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Accurate branch prediction is an essential component of @enmp deeply
pipelined microprocessors. Because the branch predistonithe critical path
for fetching instructions, it must deliver a prediction irsiagle cycle. However,
as feature sizes shrink and clock rates increase, accesswlidl significantly de-
crease the size and accuracy of branch predictors that candessed in a single
cycle. Thus, there is a tradeoff between branch predictamuracy and latency.
Deeper pipelines improve overall performance by allowirgyeraggressive clock
rates, but some performance is lost due to increased braisgihadiction penalties.
Ironically, with shorter clock periods, the branch predidhas less time to make
a prediction and might have to be scaled back to make it fastéch decreases

accuracy and reduces the advantage of higher clock rates.



We propose several methods for breaking the tradeoff betaeeuracy and
latency in branch predictors. Our methods fall into two biroategories: hierarchi-
cal predictors using purely hardware implementations, @uaperative predictors
that off-load some prediction work to the compiler. We désehierarchical or-
ganizations that extend traditional predictors. We thescdbe a highly accurate
branch predictor based on a neural learning technique.gUsimerarchical orga-
nization, this complex multi-cycle predictor can be useda®mponent of a fast
delay-sensitive predictor. We introduce a novel coopesdtranch predictor that
off-loads most of the prediction work to the compiler withofiing. The com-
piler communicates profiled information to the micropram@ausing extensions to
the instruction set. ThiBoolean formula predictohas a small and fast hardware
implementation, and will work in less than one cycle in edemsmallest technolo-
gies with the most aggressive projected clock rates. Binak present another
cooperative techniqudyranch path re-aliasingthat moves complexity off of the
critical path for making a prediction and into the compilbis technique increases

accuracy by reducing destructive aliasing during the lesisal update stage.
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Chapter 1

Introduction

Modern microprocessors achieve good performance by ergauginy instructions
in parallel. Thisinstruction-level parallelisn{ILP) can be limited by various bot-
tlenecks, so microprocessors often perform speculativé vooreduce the impact
of these bottlenecks. One particularly important type adcgpation isdynamic
branch prediction When a conditional branch instruction is fetched, it maieta
several cycles for the branch condition to be determined,uantil then, it is not
clear which path should be followed. A branch predictor useasistical informa-
tion to predict which direction the branch will take and taapeculatively fetch
and execute instructions along the predicted path. Thimigae yields a tremen-
dous increase in performance by keeping the pipeline fidhewa the presence of
control hazards. Since about one in seven executed instngas a branch, branch
prediction is essential for modern pipelines that may haws or even hundreds
of instructions simultaneously in flight. If a predictionirscorrect, i.e. there is
a misprediction a considerable number of cycles is wasted executing thegvro
instructions and restoring the processor state such thatdirect path can be exe-

cuted. Thus, branch predictors must be highly accuratedinl amispredictions.
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Current techniques can achieve correct branch predicii@s 0f 95% [41],
i.e., misprediction rateof 5%, but the high cost of recovering from mispredic-
tions [12] remains one of the largest impediments to peréoroe on current and
future processors. Because of the large penalty of a bramsprediction, small
improvements in accuracy can have a large impact on perfarenaAs pipelines
become deeper to support higher clock rates, the penaltyruspredicted branch
will increase. For instance, the Pentium 4 microprocesasreh20-stage pipeline,
with a branch misprediction penalty of approximately 20legd26]. For a simu-
lated processor with a 20-stage pipeline, increasing thadbr misprediction rate
from 4% to 7% decreases performance by 11% in terms of ingingexecuted
per cycle (IPC). Thus, we are motivated to find more accunatedh predictors for

future technologies.

1.1 The Problem: Delay in Branch Predictors

It takes work to accurately predict branches. The amouninaé tavailable to do

this work has a large impact on the accuracy of the branchiggoed Branch pre-

dictor access delay is a crucial component in determiniegotrformance of the
processor, since it has an impact on both clock rate andist&in throughput. This
delay is affected by trends in technology. In this sectioa,explain the source of
branch predictor delay and the consequences of ignoriraydel

Modern branch predictors are based on the two-level adaptianch pre-

diction technique introduced by Yeh and Patt [62]. This sohaises a table of
counters to find correlations between previous branch ouésao make a predic-
tion. For the branch predictor to be accurate, this tableilshbbave hundreds or

thousands of entries, causing it to resemble a small cach®nye



In the past three decades, performance improvements iropn@ressors
have been driven in large part by improvementgriocess technology.e., the pro-
cess with which microprocessors are fabricated on wafessliobn. As process
technology improves, the sizes and delays of the transistod wires on a mi-
croprocessor decrease, allowing computer architectsueesg more functionality
onto the chip, and run the chip at a higher clock frequencyeRestudies, how-
ever, have shown that as feature sizes have been shrinkiogrient and future
process technology, increasingly aggressive clock ratddaager wire delays will
lead to multi-cycle access to large on-chip structuresyithsas caches and branch
predictors.

Until now, the huge body of branch prediction research hesded on only
two dimensions of the problem—area and accuracy—and hasdfthat larger
hardware budgets yield higher accuracy for two reasonsy Bllew the use of
longer history lengths, and they redwadéasing,which occurs when two unrelated
branches destructively share the same hardware branclttmadesources. In-
deed, much of the recent work has focused on methods for ireglatasing [52,
41, 38, 57, 18]. With growing chip capacities, the focus @f tesearch community
on area and accuracy has led to large elaborate predictor® ef which require
16K to 64K byte structures [20], and to complex predictionesoes that add levels
of logic to combat destructive aliasing [18, 38].

Since dynamic branch predictors use large tables to finceledions and
make predictions, future branch predictors will need tosoder a third dimension:
delay. Figure 1.1 illustrates the problem of ignoring deldging an idealized delay
of one cycle to access the pattern history table (PHT)g#i@arepredictor [41] sees
improvedinstructions per cycl€lPC)—due to improved prediction accuracy—as

the size of the PHT is increased. By contrast, with an agiyestock frequency



(1.9 GHz) and a realistic delay model for today’s 180 nanemttchnology, the
curve drops off at 512 bytes where the PHT requires two cyolascess, and drops
again at 64KB where delay becomes three cycles. This probiéiine exacerbated
by the smaller process technologies of the future, as shgwhebcurve for 50nm
technology and a projected 6.9 GHz clock rate. In this teldgy wire delay

causes the table access times to slip above one cycle evVien. ear

NN
> --u - —B—E- K -0

Ce-m

] —e— Single-Cycle Access
1 - a-- Access Time in 180nm
] --+-- Access Time in 50nm

Instructions per Cycle

0 : I I I I I I I I I I I I I ]
4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K
Table Capacity (Bytes)

Figure 1.1:Instruction Throughput versus Capacity for theharepredictor.

As an example of a real-world instance of this problem, tlaabhn predictor
for the AMD Athlon microprocessor represents a step bactwadren compared to
its predecessor, the K6. While the K6 has a highly accurate®@iy GAs predictor,
the Athlon uses a less accurate 2K-entry GAs predictor [T6]s change reduces
the delay and real estate costs of the branch predictor arld be one reason why
the Athlon is able to achieve an aggressive clock rate of H4.GNevertheless,
the Athlon has decreased performance in terms of IPC becduise less accurate

branch predictor.



Higher clock rates also increase the need for higher braredigiion accu-
racy. As pipelines become deeper to create less work pee,cyed penalty of a
misprediction increases. For example, the Pentium 4 hassta@@ misprediction
pipeline [26]. Table 1.1 shows the clock rates and pipeleatias of several current
MIiCroprocessors.

In a nutshell, the problem is this: Using smaller branch jotexh tables
results in lower IPC because of lower accuracy. Naivelygidrger tables in future
technologies results in even lower IPC because of aggeeskiek scaling trends
and increased relative wire delay. The question that tlasedtation addresses is:

how can we get both high accuracy and low latency?

1.2 Dimensions of the Problem

As microarchitecture designs evolve and process techypatogroves, several di-
mensions of the branch predictor delay problem are emerdmthis section, we
explore these dimensions, and ask important questionkdéduture of branch pre-

dictors.

1.2.1 Extending Traditional Predictors in the Near Future

In the near future, i.e., the next few years, we would like ¢éoable to continue
using the traditional branch predictors that have provisiech good performance
in the past. Table-based branch predictors have been cegedneavily. Industrial
and academic researchers have very good ideas about howrdotexgreat deal
of accuracy using variations of two-level adaptive premli€t we survey several of

these efforts in Chapter 2. However, the impressive perdoga of these predic-



tors comes at the cost of high access delay. As pipelinesdeepsupport more
and more aggressive clock rates in the near future, theliwyedi these schemes is
threatened by the delay they impose. We can't simply throayaiese schemes
without having something to replace them with. Thus, we #géliz motivated to
find ways around the delay problem, so that we can extend ity of these pre-
dictors into the future and continue building traditionates with deeper pipelines

and higher clock rates.

