, TRIPS can achieve
power-efficient out-of-order execution across an
extremely large instruction window because it elim-
inates many of the power-hungry structures found
in traditional RISC implementations. The architec-
ture replaces the associative issue window with
architecturally visible instruction buffers con-
structed from small RAMs. The partitioned register
file requires fewer ports because the processor never
writes temporary values produced and consumed
within a block to the register file. As a result, the
TRIPS processor reduces register file accesses and
rename table lookups by 70 percent, on average.

The microarchitecture replaces the unscalable
broadcast bypass network in superscalar processors
with a point-to-point routing network. Although
routing networks can be slower than broadcasting,
the average distance that operands must travel
along the network is short because the compiler
places dependent instructions on the same node or
on nearby nodes. The instruction cache can provide
16 instructions per cycle and only needs to predict
a branch once every eight cycles, reducing the nec-
essary predictor bandwidth. The TRIPS ISA thus
amortizes the overheads of out-of-order execution
over a 128-instruction block (and with eight blocks,
over a 1,024-instruction window), rather than
incurring them on every single instruction.

BLOCK COMPILATION
Figure 2 shows an example of how the TRIPS

ISA encodes a small, simple compiled block. We
assume that the C code snippet in Figure 2a allo-
cates the input integer y to a register. Figure 2b is
the same example in MIPS-like assembly code. The
variable x is saved in register 2.

The TRIPS compiler constructs the dataflow
graph shown in Figure 2c. Two read instructions
obtain the register values and forward them to their

TRIPS can achieve
power-efficient

out-of-order
execution across

an extremely
large instruction

window.

consuming instructions mapped on the execution
array. The compiler converts the original branch to
a test instruction and uses the result to predicate
the control-dependent instructions, shown as dot-
ted lines. By converting branches to predicates, the
compiler creates larger regions with no control flow
changes for more effective spatial scheduling.

At runtime, the instructions fire in any order sub-
ject to dataflow constraints. The compiled code
eventually forwards the block’s outputs to the two
write instructions and to any other block waiting for
those values. Figure 2d shows the dataflow graph
(DFG) with the block of instructions scheduled onto
a 2 × 2 execution node array, each with an ALU,
with up to two instructions buffered per node.

Since the critical path is muli→tgti→addi→add,
the compiler assigns the first two instructions to the
same ALU so that they can execute with no inter-
node routing delays. No implicit ordering governs
the execution of instructions other than the
dataflow arcs shown in Figure 2c, so there are no
“program order” limitations to instruction issue.
When both writes arrive at the register file, the con-
trol logic deallocates the block and replaces it with
another.

Figure 2e shows the actual code that a TRIPS
compiler would generate, which readers can decode
using the map of instruction locations at the bottom
of Figure 2d. Instructions do not contain their

source operands—they contain only the physical
locations of their dependent consumers. For exam-
ple, when the control logic maps the block, the read
instruction pulls the value out of register R4 and
forwards it to the instruction located in the slot 0
of ALU node [1,1]. As soon as that instruction
receives the result of the test condition and the reg-
ister value, it forwards the value back to register
write instruction 0, which then places it back into
the register file (R4). If the predicate has a value of
false, the instruction doesn’t fire.

While this block requires a few extra overhead
instructions compared to a RISC ISA, it performs
fewer register file accesses—two reads and two
writes, as opposed to six reads and five writes.
Larger blocks typically have fewer extra overhead
instructions, more instruction-level parallelism, and
a larger ratio of register file access savings.

COMPILING FOR TRIPS
Architectures work best when the subdivision of

labor between the compiler and the microarchitec-
ture matches the strengths and capabilities of each.
For future technologies, current execution models
strike the wrong balance: RISC relies too little on
the compiler, while VLIW relies on it too much.

RISC ISAs require the hardware to discover
instruction-level parallelism and data dependences
dynamically. While the compiler could convey the

July 2004 49

Figure 2. TRIPS code
example. (a) In the
C code snippet,
the compiler
allocates the input
integer y to a
register. (b) In the
MIPS-like assembly
code, the variable x
is saved in register
5. (c) The compiler
converts the original
branch to a test
instruction and
uses the result to
predicate the
control-dependent
instructions, which
appear as dotted
lines in the dataflow
graph. (d) Each
node in the 2 × 2
execution node
array holds up to
two buffered
instructions. (e) The
compiler generates
in target form,
which correspond
to the map of
instruction
locations at the
bottom of part (d).

