
Hawkeye: Leveraging Belady’s Algorithm for Improved
Cache Replacement

Akanksha Jain Calvin Lin
Department of Computer Science
The University of Texas at Austin

Austin, Texas 78712, USA
{akanksha, lin}@cs.utexas.edu

ABSTRACT
This paper evaluates the Hawkeye cache replacement policy
on the Cache Replacement Championship framework. The
solution departs from that of the original paper by distin-
guishing prefetches from demand fetches, so that redundant
prefetches can be identified and cached appropriately.

Evaluation on SPEC2006 shows that in the absence of
prefetching, Hawkeye provides a speedup of 4.5% over LRU
(vs. 3.4% for SHiP) on the single-core configuration and a
speedup of 9.2% (vs. 7.1% for SHiP) on the four-core con-
figuration. In the presence of prefetching, Hawkeye’s per-
formance is marginally better than SHiP’s (2.25% speedup
vs 2.09% speedup over LRU).
Keywords: Cache replacement, Belady’s Algorithm

1. INTRODUCTION
The Cache Replacement Championship (CRC) evaluates

replacement policies for configurations that include both
single and multi-core settings, each with and without a
prefetcher. Our broad strategy for all configurations is based
on the Hawkeye cache replacement policy [2], which learns
from Belady’s optimal solution for past references to predict
the caching behavior of future references.

In the absence of prefetching, Hawkeye performs well for
both single-core (4.5% speedup over LRU) and multi-core
configurations (9.2% speedup over LRU), outperforming the
previous state-of-the-art replacement policy [8].

However, in the presence of prefetching, Hawkeye per-
forms poorly on regular workloads. As a result, on the
CRC framework, Hawkeye’s performance is 1% worse than
LRU’s. The problem is that if Hawkeye were to treat demand
and prefetch requests identically, it would cache redundant
prefetches, even though they do not increase the number of
cache hits. On the other hand, if Hawkeye were to ignore
prefetch requests, then Hawkeye would be unable to distin-
guish useful prefetches from useless prefetches.

To accommodate prefetch requests, we present simple
changes to Hawkeye. Our solution ignores redundant
prefetches by only considering prefetch requests that are
subsequently followed by a demand request. Furthermore, to
distinguish the caching behavior of demands and prefetches

by the same load instruction, we use separate predictors for
demand and prefetch requests. Thus, our solution can learn,
for example, that a given instruction tends to load cache-
friendly demand accesses but inaccurate prefetches.

With these changes, Hawkeye performs marginally better
than SHiP in the presence of prefetches, as both policies see
roughly 2% speedup over LRU. We find that both policies
benefit from identifying and evicting inaccurate prefetches.
In the presence of prefetches, Hawkeye’s more accurate pre-
diction for demand accesses is diminished because poor re-
placement decisions are easily compensated by an aggres-
sive prefetcher.

This paper focuses on (1) the additions that we have intro-
duced to accommodate prefetching for this competition and
(2) an explanation of the hardware requirements.

Section 2 discusses the main ideas behind the Hawkeye
policy, and Section 3 describes key implementation details.
Section 4 evaluates our solution. We conclude in Section 5.

OPTgen	 PC-based
Predictor	

Last Level
Cache	

Computes OPT’s
decisions for the past

Remembers past
OPT decisions

Cache
Access
Stream	

 	
OPT	

 hit/miss	
 	

Insertion
Priority	

 	

PC 	

Figure 1: Block diagram of the Hawkeye replacement
algorithm.

2. BACKGROUND
This section summarizes the original Hawkeye solu-

tion [2].
Hawkeye reconstructs Belady’s optimal solution for past

accesses and learns this optimal solution to predict the
caching behavior of future accesses. To compute the optimal
solution for past accesses, Hawkeye uses the OPTgen algo-
rithm [2], and to learn OPTgen’s solution, Hawkeye uses a
PC-based predictor that learns whether load instructions tend
to load cache-friendly or cache-averse lines. Lines that are

predicted to be cache-friendly are inserted with high priority
in the cache, while lines that are predicted to be cache-averse
are inserted with low priority.