1.2.2 Increasing Accuracy in the Face of Delay

Simply sustaining traditional branch predictors is noffisignt, especially since
mispredictions are becoming more costly. How can we makétéech predictor
more accurate if it has less time? As we have noted, a largeiatnad research
has been done to improve the accuracy of table-based braedittors. However,
by no means do we believe that this research effort is finishwd believe that
there are many more ideas yet to be discovered. Indeed, welute one such
technique of our own in Chapter 5. How can highly accuratélipters with high

access delays be used in processors with very short cloakdger Similarly, are
there ways to use table-based predictors that result indgghracy but are more

economical with their time?

1.2.3 Addressing Technology Scaling

As the limits of CMOS process technology scaling are apgreddn the next
decade, wire delay and power will become dominant forcepisgarocessor de-
sign. Because of wire delay, the time it takes to access amah$y/ large branch

predictor may be a significant fraction of the time it takesrestruction to traverse



| Microprocessot Integer Pipeline Depth Clock Frequency (MHz)

PowerPC 740( 4 733
HP PA-8700 7 800
Alpha 21264 7 833
AMD Athlon 9 1400

Intel Pentium 4 20 1760

Table 1.1:Pipeline depth vs. clock rate for various processors.

the pipeline. Thus, traditional table-based branch ptetianay become infeasible
or even useless in this new setting, and we will be forced ¢k flor something
new. Are there ways to accurately predict branches withathles or other expen-

sive components?

1.3 Our Solutions

Our solution to the problem of delay in branch predictor®idivide the prediction
work into parts with different delays. During one part of irediction, a fast branch
predictor operates in a single cycle. During another pati@prediction, either off-
line through profiling, or on-line through hardware, moradiis spent working on
making the branch predictor more accurate. We explore twio teghniques for

dividing the work:

Hierarchical Predictors We propose hierarchical organizations for branch pre-
dictors. We describe three branch predictor organizatieash with the common
goal of combining a fast predictor with a slower but more aatai predictor to

achieve accurate prediction in a single cycle. We applyeidsas in two contexts:

e We demonstrate how these techniques can be applied to domneadrpredic-

7



tors whose delay comes from table access time. Thus, we sbavirhdi-
tional predictors can be extended into the next severaby&aslock scaling

and technology improvements.

e We explore the space of more complex predictors that wouldratise be
infeasible because of delay: we describe a novel branchigboedbased on
a neural learning technique. Tipgrceptron predictohas unique properties
that allow it to yield high accuracy. Using the techniquesalied above,
this complicated multi-cycle predictor can be used as a corapt of a fast
delay-sensitive predictor. Thus, we show that ever moreptexmand accu-
rate predictors are still feasible, even in the face of tlambin predictor delay

problem.

Cooperative Predictors Another way to tolerate delay is to off-load some of the
prediction work to the compiler, with profiling. In this wajpe compiler and hard-
ware cooperate to produce the prediction. Prediction wak&g place in two stages:
First, an off-line profiling algorithm analyzes the prograinehavior on a training
input. The compiler communicates profiled information te thicroprocessor us-
ing extensions to the instruction set architecture (ISAjjgating how to perform
the branch prediction with high accuracy. Second, the uctsn set communi-
cates the hints to the branch predictor in the running pragsach that prediction

is quick. We describe two novel techniques:

e Branch path re-aliasinga technique that moves complexity off of the critical
path for making a prediction and into the compiler. This teghe increases
accuracy by reducing destructive aliasing during the letisal update stage.

This technique allows us to reduce branch predictor delaghrnking a



branch predictor from one generation to the next withoutieing accuracy.

This technique is specific to one particular family of brapeédictors.

e Abranch predictor in which a profiling phase finds a functisedito perform
branch prediction for each branch. Each function is enca@ded compact
Boolean formula in the branch instruction. The PHT is eliatéd, so it is
no longer a source of delay. ThBoolean formula predictohas a small
and fast hardware implementation and will work in less thae oycle even
in the small technologies and aggressive clock rates fochvbonventional

table-based predictors are infeasible.

1.3.1 Scope and Limitations of the Research

In this dissertation, we focus mainly on the effects of tedbgy scaling on the
branch direction predictor. Thus, we mainly study the bhaditection predictor
in isolation, assuming for the sake of simplicity that othecroarchitectural struc-
tures are not affected by technology scaling. We only briefiysider other related
aspects of microarchitecture, such as branch target badfier, instruction cache
delay, and branch predictor power, and we do not propose ledpengolutions to
these problems. This methodology allows us to make strastgegments about the
future of branch predictors themselves without relying cedictions of other com-
ponents; however, without taking into account these otberponents, it is more
difficult to interpret our simulated performance numbetss important to note that
other problems may form more important bottlenecks, sudh@s$ncreasing dis-
parity between DRAM and CPU speeds, and that our IPC resalysa®a optimistic

by assuming that these problems will not get any worse.



1.4 Thesis Statement

The central thesis of this dissertation is this:

Despite the effects of aggressive clock scaling, wire delag complex
organizations, future branch direction predictors carehanproved ac-

curacy while still providing a prediction in a single cycle.

1.5 Contributions

This dissertation makes the following contributions:

1. We show that delay in the predictor significantly erode$gomance, so fu-

ture branch prediction work must consider delay in theiigles We show
that increasing delay to improve accuracy is never a goatafh We show
that structures with multi-cycle access times can be etqadiy hierarchical

organizations for branch predictors.

. We introduce the perceptron predictor, the first dynamedigtor to success-
fully use neural networks, and we show that it is more aceutzn existing
dynamic global branch predictors. For example, for a 4K Ibgielware bud-
get, our global predictor achieves a misprediction rateshenSPEC 2000
integer benchmarks of 1.94%, compared with 4.13% fgslarepredictor
of the same size and 2.66% for the McFarling-style hybridijater of the
Alpha 21264. A version of our predictor that uses both gl@al per-branch
information improves the misprediction rate to 1.71%, aprovement of
36% over the hybrid predictor. By comparing our predictoaiagt a multi-
component hybrid predictor, we provide evidence that thregmron predic-

tor is the most accurate fully dynamic branch predictor knoWe suggest
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how, using hierarchical organizations, the perceptrodipter can be imple-
mented and used in modern CPUs. We show that the percep&ditcior can

improve IPC by 15.8% ovagshareand 5.7% over a hybrid predictor.

. We present branch path re-aliasing, a technique in winehcompiler re-
duces destructive aliasing by setting a hint bit in the 1S%eréby allowing
some dynamic predictors to use smaller tables more eftdgtiWe describe
an algorithm for using path profiles to set these hint bits. piéssent exper-
imental evidence that branch path re-aliasing allows shralch predictors
to achieve greater accuracy than other, slower predictOns. simulations
show that a 2048-entry GAg predictor enhanced with brant qrgaaliasing
has a misprediction rate of 6.5%, 21% lower than the misptiext rate of
8.2% for the same sized, but more complicatggharepredictor, and equiv-
alent to the misprediction rate ofgsharepredictor with twice the size. We
also show that our technique improves accuracy even faagheepredictor,
which was designed to convert destructive aliasing intostrogtive alias-
ing, and we show that our technique can improve the accuricgraplex

predictors, such as the hybrid predictor of the Alpha 21264.

. We present a new method for branch prediction based oreBondbrmulas
that breaks the trade-off between delay and accuracy. Btarine, in one
cycle, our predictor can deliver a prediction with the aecyrof a 8K-entry
gsharepredictor in a technology where only a 512-ergsharepredictor can
be accessed in one cycle. We describe the hardware implatioenof our

predictor, showing that it has one third of the delay and oores 1% of the
power of a conventional branch predictor. We describe alprofalgorithm

for training our predictor.
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Chapter 2

Background

To familiarize the reader with the ideas of branch predictas well as help place
our work in its proper context, we now provide some backgdoumo branch pre-

diction. We review the history of branch prediction, expléie basic mechanism,
describe characteristics of branch predictors, and res@we implemented branch
predictors. We also provide background into the technolscgling issues ad-

dressed by our work.