// y, z in registers

x = y*2;
of (x > 7){
 y + = 7;
 z = 5;
}
x + = y;

// x, z are live registers

(a) C code snippet (b) RISC assembly

write r5 [x]

xx

y
y+7

(c) Dataflow graph

Block header

read r4, [1,0,0] read r3, [0,1,1] [1,0,1]
w0: write r4 w1: write r5

Instruction blockmov

add
addi #7

read r4
write r4

Corresponding instruction positions:
[0,0,1] [0,1,1]
[0,0,0] [0,1,0]

[1,0,1] [1,1,1]
[1,0,0] [1,1,0]

// R0 contains 0
// R1 contains y
// R4 contains z
// R3 contains 7

muli R2, R1, 2 // x = y * 2
ble R2, R3, L1 // if (x > 7)
addi R1, R1, #7 // y += 7
addi R4, R0, #5 // z = 5
L1: add R5, R2, R1 // x += y

write r4 [z]

read r4 [z]

movi #5 Tmov Faddi #7 Tmov F

tgti #7

add

read r3 [y]

muli #2

(d) TRIPS instruction placement

tgti #7

read r3
write r5

muli #2

mov

movi #5

(e) TRIPS instruction block (2 x 2 x 2)

add w1 muli #2 [0,0,1] [0,1,0]
addi #7 [0,0,1] tgti #7 [1,0,0] [0,0,0] [1,1,0] [1,1,1]

NOP movi #5 w0
mov [0,0,1] mov w0

50 Computer

dependences, the ISA cannot express them, forcing
out-of-order superscalar architectures to waste
energy reconstructing that information at runtime.

VLIW architectures, conversely, put too much of
a load on the compiler. They require the compiler to
resolve all latencies at compile time to fill instruc-
tion issue slots with independent instructions. Since
unanticipated runtime latencies cause the machine
to stall, the compiler’s ability to find independent
instructions within its scheduling window deter-
mines overall performance. Since branch directions,
memory aliasing, and cache misses are unknown at
compile time, the compiler cannot generate sched-
ules that best exploit the available parallelism in the
face of variable latency instructions such as loads.

For current and future technologies, EDGE archi-
tectures and their ISAs provide a proper division
between the compiler and architecture, matching
their responsibilities to their intrinsic capabilities,
and making the job of each simpler and more effi-
cient. Rather than packing together independent
instructions like a VLIW machine, which is difficult
to scale to wider issue, an EDGE compiler simply
expresses the data dependences through the ISA. The
hardware’s execution model handles dynamic events
like variable memory latencies, conditional branches,
and the issue order of instructions, without needing
to reconstruct any compile time information.

An EDGE compiler has two new responsibilities
in addition to those of a classic optimizing RISC com-
piler. The first is forming large blocks (hyperblocks in
the TRIPS architecture) that have no internal control
flow, thus permitting them to be scheduled as a unit.
The second is the spatial scheduling of those blocks,
in which the compiler statically assigns instructions
in a block to ALUs in the execution array, with the
goal of reducing interinstruction communication dis-
tances and exposing parallelism.

To demonstrate the tractability of the compiler
analyses needed for EDGE architectures, we retar-
geted the Scale research compiler3 to generate opti-
mized TRIPS code. Scale is a compilation frame-
work written in Java that was originally designed
for extensibility and high performance with RISC
architectures such as Alpha and Sparc.

Scale provides classic scalar optimizations and
analysis such as constant propagation, loop invari-
ant code motion, dependence analysis, and higher-
level transformations such as inlining, loop un-
rolling, and interchange. To generate high-quality
TRIPS binaries, we added transformations to gen-
erate large predicated hyperblocks,2 a new back
end to generate unscheduled TRIPS code, and a
scheduler that maps instructions to ALUs and gen-
erates scheduled TRIPS assembly in which every
instruction is assigned a location on the execution
array.

Figure 3 shows the EDGE-specific transforma-
tions on the code fragment in Figure 4. Scale uses
a front end to parse the code and construct the
abstract syntax tree and control-flow graph (CFG),
shown in Figure 3a. To form large initial regions,
the compiler unrolls loops and inlines functions.