An accurate reconstruction of Belady’s optimal solution
requires a long history of past references (8× the size of
the cache). To reduce Hawkeye’s area overhead, we apply
OPTgen to 64 sampled sets only [6], which results in onlyl a
12KB overhead for a 2MB cache and is sufficient for distin-
guishing cache-friendly load instructions from cache-averse
load instructions.

Figure 1 shows the overall structure of Hawkeye. Its main
components are the Hawkeye Predictor, which makes evic-
tion decisions, and OPTgen, which simulates OPT’s behav-
ior to produce inputs that train the Hawkeye Predictor. The
system also includes a Sampler Cache, which stores a long
history of past references.

2.1 OPTgen
OPTgen determines what would have been cached if the

OPT policy had been used. One of the key insights behind
OPTgen is that for any given cache access to X , this determi-
nation can be made accurately when X is next reused. This is
because any later reference will be farther into the future, so
Belady’s algorithm will favor X over that other line. Thus,
OPTgen computes the optimal solution by assigning cache
capacity to lines in the order that they are reused.

To understand how OPTgen assigns cache capacity, we
first define a usage interval for a reference to X to be the
time period that starts with a reference to X and proceeds up
to (but not including) its next reference X ′. When a line is
reused, OPTgen determines that it would be a cache hit with
the OPT solution if there is enough space in the cache over
the duration of the line’s usage interval.

For example, consider the sequence of accesses in Fig-
ure 2, which includes X’s usage interval. Here, the cache
capacity is two. We assume that OPTgen has already deter-
mined the A, B, and C can be cached with OPT, and since
these intervals never overlap, the maximum number of over-
lapping liveness intervals in X’s usage interval never reaches
the cache capacity; thus there is space for line X to reside in
the cache, and OPTgen infers that X ′ would be a hit.

OPTgen can be implemented efficiently in hardware using
a simple vector. More details about OPTgen’s implementa-
tion are in the original paper [2].

X! A! A! B! B! C! C! X’	

Cache Contents with OPT policy !
(Cache Capacity is 2 lines)!

Hit!

A! A! B! B! C! C!

!
Access Sequence!

!
!

Cache Line 1 !
Cache Line 2!

Time!

Figure 2: Intuition behind OPTgen.

2.2 The Hawkeye Predictor
The Hawkeye Predictor learns the behavior of the OPT

policy on past memory references: If OPTgen determines
that a line would be a cache hit under the OPT policy, then
the PC that last accessed the line is trained positively; other-
wise, the PC that last accessed the line is trained negatively.
The Hawkeye Predictor has 2K entries, it uses 5-bit counters
for training, and it is indexed by a 11-bit hashed PC.

2.3 Cache Replacement
On every cache access, the Hawkeye Predictor generates a

prediction to indicate whether the line is likely to be cache-
friendly or cache-averse. Cache-friendly lines are inserted
with an RRIP value of 0, and cache-averse lines are inserted
with an RRIP value of 7. When a cache-friendly line is in-
serted in the cache, the RRIP counters of all other cache-
friendly lines are aged.

On a cache replacement, any line with an RRIP value of
7 (cache-averse line) is chosen as an eviction candidate. If
no line has an RRIP value of 7, then Hawkeye evicts the line
with the highest RRIP value (oldest cache-friendly line) and
detrains its corresponding load instruction if the evicted line
is present in the sampler.

3. PREFETCH-AWARE HAWKEYE
To accommodate prefetch requests, we introduce changes

to OPTgen and the Hawkeye predictor, which we now dis-
cuss in turn.