2.1 History of Branch Prediction

Branch prediction has a long history in high performance moting. In first sur-
vey of branch prediction strategies, Smith describes nmeshes already in place in
mainframe computers at the end of the 1970’s [56]. Most ad¢hmechanisms are
simple, and are based on static characteristics of the amogFor example, some
IBM System 360/370 models predict whether a branch will lkenebased on the
branch instruction opcode, since certain opcodes are wsdddp back edges and
other are used fdrF/ THEN EL SE statements [56]. Another simple static mecha-

nism is to predict that a backward branch will be taken, waiterward branch will
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not, observing that backwards loop back edges are frequieatlersed more than
once. Smith also proposes simple dynamic branch predictdrs basic idea is to
use a hash of the branch address as an index into a table decotimat are incre-
mented when the branch is taken, decremented otherwisen Whach prediction
is required, the high bit of the corresponding counter isdus® the prediction;
1 meanspredict taken and 0 meangredict not taken These historical predic-
tion mechanisms were moderately accurate, but as brangiredistion penalties
started to increase, more accurate technigues becamesapces

An important breakthrough came in 1991 when Yeh and Pattroédehat
the outcome of a given branch is often highly correlated withoutcomes of other
recent branches [62]. This history of branch outcomes farpattern that can be
used to provide a dynamic context for prediction. Most mad®anch predictors
are based on this pattern history. In the scheme of Yeh andeRaty time a branch
outcome becomes known, a single bit (O hart taken 1 for taken is shifted into a
pattern history register. A pattern history table (PHT)wod1bit saturating counters
is indexed by a combination of branch address and historgtexg The high bit
of the counter is taken as the prediction. Once the branatomé is known, the
counter is decremented if the branchist taken,or incremented otherwise, and
the pattern history is updated. Recent branch predictiork fazuses on refining
this scheme of Yeh and Patt. Several predictors have begosed to deal with
the problem of destructive aliasing, which occurs when tweelated branches
contend for the same PHT resources, resulting in decrezsedaay [38, 57, 18].
Hybrid predictors that combine two branch predictors toriowe accuracy have
been proposed [41, 20] and implemented [35]. The 1990'symed a great deal
of research in improving branch predictor accuracy andystigdcharacteristics of

branch prediction, and we expect this research to continue.
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2.2 Characteristics of Branch Prediction

Several factors influence the design of branch predictors:

Branches are biased. Branches, which can only have two outcomiakenand
not takenare highly biased. For instance, a branch that transfersaidrom the
end of a loop back to the beginning will usually tagen since loops usually iterate
many times before finishing. Figure 2.1 shows the bias of oya&ranches in the
SPEC 2000 integer benchmark suite. Thexis gives théiasof a branch, i.e., the
percentage of time a branchteken and they axis shows the number of branches
with a given bias in the SPEC 2000 integer benchmarks. Ofralidhes, 53% are
takenat least 98% or at most 2% of the time. The graph on the rightides these
branches, again showing clear biases and a number of batedten exactly half

the time.

Only frequent branches matter. For a conditional branch to have a significant
impact on the performance of a program, it must be executad/mallions of
times. It doesn’t matter if a low-frequency branch is inectty predicted, because
its overall impact on the program’s speed is low. Most brascire executed very
few times, so it makes sense to concentrate our effort oretfevg branches that

are executed frequently.

Branch predictors must be fast. Branch predictors must meet strict physical
constraints. They must operate in one CPU cycle and be smatigh to fit on a
chip. Most of the hardware devoted to branch predictors isarg for large tables,

so thehardware budgetf a predictor, i.e., the cost of the predictor as a component

of the chip, is appropriately measured in kilobytes. A tgbjaredictor occupies 4K
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bytes of SRAM [35]. However, as we will see, the amount of aszechable in one

cycle will decrease in future technologies.

Aliasing is a problem. One problem with dynamic branch prediction schemes
is aliasing where the limited resources cause two unrelated branchaset the
same prediction resources, resulting in poor performaiMany techniques have
been proposed to reduce the impact of aliasing [41, 38, 57 ,A8the amount of

resources reachable in one cycle decreases, this problebeeome more difficult

to solve.
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Figure 2.1:Bias in branches.

2.3 Branch Prediction Mechanisms

This section provides background in several branch priedichechanisms, paying
particular attention to branch predictors that directlateeto the research presented

in this dissertation.
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2.3.1 GAg and GAs Predictors

Our work on branch path re-aliasing focuses on improvingat®uracy of GAg
branch predictors. Although more accurate predictorggRi&g and its close rela-
tive, GAs, are both used as components of implemented byaneclictors in mod-
ern machines, as we will see in Section 2.3.6. Yeh and Paihtaxrize two-level
branch predictors using a three-letter naming scheme Ta&] first letter represents
how the first level branch history is kept. G means a singlbalbistory register is
used. The second letter denotes the prediction mechanigmeaks that a two-bit
saturating counter is used. The third letter indicates t@second level table is in-
dexed; g means a single column of counters is used for aleadds while s means
that bits extracted from the branch address are used td sedet of counters, and
the set is indexed by the history register. Thus, a GAs predselects a set of
counters from a pattern history table (PHT) using bits fromliranch address, and
chooses a particular counter from that set using bits fregtbbal history. A GAg

predictor uses only the global history to index the PHT.

2.3.2 gshare predictor

One popular variant of the GAs predictorgshare[41]. A gsharepredictor com-
bines the branch history and branch address by exclusivagdRem together. The
exclusive-OR operation has the effect of evenly distribgiiccesses to the PHT,
which would otherwise be unequally distributed due to the-nniform nature of
branch histories. In this wagshareincreases accuracy by reducing the probability

that two different branches will interfere with each othethe PHT.
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2.3.3 Agree predictors

A branch direction predictor can be enhanced usingatpee mechanism [57].
Rather than correlating with branch outcome, the PHT enini@nagreepredictor
keep track of whether a branch outcome will agree with a hiteselbin the branch
instruction. Theagreemechanism turns destructive interference into constrecti
interference, increasing accuracy. However, since thadbranstruction opcode
must be read and combined with the PHT prediction, the in8tm cache is on
the critical path for branch prediction. Note that branchskes can be learned and

stored in the branch target buffer rather than branch iostm.

2.3.4 Bi-Mode predictor

Several other branch predictor organizations have begopeal to reduce destruc-
tive aliasing in the PHT. We choose the Bi-Mode predictor] [@8a representative
of these predictors. The Bi-Mode predictor uses three hisédbles: two PHTs and
a choice table that is used to indicate which PHT to use fortacp#ar combination
of branch address and history. Details of this predictavalt to reduce aliasing by
separating into different tables histories that would desively alias one another,

at the cost of increased complexity in the organization.

2.3.5 Static Branch Prediction

A purely static branch predictor always predicts the sameawne for a particular
static branch. The prediction can be derived from the atreadf the branch itself,
e.g., the “backwards taken/forwards not taken” approatcheflpha AXP-21064,
or encoded into the branch instruction itself as a bias biinp &he 1A-64 instruction

set. The compiler, through profiling or static heuristicsl], can provide hints to
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the microarchitecture about the likely direction of therlma. Given enough state,
dynamic branch predictors are more accurate than statirchrpredictors, since

dynamic predictors take into account changing conditiamaratime.

2.3.6 Branch Predictors in Current CPUs

Current microprocessors use two-level branch predictohe following are three

notable examples:

e The AMD K6 and K7 (Athlon) processors use GAs predictors [16]
e The HP-PA 8700 uses a 2048-entry GAs with #ggeemechanism [39, 59].

e The Alpha 21264 core uses a hybrid predictor composed of waoelével
predictors [35]: a 4K-entry GAg is indexed by a 12-bit globaanch his-
tory while a 1K-entry PHT of 3-bit saturating counters isemdd by one of
1024 local 10-bit branch histories. The final branch preaiicis chosen by
indexing a third predictor that keeps track of the relativeLaacies of the two
predictors for a particular global history. The Alpha pdr is very accu-
rate; indeed, it is the most accurate of implemented braratiigtors that we
have observed. However, its implementation complexity e®mvith a cost.
The Alpha branch predictor overrides a less accurate ictsbru cache line
predictor, introducing a single-cycle bubble into the fiipe whenever the

two disagree [35].

2.4 Technology Scaling

Branch predictors, like other microarchitecture struesiare affected by two tech-

nology scaling trends. Microprocessor designers contiauggressively increase
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the clock rates, outstripping the speed improvements aetliby transistors that
have smaller gate lengths in each successive technologylithermore, at smaller
feature sizes, wire delay grows in significance relativeaogistor speeds and can
affect the latency of the fetch engine and the branch predi€aster clocks exac-
erbate the tradeoff between capacity and delay in micrgssm components. As
these trends continue, the chip area reachable in a single wjll decrease. This
means that large banks of SRAM, such as caches and brancbtjgretables, will
have to either decrease in size or increase in delay. Braregtigtion tables are
particularly hard hit by clock scaling because they reqmime address lines than
similarly sized caches because caches have wide lines tataihch predictors have
narrow two-bit entries. These extra address lines causdisant decoder delay.