Figure 3b shows the CFG after the compiler has
unrolled the inner do-while loop three times. The
compiler must take four additional TRIPS-specific
steps to generate correct TRIPS binaries.

Large hyperblock formation. The compiler exposes
parallelism by creating large predicated hyper-
blocks, which it can fetch en masse to fill the issue
window quickly. Hyperblocks are formally defined
as single-entry, multiple-exit regions of code.
Because they have internal control-flow transfers,
hyperblocks are ideal for mapping onto a spatial
substrate. Branches can only jump out of a hyper-
block to the start of another hyperblock, never to

(a) Control-flow graph (b) Unrolled CFG (c) Hyperblocks (d) Generated code (e) Scheduled code

Front end
• parsing
• generate CFG

High-level transformations
• loop unrolling
• loop peeling, flattening
• inlining

Hyperblock formation
• if-conversion
• predication

Code generation
• register allocation
• block validation, cutting
• back-end optimization

Scheduler
• inserts moves
• places instructions
• generates assembly

Figure 3. EDGE optimizations in the Scale compiler. (a) A front end parses the code and constructs a control-flow graph (CFG). (b) The CFG after
the compiler has unrolled it three times. (c) All of the basic blocks from the unrolled if-converted loop inside a single hyperblock. (d) After
inserting the predicates, the compiler generates the code and allocates registers. (e) The scheduler attempts to place independent
instructions on different ALUs to increase concurrency and dependent instructions near one another to minimize routing distances and
communication delays.

another point in the same hyperblock or into the
middle of another. Large hyperblocks are desirable
because they provide a larger region for scheduling
and expose more concurrency.

For simplicity, the TRIPS prototype ISA supports
fixed 128-instruction hyperblocks, which it fetches
at runtime to provide eight instructions at each of
the 16 execution nodes. A more complex imple-
mentation might permit variable-sized blocks,
which map varying numbers of instructions to exe-
cution nodes.

To grow hyperblocks, Scale uses inlining, aggres-
sive unrolling (including unrolled while loops), loop
peeling/flattening, and if-conversion (a form of
predication). Figure 3c shows all the basic blocks
from the unrolled and if-converted loop, placed
inside a single hyperblock.

At runtime, many hyperblocks will contain use-
less instructions from CFG nodes included in the
hyperblock but not on the dynamically taken path,
or from loop iterations unrolled past the end of a
loop. To reduce the fraction of unneeded instruc-
tions in hyperblocks, Scale uses edge profiling to
guide the high-level transformations by identifying
both loop counts and infrequently executed basic
blocks.

Predicated execution. In previous predication mod-
els, evaluating the predicate on every conditional
instruction incurs no additional cost. The TRIPS
architecture treats a predicate as a dataflow
operand that it explicitly routes to waiting predi-
cated consumers. A naive implementation would
route a predicate to every instruction in a predi-
cated basic block, creating a wide fan-out problem.

Fortunately, given a dependence chain of instruc-
tions that execute on the same predicate, the com-
piler can choose to predicate only the first
instruction in the chain, so the chain does not fire,
or only the last instructions in the chain that write
registers or memory values. Predicating the first
instruction saves power when the predicate is false.
Alternatively, predicating only the last, output-pro-
ducing instructions in a dependence chain gener-
ally increases both power and performance by
hiding the latency of the predicate computation.

Since the control logic detects block termination
when it receives all outputs (stores, register writes,
and a branch), in the TRIPS architecture a block
must emit the same number of outputs no matter
which predicated path is taken. Consequently, the
TRIPS ISA supports the notion of null stores and
null register writes that execute whenever a predi-
cated store or register write does not fire. The
TRIPS compiler inserts the null assignments opti-

mally using the predicate flow graph, which it gen-
erates internally after leaving static single assign-
ment (SSA) form. After inserting the predicates, the
compiler generates the code and allocates registers,
as shown in Figure 3d, where the hyperblock’s
dataflow graph is visible.