3.1 Prefetch-Aware OPTgen
As illustrated in Section 2, OPTgen relies on the notion

of liveness intervals to emulate Belady’s solution. In the ab-
sence of prefetching, both endpoints of any liveness interval
are demand accesses. However, in the presence of prefetch-
ing, four different kinds of liveness intervals are possible:
Demand-Demand interval (D-D), Demand-Prefetch inter-
val (D-P), Prefetch-Demand interval (P-D), and Prefetch-
Prefetch interval (P-P).

P P P D

Accurate Prefetch

Inaccurate Prefetch
D P Never reused

Redundant prefetches Cache hit

Figure 3: Liveness intervals that end with a prefetch are
not cached by prefetch-aware OPTgen.

If all four types of intervals were treated identically, OPT-
Gen would make poor caching decisions for past references.
For example, P-P and D-P intervals that are deemed cache-
friendly consume cache resources but do not improve the
cache’s hit rate because they represent redundant prefetches.
The top part of Figure 3 shows that P-D intervals, not P-P
intervals (redundant prefetches) contribute to cache hits for
accurate prefetches. Moreover, it can be counter-productive
to cache P-P and D-P intervals if the interval is not followed
by a subsequent demand access. The bottom part of Figure 3
shows this case where an inaccurate prefetch can result in a

2

Component Parameters Budget
Sampler 2800 entries; 11.2KB

4-byte entry
Hawkeye 2 predictors (2K entries, 2.56KB
Predictor 5-bit counter each)
Occupancy 64 vectors, 128 entries each 4KB
Vector 4-bit entry
Replacement 3-bit RRIP value 12KB
state per line
Additional state 64 sets × 16 ways 1.5KB
for sampled lines 1-bit prefetch per line
for sampled lines 11-bit signature per line

Table 1: Hawkeye hardware budget (16-way 2MB LLC)

D-P interval that is never followed by a subsequent demand.
Thus, we modify OPTgen to only consider liveness inter-
vals that end with a demand access, namely, P-D and D-D
intervals. The former represents useful prefetches, and the
latter represents reuse of demand accesses. By not allocat-
ing cache capacity to redundant and potentially inaccurate
prefetches, OPTgen is able to make better use of the cache
and to improve hit rate.

While ignoring redundant prefetches maximizes cache
utilization, it can drastically increase prefetch traffic for
some benchmarks. For example, in the top of Figure 3, if
the two P-P intervals in red were not cached, the prefetcher
would generate 3 memory requests, while it would gener-
ate just a single memory request if the P-P intervals were
cached. Thus, redundant prefetches present a tradeoff be-
tween memory traffic and cache utilization. Our solution
resolves this tradeoff by allowing redundant prefetches to
be candidates for caching only if they have short liveness
intervals, since these prefetches will reduce memory traffic
without consuming cache space for long periods of time.

3.2 Prefetch-Aware Predictor
We also separate the prediction for demand and prefetch

requests by employing two different predictors. As a result,
we are able to better learn the caching behavior of load in-
structions that result in both demand and prefetch accesses.
For example, a load instruction that loads cache-friendly de-
mand accesses but issues inaccurate prefetches will be clas-
sified as cache-friendly by the demand predictor and cache-
averse by the prefetch predictor.

3.3 Hardware Budget
Table 1 shows our configuration parameters for single-

core configurations, as well as the hardware budget per core.
For multi-core configurations, all meta-data structures ex-
cept the RRIP values are scaled in proportion to the cache
size. Thus, Hawkeye’s hardware budget is 31.8 KB for
single-core configurations and 90.2 KB for four-core con-
figurations.

4. EVALUATION
We now describe our evaluation in the Cache Replace-

ment Championship infrastructure.

4.1 Methodology
The CRC framework exposes four different configura-

tions:

• Single core with 2 MB LLC without a prefetcher.

• Single core with 2 MB LLC with L1/L2 data prefetch-
ers.

• A 4-core configuration with 8 MB of shared LLC with-
out a prefetcher.

• A 4-core configuration with 8 MB of shared LLC with
L1/L2 prefetchers.