To account for accelerating clock rates, we use a techndludgpendent
metric, thefanout-of-four(FO4) delay metric, to measure clock period [27]. One
FO4 delay is the time for an inverter to drive 4 copies of ftseeasonable models
show that under typical conditions, the FO4 delay, measurgacoseconds, is
equal to360 X Lg,qwn, WhereLg,q.. iS the minimum gate length for a technology,
measured in microns. The number of FO4 delays in a clock gesian indicator
of the number of levels of logic in a pipeline stage. An exaangil an aggressive
clock rate isfs, which corresponds to a clock period of 8 FO4 delays. Thesotirr
trends in pipeline depths and clock rates suggest that & cide nearfg may be

used in real microprocessors in the near future.
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Chapter 3
Methodology

In this chapter, we explain the general methodology we usdbtain our experi-

mental results. Later sections will go into more detail vehappropriate. There are
three main types of results that we gather: branch mispiedicates, instructions
per cycle (IPC), and circuit timings. We gather these dfatisn the context of a

out-of-order core simulator based on the SimpleScalah&kgimulator [10].

3.1 Simulated Microprocessor

We use the SimpleScalar/Alpha out-of-order simulator figomed with microar-

chitectural parameters similar to those of the Alpha 21238)}.[ We choose this
microarchitecture because it is recognized as a leadigg-bijh performance mi-
croprocessor. Since we are focusing solely on the brandtigboe, we keep the
other structure sizes constant at values shown in TableTBis.means that, as we
scale feature sizes and clock rates, we assume that the nofimbeles to access
other structures will not change. Although this is an opsiiciassumption, it allows
us to isolate the effect of the branch predictor. We assumnesaline microarchi-

tecture with a five-stage pipeline and issue width of fouryvéeer, we investigate
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Capacity
(bits) | # entries| Bits/entry | Ports
BTB 48K 512 96 1
Reorder buffer 8K 64 128 8
Issue window | 800/320 20 56 8
Integer RF 5K 80 64 10
FP RF 5.6K 72 80 10
L1 I-Cache 512K 1K 512 1
L1 D-Cache 512K 1K 512 2
L2 Cache 16M 16K 1024 2
I-TLB 14K 128 112 1
D-TLB 14K 128 112 2

Table 3.1:Parameters used for the simulations, similar to the Alpt2621

multiple pipeline depths simulated by changing the misjetexh penalty. Note that
an issue width of four is conservative; as issue width inseeabranch prediction
becomes even more important since more work is wasted ongedistion.

By changing the number of cycles for the branch mispredigbenalty and
for accessing the branch predictor, we simulate the effectaveasing the clock

rate and the depth of the pipeline.

3.2 Benchmarks

We simulate the 12 programs in the SPEC CPU 2000 suite ofentegnchmarks.
The programs are compiled on an Alpha 21264 workstationguia Compaq C
compiler V6.3-025 and g++ compiler version 2.9-gnuproi9%he optimization
levels are chosen from threak settings for the SPEC-supplied configuration files.

Table 3.2 shows the name of each benchmark, along with adésctiption.
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Benchmark Description

164.9gzip LZ77 compression

175. vpr Place and route for FPGAs

176. gcc C compiler for Motorola 88100
181. ncf Minimum cost network flow solvey

186.crafty | Chess playing program
197. par ser Natural language processing

252. eon Ray-tracing program

253. per | bnk | Perl

254. gap Computational group theory
255. vortex | Database

256. bzi p2 Block-sorting compression
300. t wol f Place and route

Table 3.2:SPEC 2000 integer benchmark suite.
3.3 Branch Misprediction Rates

We use the following methodology when reporting branch neidjztion rates.

3.3.1 Simulated Branch Predictors

Most of the branch predictors studied are simulated in a Gaméwork that is
patched into the SimpleScalar/Alpha branch predictioniesys The framework
can also function in a stand-alone trace-driven simuldtbe framework currently

supports the following branch predictors:

1. Two-level adaptive branch prediction [62]. This catggocludes predictors
such aggshareand other predictors that index a pattern history table (PHT
using a combination of branch address and global (e.g. gsharg or per-
branch history information. The parameters to a two-levetlictor are his-

tory length, size of the PHT, number of per-branch histaiedseep, number
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of bits per counter, and whether or not to exclusive-OR tlenbtin address

with the branch history (as igsharg.

2. Hybrid branch prediction [20]. Any two simulated brancafegictors can
be combined into a hybrid predictor. A table of two-bit satirg counters
indexed by global history and/or branch address is useddp tkack of which
predictor performs best for which branch, and the predictiom the better
predictor is returned. The hybrid predictor of the Alpha @4 2s simulated
using this mechanism. The parameters are the size of thesehtable and

the sort of information that should be used to index it.

3. Thebi-modepredictor [38]. The parameters are the size of each patistn h

tory table and the global history length.

4. The Agree predictor [57]. A method call allows the userdad a table of
bias bits into any branch predictor. The table is then usechpdement the

agreemechanism in that predictor.

5. Perceptron prediction [33]. The parameters are the nuwigerceptrons,
the number of per-branch history bits, the number of glolstbhy bits, the

number of per-branch histories to keep, and the threshdle: va

We used this framework to write many trace-driven simukatoesting different
areas of our research. The Boolean Formula predictor islatedialongside this

framework, using separate data structures.

3.3.2 Tuning Branch Predictors

It has been observed that branch predictor accuracy igsersihistory length [41].

We tune each predictor for history length using traces gathigom the each of the
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12 benchmarks and the ai n inputs. The traces record the address and outcome
(i.e., taken or not taken) of up to 300 million branches fachehenchmark. We
exhaustively test every possible history length at eaclvisare budget for each
predictor, keeping the history length that yields the lavwvegmonic mean mispre-
diction rate. For thegreemechanism, we set bias bits in the branch instructions

using branch biases learned from threai n inputs.

3.3.3 Testing Branch Predictors

For each benchmark, we gather traces giving the branch ssldred outcome for
300 million branches for bothr ai n andr ef inputs. Each benchmark executes
over one billion instructions before the simulation enasouir simulations, we skip
the first 50 million branches before beginning to record brgprediction accuracy;
we have observed that the benchmarks exhibit highly prallietinitialization be-

havior before this time, and then settle into a steady-state

3.4 Instructions per Cycle

For generating instructions per cycle (IPC) results, weaiseodified version of
thesi m out or der simulator from SimpleScalar/Alpha that uses our branch pre
diction framework. We simulate each benchmark, measuhiegitimber of cycles
and instructions executed, and add in a number of cyclev&eui to the various
delays or penalties associated with the particular experiea We then divide the
number of retired instructions by the number of cycles udgate that this method-
ology fails to capture some of the wrong-path effects sucbaate pollution that
would actually be observed in a real latency-sensitive dhvaoredictor; however,

these effects are small. For experiments that require féwaer 1000 executions
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of the performance simulator, we run each benchmark for dherbinstructions.

For experiments that require more than 1000 executionsuweach benchmark
for 500 million instructions. For instance, tuning a preédido search a large de-
sign space may require many thousands of executions, Hirigyetsults using an
already tuned set of configurations may require only dozeihsindreds of execu-

tions.

3.5 Circuit Timings

Several of our experiments require analysis to determiaaldtay of circuit com-
ponents such as pattern history tables and computatiogalegits related to the

perceptron and Boolean formula branch predictors.

3.5.1 HSPICE

We simulate combinational logic circuits using the HSPI@&Ldator. The HSPICE
simulations use transistor models tailored to fabricaporcesses to simulate the
circuit behavior for several technology generations, flmnrent generations with
minimum feature (transistor and wires) sizes of 180nm dawfuture generations

that will have minimum feature sizes of 35nm.

3.5.2 CACTI

To estimate pattern history table access times for a rangaroént and future in-
tegrated circuit generations, we use circuit simulatiam$ @ modified version [2]
of the CACTI 2.0 tool for simulating cache delay. This modifieersion of CACTI
is more accurate than the original in several ways. Firstlewthe original version

of CACTI 2.0 [49] uses a simplistic linear scaling for delafimates, the modified
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simulator uses separate wire models to account for the qéddyisiyout of wire in-
terconnects: thin local interconnect, taller and widemewifor longer distances, and
the widest and tallest metal traces for global interconngetond, wire resistance
is based on copper rather than aluminum material properfidésrd, all capaci-
tance values are derived from three-dimensional eleceld g#quations. Fourth,
bit-lines are placed in the middle layer metal, where rasis¢ is lower. Finally,
bit-addressing is allowed instead of byte-addressing.vetsions of HSPICE and

CACTI both use the same parameters for technology scaling.

3.6 Computing Facilities

We run our simulations on a network of approximately 200 Remill computers

using the Condor system for coordinating the execution afynjabs [8].
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Chapter 4

Hierarchical Organizations

In this chapter, we examine three organizational appraafdradealing with delay

in future process technologies: (1) a two level caching sehe(2) anoverrid-

ing scheme that allows a first prediction to be overturned by seraocurate sec-
ond prediction, and (3) eascadingookahead scheme that exploits cycles between
branches to do prediction work. We show that delay in theiptedsignificantly
erodes performance, so future branch prediction work mussider delay in their
designs. We show that increasing delay to improve accusacgver a good trade-
off. We show that there are approaches to branch predidiiandan effectively
use large structures with multi-cycle access times, and gkperimental results

showing that IPC can be sustained using these techniques.