Generating legal hyperblocks. Scale must confirm
that hyperblocks adhere to their legal restrictions
before scheduling them onto the execution array.
The TRIPS prototype places several restrictions on
legal hyperblocks to simplify the hardware: A
hyperblock can have no more than 128 instruc-
tions, 32 loads or stores along any predicated path,
32 register inputs to the block, and 32 register out-
puts from the block. These architectural restric-
tions simplify the hardware at the expense of some
hyperblocks being less full to avoid violating those
constraints. If the compiler discovers an illegal
hyperblock, it splits the block into multiple blocks,
allocating intrablock dataflow values and predi-
cates to registers.

Physical placement. After the compiler generates
the code, optimizes it, and validates the legality of
the hyperblocks, it maps instructions to ALUs and
converts instructions to target form, inserting copy
operations when a producer must route a value to
many consumers. To schedule the code, the com-
piler assigns instructions to the ALUs on the array,
limiting each ALU to at most eight instructions
from the block. The scheduler, shown at a high
level in Figure 3e, attempts to balance between two
competing goals:

• placing independent instructions on different
ALUs to increase concurrency, thereby reduc-
ing the probability of two instructions com-
peting to issue on the same ALU in the same
cycle; and

• placing instructions near one another to min-
imize routing distances and thus communica-
tion delays.

The scheduler additionally exploits its knowledge
of the microarchitecture by placing instructions
that use the registers near the register banks and by
placing critical load instructions near the data cache

July 2004 51

Figure 4. Modified
code fragment from
gzip (SPECINT2000).

for (i = 0; i< loopcount; i++) {
code = 0x1234;
len = (i % 15) + 1;
res = 0;
do {
res |= code & 1;
if (res & 0xfddd) res <<= 1;
code >>= 1,

} while (––len > 0);
result += res;

}

52 Computer

banks. The compiler uses a classic greedy
technique to choose the order of instructions
to place, with a few additional heuristics to
minimize routing distances and ALU con-
tention.

Although the past two years of compiler
development have been labor intensive, the
fact that we could design and implement this
functionality in Scale with a small develop-
ment team demonstrates the balance in the
architecture. The division of responsibilities
between the hardware and compiler in the
TRIPS architecture is well suited to the
compiler’s inherent capabilities. Scale can

presently compile C and Fortran benchmarks into
fully executable TRIPS binaries.

SUPPORTING PARALLELISM
Our work with the TRIPS architecture has shown

that a single EDGE architecture can effectively sup-
port the three main parallelism classes—instruc-
tion, data, and thread—on the same hardware with
the same ISA. It may be possible to leverage this
inherent flexibility to merge previously distinct mar-
kets, such as signal processing and desktop com-
puting, into a single family of architectures that has
the same or similar instruction sets and execution
models. Area, power, and clock speeds would dif-
ferentiate implementations to target various
power/performance points in distinct markets.

To be fully general and to exploit many types of
parallelism, the TRIPS microarchitecture must sup-
port the common types of graphs and communica-
tion flows across instruction-parallel, data-parallel,
and thread-parallel applications without requiring
too much specialized hardware support. In previous
work, we showed how the TRIPS architecture can
harvest instruction-level parallelism from desktop-
style codes with complex dependence patterns and,
with only minimal additional hardware support,
can also support loop-driven data-level parallel
codes and threaded parallelism.4

Mapping data-level parallelism
Data-level parallel (DLP) applications range

from high-end, scientific vector code to graphic
processing to low-power, embedded signal pro-
cessing code. These applications are characterized
by frequent, high-iteration loops, large amounts of
parallel arithmetic operations, and regular, high-
bandwidth access to data sets.

Even though many DLP codes are extremely reg-
ular, some such workloads, particularly in the
graphics and embedded domains, are becoming

less regular, with more complex control flow.
EDGE architectures are well suited to both regu-
lar and irregular DLP codes because the compiler
can map the processing pipelines for multiple data
streams to groups of processing elements, using
efficient local communication and dataflow-driven
activation for execution.

Three additional mechanisms provide significant
further benefits to DLP codes. If the compiler can
fit a loop body into a single block, or across a small
number of blocks, the processor only needs to fetch
those instructions once from the I-cache. Sub-
sequent iterations can reuse prior mappings for
highly power-efficient loop execution.