Benchmarks. We evaluate Hawkeye on the SPEC2006
benchmarks that are sensitive to the replacement policy, that
is, that show more than 2% improvement with the OPT pol-
icy. We compile the benchmarks using gcc-4.2 with the -O2
option. We run the benchmarks using the reference input
set, we use SimPoint [5, 1] to generate for each benchmark
a single sample of 1 billion instructions. We warm the cache
for 50 million instructions and measure the behavior of 250
million instructions.

Multi-Core Workloads. Our multi-core results simulate four
benchmarks running on 4 cores, choosing all combinations
of the 19 most replacement-sensitive SPEC2006 bench-
marks. Since simulating all combinations is extremely ex-
pensive, we randomly choose 600 of all the workload mixes.
For each combination, the championship infrastructure sim-
ulates the simultaneous execution of the SimPoint samples
of the constituent benchmarks until each benchmark has ex-
ecuted at least 250M instructions. If a benchmark finishes
early, it is rewound and continues execution until every other
application in the mix has finished running 250M instruc-
tions. Thus, all the benchmarks in the mix run simultane-
ously throughout the sampled execution.

To evaluate performance, we report the weighted speedup
normalized to LRU for each benchmark combination. This
metric is commonly used to evaluate shared caches [4, 3, 7,
9] because it measures the overall progress of the combina-
tion and avoids being dominated by benchmarks with high
IPC. The metric is computed as follows. For each program
sharing the cache, we compute its IPC in a shared environ-
ment (IPCshared) and its IPC when executing in isolation on
the same cache (IPCsingle). We then compute the weighted
IPC of the combination as the sum of IPCshared/IPCsingle for
all benchmarks in the combination, and we normalize this
weighted IPC with the weighted IPC using the LRU replace-
ment policy.

Evaluated Caching Systems. We compare Hawkeye against
SHiP [8], a state-of-the-art cache replacement algorithm;
like Hawkeye, SHiP learns caching priorities for each load
PC. For SHiP, we use a 16K entry Signature Hit Counter
Predictor with 3-bit counters, and we use 2-bit RRIP coun-
ters for each line. Hawkeye’s configuration parameters are
listed in Table 1. For our multi-core evaluation, the replace-
ment policies use common predictor structures for all cores.
In particular, Hawkeye uses a single occupancy vector and a

3

single predictor to reconstruct and learn OPT’s solution for
the interleaved access stream from the past.

4.2 Config 1: Single-Core, No Prefetching

-5	

-3	

-1	

1	

3	

5	

7	

9	

11	

13	

15	

43
3.m

ilc	

42
9.m

cf	

47
1.o
mn
etp
p	

47
3.a
sta
r	

48
3.x
ala
nc
bm
k	

48
2.s
ph
inx
3	

45
0.s
op
lex
	

43
4.z
eu
sm
p	

43
6.c
ac
tus
AD
M	

45
6.h
mm

er	

45
9.G
em
sFD

TD
	

46
2.l
ibq
ua
ntu
m	

46
4.h
26
4re
f	

46
5.t
on
to	

47
0.l
bm
	

40
3.g
cc	

40
1.b
zip
2	

45
4.c
alc
uli
x	

Av
era
ge
	

Sp
ee
du

p	
ov
er
	L
RU

	(%
)	

SHiP	

Hawkeye	

Figure 4: Speedup comparison for configuration 1 for
SPEC CPU 2006 benchmarks.

Figure 4 shows that Hawkeye outperforms SHiP on a
single-core system without prefetching. In particular, Hawk-
eye sees an average speedup of 4.5%, while SHiP sees an av-
erage speedup of 3.4%. Hawkeye also performs consistently
well across benchmarks except for calculix where Hawkeye
loses in comparison with LRU.