4.1 Motivation

Larger branch prediction structures lead to larger acceks/sl. Aggressively in-
creasing clock rates (as the marketplace demands) insr¢asestructure access
time as measured in clock cycles.

Our studies show that it is never worth increasing the detaylwanch pre-
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Figure 4.1:Inter-branch latencies

dictor for the sake of improved accuracy [32]. For exampigufe 1.1 shows that
as we increase the capacity of the tablegshare we increase delay and decrease
IPC. This effect can be explained with the following equatishich roughly ap-

proximates the cogt' of executing a branch instruction:

C=d+(rxp)

whered is the delay of branch predictorjs the misprediction rate, ands the mis-
prediction penalty. While the delaymay not always be on the critical path of the
pipeline, increasing will reduce the instruction fetch bandwidth to the executio
cores. Because misprediction rates tend to be below 10%gekan delay have a
larger impact than small changesritior practical values ofl (i.e., for forseeable

pipeline depths).
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4.2 Branch Frequency

A program'’s control behavior is based not only on the predidity of its branches,
but also on the branch frequency. If branch prediction isiiregl on every clock
cycle, any delay in branch prediction will substantiallgwglthe instruction fetch
rate. However, if branches are widely spaced, then branetligiron latency will
have less impact on performance. While the common wisdohmaisliranches oc-
cur on average every fourth or fifth instruction, we find th@gur framework (i.e.,
a real-world optimizing compiler on the Alpha), branchewially occur one every
nine instructions, on average. The actual dynamic digiohwf inter-branch laten-
cies is more instructive. We use SimpleScalar/Alpha [10h&asure the average
branch frequency the twelve SPEC 2000 integer benchmarlks4way out-of-
order machine configuration. Figure 4.1 is a histogram ofaye inter-branch
latencies, measured in cycles between prediction requestthe SPEC 2000 in-
teger benchmarks. Over 67% of the prediction requests ououe than one cycle
after the previous request. The unused cycles provideiaddittime to predict
future branches. For wider issue machines, there is lessaud time to make a

prediction.

4.3 Hierarchical Organizations for Latency Sensitive
Branch Predictors

In this section, we describe three ways to configure branetigiors to increase
accuracy in the face of increasing latency. These techsigueeappropriate when
standard techniques for branch prediction might exceedcgoke, and these are
general techniques that can be applied to most predictgorigthms.

To achieve high prediction accuracy, the branch predicty raquire larger
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tables. The goal of the microarchitect is to achieve acquapproaching that of
a large table, with the latency of a small table. We examimeethmethods for

achieving this goal.

4.3.1 Caching Prediction Tables

The first strategy to combat the long latency of large braneiption tables is

to build a small cache of branch prediction table entriesis Blrategy allows us
to realize the benefits of reduced aliasing and increasedrhilength without the

added latency of the large table, since the cache will havacaass time of one
cycle. For instance, a 128K-entry PHT accessible in twoes/can be cached
using a 1K-entry PHT accessible in one cycle. Figure 4.2 sttbevorganization of
thegsharepredictor augmented by a cache. The branch history and beddress

are hashed using the XOR gate, and the resulting addres# i®dmth the pattern
history table cache (PHTC) and the pattern history tablelj)PRhe PHT consists
of 2-bit saturating counters, with the number of countensaédo the number of
combinations of addresses produced by the hash functioe. PHIIC caches a

subset of those counters in a smaller table that can be &actessre quickly than
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Figure 4.3:Cascading branch predictor

the PHT. If the correct counter is found in the PHTC, then tredgtion can be

made immediately. If a miss in the PHTC occurs, then the PH$trne consulted
to find the correct saturating counter. Like traditionalles; an entry in the PHTC
is replaced with the correct counter from the PHT. When tltaadth direction is

determined during a later stage of the execution pipelimecounters in the PHT
and PHTC are updated to reflect the correct or incorrect gtiediof that branch.

If a PHTC miss occurs, the wait for the correct predictiomirthe PHT
will delay instruction fetch and will degrade overall parftance. Two alternatives
can be used to prevent this additional delay. First, theigtied produced by the
PHTC, albeit for the wrong branch, can be used. Alternatjweé suggest building
a small auxiliary branch predictor (ABP) that can be aca¢sdehe same time as
the PHTC. If the PHTC misses, then the result from the ABP éslus

4.3.2 Cascading Lookahead Branch Prediction

Lookahead branch prediction has been proposed as a mathtniscrease fetch
bandwidth by generating addresses for future branchebfg4see Chapter 8 for

more related work). The same technique can be applied taceethe impact of

31



longer latency branch predictors. If the branch predictonat needed on every
cycle, then natural spacing between branches can be usedftorp a prediction
for the next branch that is likely to arrive. Thus, if branshee spaced so that
the predictor is accessed only every other cycle, the pi@dian have a two cycle
latency without introducing additional delay. Figure 4hibws us that the predictor
is usually needed at most once every other cycle.

Thegsharepredictor can be adapted to look one branch ahead. Wsiilare
uses the branch history register and branch address to tertiguPHT address, a
lookahead predictor uses the predicted history and theeadaf the most recently
fetched branch. Since the prediction can complete beferae¢kt branch arrives at
the predictor, prediction is instantaneous. However,gfpthediction requires mul-
tiple cycles (due to a large table) and the next branch aripegore the prediction
is complete, the instruction fetch engine stalls.

Cascading lookahead branch prediction implements a safriables of as-
cending size and latency. Figure 4.3 shows a two-level dasggredictor. Like a
lookahead predictor, the next prediction is based on thelasliction and the last
branch address. Prediction begins simultaneously on leetid of the cascading
predictor. If the latency to the next branch to be predictddrige, then the predic-
tion from the second level table is selected. If the next tihaarrives before the
second level table can complete its access, then the pgoedfodbm the first level
table is used.

Thus, the combination of a small first level table and a lasgzond level
table can provide better aggregate accuracy with the mimndadency. However,
the utility of the larger table depends on its access timelaathter-branch latency.
If branches occur extremely frequently, the second levehefcascade will not

be used. The cascading design can be trivially extended te than two levels.
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Furthermore, hybrid predictors of varying latencies canrno®rporated into the
cascading strategy. In our description above, the logicdbiects the prediction to
use is based only on the arrival time of the next branch. Monegdicated selectors
could trade off latency versus accuracy by predicting wimthnany predictions is

best for the subsequent branch.

4.3.3 Overriding Branch Predictor

An overriding branch predictor (Figure 4.4) provides twegictions. The first
prediction comes from a fast PHT (PHT1), and the second gtiedicomes from
a slower, but more accurate PHT (PHT2). When branch predi¢s requested,
the first prediction is used and acted upon while the secoadigiion is still being
made. If the second prediction differs from the first praditt the actions taken
based on the first prediction are squashed and instructientetched using the
second prediction; thus, the second predictor overrideditst predictor. For the
overriding scheme, we assume that the penalty of restaatingverridden fetch is
equal to the delay of PHT2. A similar technique is used in tihgh& 21264, in

which the branch predictor, whose results become knowniartlye second stage
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Gate | 8FO4 Clk
(nm) | fs (GHz)
180 1.9
130 2.7
100 35

70 5.0

50 7.0

35 10.0

Table 4.1:Projected clock rates using 8 FO4 Clock scaling.

of the pipeline, can override the less accurate instructamhe line predictor [35]
with a single-cycle penalty. We assume the predictor islpipd such that no

branch needs to wait for the completion of a PHT2 lookup forewvjpus branch.

4.4 Technology Scaling

Table 4.1 lists the technologies that we consider and thekcktes that result from
aggressive fg) scaling. We base our estimates of branch predictor deldgeac-
cess time of the memory-oriented structures such as therpéiistory table (PHT).
To model PHT delay, we use the methodology described by Aglamst al. [1],
which augments the CACTI cache delay modeling tool [49] withled technology
parameters. We convert the access time produced by the atep@ACTI model
into cycles, according to thg clock scaling strategy. As shown in Figure 4.5, only
small tables of 1024 entries can be accessed in a single, @madeat 35nm, only
512 entries can be accessed in one cycle. Accepting a 2 oll@dglay increases

the capacity to 16K and 64K entries, respectively.
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4.5 Results and Analysis

In this section we evaluate the three latency sensitivedbrpredictors and compare
them togshareacross a spectrum of process technologies. In additionyalaate

a fourth predictor that combines the cascading and ovegigredictors. This pre-
dictor uses a cascading predictor that continues prediefiter the branch has been
encountered, overriding the first prediction if the secoradifction is different.