In its memory system, the TRIPS prototype has
a lightweight network embedded in the cache to
support high-bandwidth routing to each of its 32
L2 banks, and it supports dynamic bank configu-
ration using a cache as an explicitly addressable
scratchpad. Selectively configuring such memories
as scratchpads enables explicit memory manage-
ment of small on-chip RAMs, similar to signal pro-
cessing chips such as those in the Texas Instruments
C6x series. Our studies show that some DLP codes
can benefit directly from higher local memory
bandwidth, which developers can add to a TRIPS
system by augmenting it with high-bandwidth
memory access channels between the processing
core and explicitly managed memory. While we will
not implement these channels in the prototype,
designers may include them in subsequent imple-
mentations.

In prior work, we found that adding a small
number of additional “universal” hardware mech-
anisms allowed DLP codes to run effectively on a
TRIPS-like processor across many domains such
as network processing and cryptography, signal
processing, and scientific and graphics workloads.5

With this additional hardware, a TRIPS-like
EDGE processor would, across a set of nine highly
varied DLP applications, outperform the best-in-
class specialized processor for four applications,
come close in two, and fall short in three.

Mapping thread-level parallelism
Most future high-end processors will contain

some form of multithreading support. Intel’s
Pentium 4 and IBM’s Power 5 both support simul-
taneous multithreading (SMT).6

We believe that executing a single thread per
EDGE processing core will often be more desir-
able than simultaneously executing multiple
threads per core because the EDGE dataflow ISA
exposes enough parallelism to effectively use the

A single EDGE
architecture
can support

the three main
parallelism

classes on the
same hardware

with the same ISA.

core’s resources. However, some markets—partic-
ularly servers—have copious amounts of thread-
level parallelism available, and an EDGE processor
should exploit the thread-level parallelism for these
applications.

The TRIPS prototype will support simultaneous
execution of up to four threads per processing core.
The TRIPS multithreading model assigns a subset
of the in-flight instruction blocks to each thread.
For example, while a single thread might have eight
blocks of 128 instructions per block in flight,
threads in a four-thread configuration will each
have two blocks of 128 instructions in flight.

The processor’s control logic moves into and out
of multithreading mode by writing to control reg-
isters that allocate blocks to threads. In addition to
this control functionality, each processor needs a
separate copy of an architectural register file for
each active thread, as well as some per-thread iden-
tifiers augmenting cache tags and other state infor-
mation.

While the TRIPS prototype maps threads across
blocks, thus permitting each thread to have access
to all ALUs in the execution array, different EDGE
implementations might support other mappings.
For example, the hardware could allocate one
thread to each column or row of ALUs, thus giving
them private access to a register or cache bank.
However, these alternative mappings would require
more hardware support than the block-based
approach used in the TRIPS prototype.

Software challenges
The hardware required to support TLP and DLP

applications effectively on an EDGE architecture
is but a small increment over mechanisms already
present to exploit ILP, making EDGE architectures
a good match for exploiting broad classes of par-
allelism—with high-power efficiency—on a single
design. Exploiting an EDGE architecture’s flexibil-
ity to run heterogeneous workloads comprising a
mix of single-threaded, multithreaded, and DLP
programs will require modest additional support
from libraries and operating systems.

In the TRIPS prototype, memory banks can be
configured as caches or as explicitly addressable
scratchpads, which lack the process-ID tags that
allow processes to share virtually addressed caches.
Therefore, to context switch-out/switch-in a
process that has activated scratchpad memory, the
TRIPS runtime system must save and restore the
contents of the scratchpad and reconfigure the
memory banks to the appropriate mode of opera-
tion. Additionally, to run a heterogeneous mix of

jobs on the TRIPS prototype efficiently, the
scheduler software should configure proces-
sors between single-threaded mode (for most
ILP processes and DLP processes) and mul-
tithreaded mode (for processes that expose
parallelism via large numbers of threads).
Further, thread scheduler policies should
account for the differing demands of various
types of processes.

Overall, because the underlying EDGE
substrate provides an abstraction that maps
well to a range of different parallelism mod-
els, the architecture provides a good balance
between hardware and software complexity. Hard-
ware extensions to support ILP, DLP, and TLP are
modest, and mechanisms and policies for switching
among modes of computation are tractable from a
software perspective.