4.3 Config 2: Single-Core, With Prefetching

-5	

-3	

-1	

1	

3	

5	

7	

9	

11	

13	

43
3.m

ilc	

42
9.m

cf	

47
1.o
mn
etp
p	

47
3.a
sta
r	

48
3.x
ala
nc
bm
k	

48
2.s
ph
inx
3	

45
0.s
op
lex
	

43
4.z
eu
sm
p	

43
6.c
ac
tus
AD
M	

45
6.h
mm

er	

45
9.G
em
sFD

TD
	

46
2.l
ibq
ua
ntu
m	

46
4.h
26
4re
f	

46
5.t
on
to	

47
0.l
bm
	

40
3.g
cc	

40
1.b
zip
2	

45
4.c
alc
uli
x	

Av
era
ge
	

Sp
ee
du

p	
ov
er
	L
RU

	(%
)	

SHiP	

Hawkeye	

Figure 5: Speedup comparison for configuration 2 for
SPEC CPU 2006 benchmarks.

Figure 5 shows that Hawkeye performs marginally better
than SHiP on a single-core system with prefetching. In par-
ticular, Hawkeye sees an average speedup of 2.25%, while
SHiP sees an average speedup of 2.09%. Hawkeye’s loss on
xalancbmk can be explained by our observation that xalanc
benefits from long reuse intervals and therefore requires a
window greater than 8×, which could not be accommodated
within the CRC budget.

4.4 Config 3: Multi-Core, No Prefetching
Figure 6 shows that Hawkeye’s performance scales with

core count as its improvement over SHiP increases (9.2%
vs. 7.1% speedup over LRU).

4.5 Config 4: Multi-Core, With Prefetching
Hawkeye and SHiP perform similarly for configuration 4.

-10	

-5	

0	

5	

10	

15	

20	

25	

30	

35	

0	 100	 200	 300	 400	 500	 600	

Fa
ir	
Sp
ee
du

p	
ov
er
	L
RU

	(%
)	

Workload	Mixes	

SHiP	

Hawkeye	

Figure 6: Speedup comparison for configuration 3 for
multi-programmed SPEC CPU 2006 benchmarks.

5. CONCLUSIONS
This paper has shown that to perform well in the presence

of a data prefetcher, the Hawkeye cache replacement pol-
icy benefits from two simple changes that allow it to distin-
guish among accurate, inaccurate, and redundant prefetches.
However, even with these changes, Hawkeye’s performance
benefit over SHiP is quite small, suggesting that we have not
solved the deeper question: What is the optimal cache solu-
tion in the presence of prefetches? Once the answer to this
question is known, a Hawkeye-like solution should perform
much better.

6. REFERENCES
[1] G. Hamerly, E. Perelman, J. Lau, and B. Calder. SimPoint 3.0: Faster

and more flexible program phase analysis. Journal of Instruction Level
Parallelism, 7(4):1–28, 2005.

[2] A. Jain and C. Lin. Back to the future: Leveraging Belady’s algorithm
for improved cache replacement. In 43rd Annual IEEE/ACM
International Symposium on Computer Architecture (ISCA), June
2016.

[3] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and
J. Emer. Adaptive insertion policies for managing shared caches. In
17th International Conference on Parallel Architectures and
Compilation Techniques, pages 208–219, 2008.

[4] S. Khan, Y. Tian, and D. A. Jimenez. Sampling dead block prediction
for last-level caches. In 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 175–186, 2010.

[5] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder. Using SimPoint for accurate and efficient simulation. In the
ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), pages 318–319, 2003.

[6] M. K. Qureshi, D. Thompson, and Y. N. Patt. The V-Way cache:
demand-based associativity via global replacement. In International
Symposium on Computer Architecture (ISCA), pages 544–555, 2005.

[7] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreaded processor. In Proceedings of the 9th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 234–244, 2000.

[8] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely, Jr.,
and J. Emer. SHiP: Signature-based hit predictor for high performance
caching. In 44th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 430–441, 2011.

[9] Y. Xie and G. H. Loh. Pipp: promotion/insertion pseudo-partitioning
of multi-core shared caches. In the 36th International Symposium on
Computer Architecture (ISCA), pages 174–183, 2009.

4