We used the methodology outlined in Chapter 3 to evaluatdifferent
prediction strategies described above using delay estgratseven process tech-
nologies ranging from 180 nm to 35 nm, representing teclgiesofrom today to
the predicted smallest feature sizes for which conventiGMOS will be feasible.
Eachsi m out or der simulation runs for 500 million instructions. In the simula
tions, the global pattern history register is updated sia¢igaly and backed up on a
mispredict, while updates to the PHTs are done when the iqgdatanch commits.

We report two types of results. First, we give results usingaggressive
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eight FO4 fs) clock rate, an aggressive clock rate for future techne®di] that
emphasizes the scaling difficulties of branch predictascstres. Next, we give
results for a fixed process technology with a clock rate vayyrom 5 FO4 to 16
FO4, to show the effect of aggressive clock rates indepdrudgmocess technology
scaling. This set of clock rates allows us to explore a widgesof processor design
philosophies, from sophisticated wide-issue low clocle natocessors to deeply

pipelined, high clock rate processors.

4.5.1 Process Technology Scaling

For each process technology, we configure the simulator thigHargest branch
prediction structures (predictor tables, cache, etc.thalle at the given number
of cycles allocated to branch prediction. The structuressiare obtained using
the modified version of CACTI described in Chapter 3. For eaehchmark we
measure IPC, aggregate branch predictor accuracy, andstalistics related to the
branch prediction schemes. Aggregate branch predictidonpeance is computed
as the arithmetic mean over the benchmarks. Note that tleeitppf each structure
is set by its access time, rather than any chip area limitad@ith smaller feature
sizes, this assumption is reasonable, as the amount ofieffebip area is far larger

than is reachable in the number of cycles we consider.

Predictor Configuration For each predictor, we consider several configurations
of structure capacity and latency in search of the best corafigpn at each tech-
nology generation. In the caching predictor, the two stmeg are the PHTC and
the PHT, while in the overriding and cascading predictortti structures are the
PHT1 and PHT2. As the secondary structure access timesasgréhe resulting

IPC is slightly worse for the overriding predictor and slighbetter for the cascad-
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Technology| PHT1| PHT1 | PHT2 | PHT2
(nm) Delay | Entries| Delay | Entries
180 1 1K 2 128K
130 1 1K 2 128K
100 1 1K 2 128K
70 1 1K 2 128K
50 1 512 2 64K
35 1 512 2 64K

Table 4.2:The best configurations of the PHT1 and PHT2 for the cascaatidgverriding
predictors.

ing predictor. The size of the secondary structure for ttedhicey predictor makes
little difference in performance. The rest of our resulis @ported using the best
configurations found for each prediction technique.

In the caching predictor, we varied the latency of the PHmfébto 4 cycles,
keeping the PHTC at a 1-cycle access time. Note that inecrg#ise latency of each
table also increases its capacity.

For the cascading and overriding predictors, we keep atodbg primary
PHT at one cycle while varying access to the secondary PHT from 2 to 4
cycles. Increasing the second level (PHT2) latency rediR€sslightly for the
overriding predictor, but increases IPC slightly for the@ading predictor.

Initially, while tuning the caching predictor, we noticduat the PHTC has
an unusually small number of entries compared with the attractures. Unlike a
normal cache that has large cache lines, our caching poedexjuires many times
more tag bits than data bits. The extra wire length involveddcessing the tag
bits severely restricts the number of cache entries, ingithe effectiveness of this
scheme. Other prediction components in which the size dbélsec prediction ele-

ment is large with respect to the number of tag bits, sucheapelceptron predictor,

37



may be more amenable to a caching scheme. For this study,ase e2-way set-

associative cache with a line size equal to the square rabeafiumber of cached

prediction table entries. Thus, we trade tag bits for ldgallVe can access a larger
structure, but, due to the absence of spatial locality in@ingrediction table access
patterns, we must settle for high miss rates in the cache.

The best configurations for the cascading predictor atftheock rate are
shown in Table 4.2. The best configurations for the overgdgiredictor are iden-
tical to those of the cascading predictor, since the twoipted have much the
same architecture and differ only in their policy of when amgkether to use the
second-level PHT. Indeed, the stream of updates to the PAA PHT2 structures
should be the same in both overriding and cascading predjctioe only differ-
ence is that the overriding predictor always uses the PHE&Rigtion, while the

cascading predictor only uses the PHT2 prediction whensitdmough time.

Accuracy and Performance: Figure 4.6 shows the accuracies of the best con-
figurations of the various predictors at tligclock rates. As shown in the graph,
accuracy tends to decrease with feature sizes, becauseettietjpn table capaci-
ties decrease. The accuracy of the overriding predictoeases slightly from 100
to 70nm, since the best configuration for 70nm technologyalithe PHT2 to take
three cycles, while the best configuration in 100nm allowy dmo cycles. The
combination of the cascading and overriding predictorseses the highest accu-
racy because it always uses a larger second-level predédtioer because it agrees
with or overrides the first-level predictor. The cascadimgdictor by itself per-
forms worse because it sometimes uses the less accuraleviespredictor when
there are not enough cycles to use the second-level preditihas this predictor

faces the challenge of branch misprediction as well as hrearget misprediction.
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Finally, caching performs less well, not even exceedingabeuracy of a single
levelgsharepredictor due to the fact that pattern history table acsesskibit very
little locality.

Of course, accuracy is not necessarily indicative of pemtorce, particularly
when prediction time is a variable. Figure 4.7 show the udton throughput (IPC)
for each of the configuration described above. The predi¢tdlow parallel trajec-
tories with performance reflecting the overall accuracyhefpiredictor. Clearly, the
combination of cascading and overriding predictors, witligher accuracy, is best

for every process technology at the aggresgivelock rate.

4.5.2 Clock Rate Scaling

We have seen how wire delay will affect branch predictor ylelaithe fixed fg
clock rate in future technologies. Now, we illustrate thelpem along a different
dimension. We look at a fixed technology, 130 nm feature sigd,vary the clock
rate from 1.3 GHz to 3.6 GHz. This technology is especiallgvwant since it is in
the process of being adopted by manufacturers as we wrgaltbsertation. This
range of clock rates is equivalent to clock periods frigpdown tof5. As the clock
rate increases, the size of the largest PHT accessible ingkesiycle decreases.
Figure 4.8 shows the misprediction rates of the variousipt@s as the
clock rate is increased. The misprediction rate geshareincreases dramatically
as the clock rate is increased. At 1.3 GHzJ, the misprediction rate of a 32KB
gshareis 1.76%. The rate increases to 2.3% at for a 46Bareat 1.8GHz, a clock
rate equivalent tof;;. At 3.5 GHz or f5, the misprediction rate is a distressing
8.26%, because only a very small 4-bgsharecan be built at this aggressive clock
rate. It's important to note that at this point, the CACTI retsdof circuit behavior

are unrealistic, since we would not use a cache-like stradtuaddress 32 bits of
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SRAM.

The misprediction rate of the overriding predictor remahmes lowest of all
the techniques. At 1.3 GHz, the misprediction rate is 1.838%.3.6 GHz, the
misprediction rate is still low at 2.52%, an improvement 0%« overgshare

Figure 4.9 shows the IPCs yielded by the predictors as thek chate is in-
creased. As expected, all of the IPCs go down as clock rateases. Nevertheless,
using hierarchical organizations, we can reduce the ptgerby which IPCs de-
crease. Usingshare going from 16 FO4s to 5 FO4s results in a reduction in IPC
due to increase branch misprediction of 16%, from 1.90 td.1.By combining

overriding and cascading, IPC is reduced by only 2.6%, dawin85%.
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4.6 Summary

In this chapter we have examined a number of hierarchicaldbraredictor orga-
nizations and evaluated them in the context of aggressoekalates and future
process technologies. The predictor that caches a patisonhtable (PHT) for
gshareperforms no better thagshareby itself. The tags needed to implement a
caching scheme requires more bits than the cache itselfjraitd both cache ca-
pacity and utility. The cascading lookahead predictor tisas the time in between
branches to make predictions performs reasonably well giteagive clock rates.
An overriding predictor that allows a slow predictor to cahthe prediction of a
faster, but less accurate predictor performs even beterttie cascading approach.
We achieve the best performance by combining the cascadithgwerriding ap-
proaches.

To continue supplying a sufficient number of instructionghe execution
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core while continuing to use large table-based branch pt@di, future microarchi-
tectures must move branch prediction latency off of thecaiipath. The schemes
we present, particularly the combination of cascading aredraling predictors, can
be augmented by using something other thahareas the primary or secondary
predictor. We believe that the secondary predictor is tlealighlace for a more
complex and longer latency predictor, as it can be kept ofhefcritical path. We

explore hierarchical organizations for one such predictoine next chapter.