TO CMP OR NOT TO CMP?
The semiconductor process community has done

its job all too well: Computer architects face daunt-
ing and interlocking challenges. Reductions in fea-
ture size have provided tremendous opportunities
by increasing transistor counts, but these advances
have introduced new problems of communication
delay and power consumption. We believe that
finding the solution to these fundamental issues will
require a major architecture shift and that EDGE
architectures are a good match for meeting these
challenges.

Despite the advantages that EDGE architectures
offer, major ISA changes are traumatic for industry,
especially given the complexity that systems have
accrued since the last major shift. However, since
then many institutions and companies have devel-
oped the technology to incorporate such a new
architecture under the hood. For example, Trans-
meta’s code morphing software dynamically trans-
lates x86 instructions into VLIW code for its pro-
cessors. Dynamic translation to an EDGE architec-
ture will likely be simpler than to VLIW, making
this technology a promising candidate for solving
ISA backward compatibility. We are beginning
work on such an effort and have already built a sim-
ple PowerPC-to-TRIPS static binary translator.

The competing approach for future systems is
explicitly parallel hardware backed by paralleliz-
ing software. IBM and Sun Microsystems are both
moving to chip multiprocessor (CMP)7 and chip
multithreading models in which each chip contains
many processing cores and thread slots that exploit
explicitly parallelized threads. Other research
efforts, such as Smart Memories8 and Imagine9 at

July 2004 53

Major ISA changes
are traumatic
for industry,

but solving current
challenges may
require a major

architectural shift.

54 Computer

Stanford and RAW10 at MIT, support DLP work-
loads with the copious explicit parallelism that soft-
ware can obtain. This camp argues that future
workloads will inevitably shift to be highly paral-
lel and that programmers or compilers will be able
to map the parallelism in tomorrow’s applications
onto a simple, explicitly parallel hardware sub-
strate. Although researchers have consistently made
this argument over the past 30 years, the general-
purpose market has instead, every time, voted in
favor of larger, more powerful uniprocessor cores.
The difficulty of scaling out-of-order RISC cores,
coupled with IBM’s thread-rich server target mar-
ket, have together driven the emergence of CMPs
such as Power 4.

E DGE architectures offer an opportunity to
scale the single-processor model further, while
still effectively exploiting DLP and TLP when

the software can discover it. However, because of
the difficulty of discovering and exploiting paral-
lelism, we expect that software will make better use
of smaller numbers of more powerful processors.
For example, 64 simple processors are much less
desirable than four processors, each of which are
eight times more powerful than the simple proces-
sors. EDGE architectures appear to offer a pro-
gressively better solution as technology scales down
to the end of silicon, with each generation provid-
ing a richer spatial substrate at the expense of
increased global communication delays. EDGE
ISAs may also be a good match for postsilicon
devices, which will likely be communication-dom-
inated as well.

Whether EDGE architectures prove to be a com-
pelling alternative will depend on their performance
and power consumption relative to current high-
end devices. The prototype TRIPS processor and
compiler will help to determine whether this is the
case. We expect to have reliable simulation results
using optimized compiled code in mid-2004, tape-
out in the beginning of 2005, and full chips run-
ning in the lab by the end of 2005. ■

Acknowledgments
We thank the following student members of the

TRIPS team for their contributions as coauthors of
this article: Xia Chen, Rajagopalan Desikan,
Saurabh Drolia, Jon Gibson, Madhu Saravana Sibi
Govindan, Paul Gratz, Heather Hanson, Changkyu
Kim, Sundeep Kumar Kushwaha, Haiming Liu,
Ramadass Nagarajan, Nitya Ranganathan, Eric

Reeber, Karthikeyan Sankaralingam, Simha
Sethumadhavan, Premkishore Sivakumar, and
Aaron Smith.

This research is supported by the Defense
Advanced Research Projects Agency under con-
tracts F33615-01-C-1892 and F33615-03-C-4106,
NSF infrastructure grant EIA-0303609, NSF
CAREER grants CCR-9985109 and CCR-
9984336, two IBM University Partnership awards,
an IBM Shared University Research grant, as well
as grants from the Alfred P. Sloan Foundation and
the Intel Research Council.

References
1. M.S. Hrishikesh et al., “The Optimal Logic Depth

per Pipeline Stage Is 6 to 8 fo4 Inverter Delays,” Proc.
29th Int’l Symp. Computer Architecture (ISCA 02),
IEEE CS Press, 2002, pp. 14-24.