44



Chapter 5

Perceptron Predictor

We have seen that hierarchical predictor organizatiowsvalls to tolerate some la-
tency in the branch predictor, and still deliver a predictio a single cycle. Rather
than simply extend existing predictors to use larger tafdesncreased accuracy,
we explore the use of computationally complex branch ptedichat have previ-
ously been infeasible because of delay. We propose a nevcfmedheperceptron
predictor, based on neural learning. This predictor provides a casy sor hi-
erarchical delay-sensitive predictors, since the neuethod used takes multiple
cycles to provide a prediction. Our work builds on the obagon that all existing
two-level techniques use tables of saturating counterardl@etworks are another
prediction mechanism capable of providing good prediatioh is interesting to
ask whether we can improve accuracy by replacing these emwith neural net-
works. Since most neural networks would be prohibitivelpensive to implement
as branch predictors, we explore the use of perceptronspfahe simplest possi-
ble neural networks. Perceptrons are easy to understanplesio implement, and
have several attractive properties that differentiatenthem more complex neural
networks, such as a space-efficient representation andtavedy quick method for

computing the prediction.
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We propose a two-level scheme that uses fast perceptraesidhsf two-bit
counters [33]. Ideally, each static branch is allocatedws perceptron to predict
its outcome. Traditional two-level adaptive schemes usattem history table
(PHT) of two-bit saturating counters, indexed by a globatdry shift register that
stores the outcomes of previous branches. This structmitslthe length of the
history register to the logarithm of the number of countédsir scheme not only
uses a more sophisticated prediction mechanism, but it asider much longer
histories than saturating counters.

We give results showing that our predictor outperforms ogredictors at
moderate and large hardware budget, providing evidendetibgperceptron pre-
dictor is the most accurate fully dynamic branch predictumkn. We explain why
and when our predictor performs well. We show that the nenugtédvork we have
chosen works well a class bhearly separable branches term we introduce. We
also show that programs tend to have many linearly sepatableches, and that
linearly inseparable branches are predicted just as weahé&yperceptron predictor
as by other predictors.

This chapter describes our technique for doing branch gtiediusing neu-
ral learning. We motivate the idea, describe neural metfadsranch prediction,
discuss implementation of the predictor, and give restitsving how a hierarchi-
cal organization can enable our complex predictor to pmuaigrediction in a single

cycle.

5.1 Neural Methods for Dynamic Branch Prediction

Artificial neural networks learn to compute a function usgxg@mple inputs and

outputs. Neural networks have been used for a variety ofiGaijuns, including
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pattern recognition, classification [23], and image un@d&ding [36, 30]. In this
section, we explain how neural methods might be applied t@adyc branch pre-
diction. We discuss the general idea, then explain why waelioe perceptron in

particular for branch prediction.

5.1.1 Prediction with Neural Methods

Suppose a sef is partitioned inton classes, and we are faced with the problem
of determining, for an arbitrary elemente S, what classs is in. The elements
of S have certain features which correlate with their clasdibicas. An artificial
neural network can learn correlations between these fesmtaund the classification.
An artificial neural network is a collection of neurons, soofi@hich receive input
and some of which produce output, that are connected by.lielegh link has a
weight associated with it that determines the strength efctimnection [23]. For

a classification problem such as deciding to which @afasses an input belongs,
there aren output neurons. In the special case where there are only lagses,
there is only one output neuron. Each neuron computes ifsubétom the sum
of its input using aractivation function During a training phase, the weights are
adjusted using a training algorithm. The algorithm useg afdeaining data, which
are ordered pairs of inputs and corresponding outputs. €heahnetwork learns
correlations between the inputs and outputs, and genertlig learning to other
inputs. To predict which class a new inpuis in, we supplys to the input units of
the trained neural network, propagate the values througihétwork, and examine
the n output neurons. We classify according to the neuron with the strongest
output. In the special case where- 2, there is only one output neuron; in this case,
we classifys according to whether the output value exceeds a certaishble,

typically O or 3.
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5.1.2 Neural Learning for Dynamic Branch Prediction

For dynamic branch prediction, the inputs to a neural legrmethod are the binary
outcomes of recently executed branches, and the outputrisdécpon of whether
or not a branch will be taken. Each time a branch is executddrentrue outcome
becomes known, the history that led to this outcome can be tosteain the neural

method on-line to produce a more accurate result in thedutur

5.1.3 Choosing a Neural Method

There are many types of neural networks. Most of them arepiraggpiate for branch
prediction because they require much longer than severethima cycles to oper-
ate. Thus, for our discussion, we limit ourselves to neuedviork architectures
that could feasibly be made to operate at the high speedgeddor branch pre-
diction. We consider four methods: multi-layer percepsraith back-propagation,
the ADALINE neuron [60], Hebb learning [23], and the Block perceptrdnli®pre-
liminary work, we measured the misprediction rates yieloggéach method on the
SPEC95 benchmarks. Hebb learningysAINE neurons and Block perceptrons are
simple neural learning methods, in which a single neurorsexifor computation
and is trained with a simple algorithm. Hebb learning yigddsr branch prediction
accuracy. While AALINE and the perceptron yield similar prediction accuracy,
the ADALINE neuron requires twice as much space to represent the weights
sufficient accuracy. Back-propagation is infeasible bseanf its implementation
complexity, since there is no way to implement back-propagan hardware such
that a prediction can be produced in just a few cycles. Maean our preliminary
experiments we find that the perceptron learns faster athdisymeore accurate pre-

diction than back-propagation. For instance, on the SPEE&@%hmarki26.gcc
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perceptrons achieve a 2.44% misprediction rate, compaitd3:83% for back-
propagation [34].

One benefit of perceptrons is that by examining tegights i.e., the cor-
relations that they learn, it is easy to understand the aerdghat they make. By
contrast, a criticism of many neural networks is that it iiclilt or impossible to
determine exactly how the neural network is making its desisTechniques have
been proposed to extract rules from neural networks [53]tHese rules are not
always accurate. Perceptrons do not suffer from this opazpse the perceptron’s
decision-making process is easy to understand as the ofsutimple mathemati-

cal formula.

5.2 Branch Prediction with Perceptrons

This section provides the background needed to understanpredictor. We de-
scribe perceptrons, explain how they can be used in brarechqgpion, and discuss
their strengths and weaknesses. Our method is essentiadig-gevel predictor,

replacing the pattern history table with a table of peraagr

NIZ

Figure 5.1:Perceptron Model.
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5.2.1 How Perceptrons Work

The perceptron was introduced in 1962 [50] as a way to studiy function. We
consider the simplest of many types of perceptrons [&ingle-layer perceptron
consisting of one artificiaheuronconnecting severahput unitsby weighted edges
to oneoutput unit A perceptron learns a target Boolean functigny, ..., z,,) of n
inputs. In our case, the; are the bits of a global branch history shift register, and
the target function predicts whether a particular brandhbe taken. Intuitively,
a perceptron keeps track of positive and negative corogiatbetween branch out-
comes in the global history and the branch being predicted.

Figure 5.1 shows a graphical model of a perceptron. A perces$ repre-
sented by a vector whose elements are the weights. For opoges, the weights
are signed integers. The output is the dot product of the meigectorw,. ., and
the input vectorg, ,, (o is always set to 1, providing a “bias” input). The output

of a perceptron is computed as

n
i=1

The inputs to our perceptrons dpolar, i.e., eache; is either -1, meaning
not takenor 1, meanindgaken.A negative output is interpreted peedict not taken.

A non-negative output is interpreted @®dict taken.

5.2.2 Training Perceptrons

Once the perceptron outpythas been computed, the following algorithm is used
to train the perceptron. Letbe -1 if the branch was not taken, or 1 if it was taken,
and letd be thethreshold a parameter to the training algorithm used to decide when

enough training has been done.
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i f Sigr(yout) #tor |yout‘ <6then
for ¢:=0tondo

w; = w; + tx;
end for
end if

Sincet andz; are always either -1 or 1, this algorithm increments #¢he
weight when the branch outcome agrees withand decrements the weight when
it disagrees. Intuitively, when there is mostly agreemeet, positive correlation,
the weight becomes large. When there is mostly disagregimennegative corre-
lation, the weight becomes negative with large magnitudé&oth cases, the weight
has a large influence on the prediction. When there is weaklation, the weight

remains close to 0 and contributes little to the output oféeeptron.

5.2.3 Linear Separability

A limitation of perceptrons is that they are only capableearhinglinearly sep-
arablefunctions [23]. Imagine the set of all possible inputs to ecpptron as an

n-dimensional space. The solution to the equation

n
wy + E riw; = 0
i=1

is a hyperplane (e.g. a line,iif = 2) dividing the space into the set of inputs for
which the perceptron will resporfdlseand the set for which the perceptron will
respondtrue [23]. A Boolean function over variables, ,, is linearly separable

if and only if there exist values fap,_, such that all of thérue instances can be
separated from all of thialseinstances by that hyperplane. Since the output of a
perceptron is decided by the above equation, only lineapasable functions can

be learned perfectly by perceptrons. For instance, a peoregan learn the logical
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AND of two inputs, but not the exclusive-OR, since there isline separating
true instances of the exclusive-OR function frdalseones on the Boolean plane.
Figure 5.2 graphs the bipolar AND and XOR functions. A solitelseparates
thetrue instance of AND from thdalseinstances, but the dotted line is unable to
separatedrue instance of XOR from théalseinstances.