2. S.A. Mahlke et al., “Effective Compiler Support for
Predicated Execution Using the Hyperblock,” Proc.
25th Ann. IEEE/ACM Int’l Symp. Microarchitecture
(MICRO-25), IEEE CS Press, 1992, pp. 45-54.

3. R.A. Chowdhury et al., “The Limits of Alias Analy-
sis for Scalar Optimizations,” Proc. ACM SIGPLAN
2004 Conf. Compiler Construction, ACM Press,
2004, pp. 24-38.

4. K. Sankaralingam et al., “Exploiting ILP, TLP, and
DLP with the Polymorphous TRIPS Architecture,”
Proc. 30th Int’l Symp. Computer Architecture (ISCA
03), IEEE CS Press, 2003, pp. 422-433.

5. K. Sankaralingam et al., “Universal Mechanisms for
Data-Parallel Architectures,” Proc. 36th Ann.
IEEE/ACM Int’l Symp. Microarchitecture (MICRO-
36), IEEE CS Press, 2003, pp. 303-314.

6. D.M. Tullsen, S.J. Eggers, and H.M. Levy, “Simulta-
neous Multithreading: Maximizing On-Chip Paral-
lelism,” Proc. 22nd Int’l Symp. Computer
Architecture (ISCA 95), IEEE CS Press, 1995, pp.
392-403.

7. K. Olukotun et al., “The Case for a Single-Chip Mul-
tiprocessor,” Proc. 6th Int’l Conf. Architectural Sup-
port for Programming Languages and Operating
Systems (ASPLOS 94), ACM Press, 1994, pp. 2-11.

8. K. Mai et al., “Smart Memories: A Modular Recon-
figurable Architecture,” Proc. 27th Int’l Symp. Com-
puter Architecture (ISCA 00), IEEE CS Press, 2000,
pp. 161-171.

9. S. Rixner et al., “A Bandwidth-Efficient Architecture
for Media Processing,” Proc. 31st Ann. IEEE/ACM
Int’l Symp. Microarchitecture (MICRO-31), IEEE CS
Press, 1998, pp. 3-13.

10. E. Waingold et al., “Baring It All to Software: RAW
Machines,” Computer, Sept. 1997, pp. 86-93.

Doug Burger, Stephen W. Keckler, Kathryn S.
McKinley, and Mike Dahlin are associate profes-
sors in the Department of Computer Sciences at the
University of Texas at Austin. They are members
of the ACM and senior members of the IEEE. Con-
tact them at {dburger, skeckler, mckinley, dahlin}
@cs.utexas.edu.

Lizy K. John is an associate professor in the Depart-
ment of Electrical and Computer Engineering at
the University of Texas at Austin. She is a member
of the ACM and a senior member of the IEEE.
Contact her at ljohn@ece.utexas.edu.

Calvin Lin is an associate professor in the Depart-
ment of Computer Sciences at the University of
Texas at Austin and is a member of the ACM. Con-
tact him at lin@cs.utexas.edu.

Charles R. Moore, a senior research fellow at the
University of Texas at Austin from 2002 through
2004, is currently a Senior Fellow at Advanced Micro
Devices. Contact him at chuck.moore@amd.com.

James Burrill is a research fellow in the Computer
Science Department at the University of Massa-
chusetts at Amherst. Contact him at burrill@cs.
umass.edu.

Robert G. McDonald is the chief engineer for the
TRIPS prototype chip at the University of Texas at
Austin. Contact him at robertmc@cs.utexas.edu.

William Yoder is a research programmer at the
University of Texas at Austin and a member of the
ACM and the IEEE. Contact him at byoder@cs.
utexas.edu.

July 2004 55

S E T
I N D U S T R Y

S T A N D A R D S

www.computer.org/standards/

H E L P S H A P E F U T U R E T E C H N O L O G I E S
■

J O I N A N I E E E C O M P U T E R S O C I E T Y S T A N D A R D S W O R K I N G G R O U P A T

IEEE Computer Society members work together to define
standards like IEEE 802, 1003, 1394, 1284, and many more.

802.11 FireWire
token rings

gigabit Ethernet
wireless networks

enhanced parallel ports