As we will show later, many of the functions describing théndéor of
branches in programs are linearly separable. Also, sincallee the perceptron
to learn over time, it can adapt to the non-linearity introeldi by phase transitions
in program behavior. A perceptron can still give good predits when learning a
linearly inseparable function, but it will not achieve 10@8tcuracy. By contrast,
two-level PHT schemes likgsharecan learn any Boolean function if given enough

training time.

5.2.4 Branch Prediction with Perceptrons

We can use a perceptron to learn correlations between plartisranch outcomes
in the global history and the behavior of the current brafdiese correlations are
represented by the weights. The larger the weight, the gématme correlation, and
the more that particular branch in the global history cdmiies to the prediction of
the current branch. The input to the bias weight is alway® Instead of learning
a correlation with a previous branch outcome, the bias weigl learns the bias
of the branch, independent of the history.

The processor keeps a table/éfperceptrons in fast SRAM, similar to the
table of two-bit counters in other branch prediction scheniéhe number of per-
ceptrons )V, is dictated by the hardware budget and number of weightshitself
is determined by the amount of branch history we keep. Spaotalitry computes

the value ofy and performs the training. We discuss this circuitry in #ecb.3.
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When the processor encounters a branch in the fetch stagmllibwing steps are

conceptually taken:

1. The branch address is hashed to produce an index.N — 1 into the table

of perceptrons.

2. The:" perceptron is fetched from the table into a vector registgr,, of

weights.

3. The value ofy is computed as the dot product 8fand the global history

register.
4. The branch is predicted not taken wheis negative, or taken otherwise.

5. Once the actual outcome of the branch becomes known, dhrenty algo-

rithm uses this outcome and the outpub update the weights iR.

6. P is written back to the™ entry in the table.

It may appear that prediction is slow because many computatind SRAM
transactions take place in steps 1 through 5. However, @ebt3 shows that a
number of arithmetic and microarchitectural tricks enablgrediction in a single

cycle. Itis important to note that training occurs contisiguon-line.

5.3 Implementation

This section describes details of the implementation ofpgéeseptron predictor.
We explore the design space for perceptron predictors ssulisé details of the

circuit-level implementation.
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5.3.1 Design Space

Given a fixed hardware budget, three parameters need to &ée tmachieve the best
performance: the history length, the number of bits use@poasent the weights,
and the threshold.

History length. Long history lengths can yield more accurate predictiof$ it

also reduce the number of table entries, thereby increadiaging. In our exper-
iments, the best history lengths ranged from 4 to 50, depgnaoin the hardware
budget. The perceptron predictor can use more than one kindtory. We have
used both purely global history as well as a combination obgl and per-branch

history.

Representation of weights. The weights for the perceptron predictor are signed
integers. Although many neural networks have floating-pwieights, we found
that integers are sufficient for our perceptrons, and thrapkfly the design. We find
that using 8 bit weights provides the best trade-off betwassiracy and hardware

budget.

Threshold. The threshold is a parameter to the perceptron trainingisthgo that
determines whether the predictor needs more training elftlgnitude of the out-
put of the perceptron is below the threshold, or if the praiicis incorrect, then
the training algorithm adjusts the perceptron weightsentiise, the perceptron is

judged to have been trained enough.
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5.3.2 Circuit-Level Implementation

Here, we discuss general techniques that will allow us tdempnt a quick per-

ceptron predictor, then give more detailed results of asisdor-level simulation.

Computing the Perceptron Output. Computing the output of the perceptron is
on the critical path for making a branch prediction. Thus, ¢hcuit that evaluates
the perceptron should be as fast as possible. Several fiegpaithe problem allow
us to make a fast prediction. Since -1 and 1 are the only pessitut values to the
perceptron, multiplication is not needed to compute thepdotluct. Instead, we
simply add when the input bit is 1 and subtract (add the twolsiplement) when
the input bit is -1. In practice, we have found that addingdhe’s-complement,
which is a good estimate for the two’s-complement, works asswell and lets us
avoid the delay of a small carry-propagate adder in favor sétaof inverters to
perform the negation. This computation is similar to thatqened by multiplica-
tion circuits, which must find the sum of partial productstthee each a function
of an integer and a single bit. Furthermore, only the sigmbihe result is needed
to make a prediction, so the other bits of the output can bepodead more slowly
without having to wait for a prediction. In this chapter, veport only results that

simulate this complementation idea.

Training. The training algorithm of Section 5.2.2 can be implementé&diently

in hardware. Since there are no dependences between loaioites, all iterations
can execute in parallel. Since in our case hgtandt can only be -1 or 1, the loop
body can be restated as “incrementby 1 if t = x;, and decrement otherwise,” a

quick arithmetic operation since thg are 8-bit numbers:

for each bit in parallel
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Circuit-Level Simulation.  Using a custom logic design program and the HSPICE
and CACTI 2.0 simulators we designed and simulated a haelingplementation
of the elements of the critical path for the perceptron ptedifor several table sizes
and history lengths. We used CACT]I, a cache modeling to@stonate the amount
of time taken to read the table of perceptrons, and we usedGES© measure the
latency of our perceptron output circuit.

The perceptron output circuit accepts input signals froetieights array
and from the history register. As weights are read, they émede exclusive-ORed
with the corresponding bits of the history register. If thaistory bit is set, then this
operation has the effect of taking the one’s-complemert@ftweight; otherwise,
the weight is passed unchanged. After the weights are edetheir sum is found
using a Wallace-tree of 3-to-2 carry-save adders [15], Wikdluces the problem
of finding the sum of, numbers to the problem of finding the sum2ohumbers.
The final two numbers are summed with a carry-lookahead adides Wallace-
tree has deptlW(logn), and the carry-lookahead adder has deptlvgn), so the
computation is relatively quick. The sign of the sum is ingdrand taken as the
prediction.

Table 5.1 shows the delay of the perceptron predictor foersg\hardware
budgets and history lengths, simulated with HSPICE and QAQTL80nm process
technology. We obtain these delay estimates by selectpgsndesigned to elicit

the worst-case gate delay. We measure the time it takes éofime input signals
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to cross half ofVpp until the time the perceptron predictor yields a steadyblgsa
signal. For a 4KB hardware budget and history length of 24 ttital time taken
for a perceptron prediction is 2.4 nanoseconds. This detaiswout to slightly less
than 2 clock cycles for a CPU with a clock rate of 833 MHz, thecklrate of the
fastest 180 nm Alpha 21264 processor as of this writing. Tiph#& 21264 branch
predictor itself takes 2 clock cycles to deliver a predictiso our predictor is within
the bounds of existing technology. Note that a perceptrediptor with a history
of 23 instead of 24 takes only 2.2 nanoseconds; it is about fB8%r because a
predictor with 24 weights (23 for history plus 1 for bias) da@ organized more
efficiently than predictor with 25 weights, since decregsime number of weights

to 24 decreases the depth of the Wallace-tree by one.

History | Table Size| Table Perceptron  Total
Length | (bytes) | Delay (ps)| Delay (ps)| Delay (ps)
4 128 386 811 1197
7 256 411 808 1219
9 512 432 725 1157
13 1K 468 1090 1558
17 2K 504 1170 1674
23 4K 571 1700 2271
24 4K 571 1860 2431

Table 5.1:Perceptron Predictor Delay.

5.4 Results and Analysis

We use simulations of the SPEC 2000 integer benchmarks tpa@nthe per-
ceptron predictor against two well-known techniques frowm literature. We give

results showing how an overriding version of the percepp@dictor outperforms
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a hybrid predictor. Finally, we present analysis to explaity the perceptron pre-

dictor performs well.

5.4.1 Methodology

Here we describe our experimental methodology. We dishessther predictors

simulated, the benchmarks used, the tuning of the predicamid other issues.

Predictors simulated. We compare our new predictor agaigshare[41], and
bi-mode[38], and a McFarling-style combinatiaggshareand PAg hybrid predictor
similar to that of the Alpha 21264, with all tables scaled@xgntially for increas-
ing hardware budgets. For the perceptron predictor, we lateuipoth a purely
global predictor, as well as a predictor that uses both glaba local history. This
global/local predictor takes some input to the perceptromfthe global history
register, and other input from a set of per-branch histpaéther details of the
perceptron implementation remain the same. For the global/perceptron pre-
dictor, the extra state used by the table of local histori&s @onstrained to be within
35% of the hardware budget for the rest of the predictor,ctifig the design of the
Alpha 21264 hybrid predictor. Faggshareand the perceptron predictors, we also
simulate theagreemechanism [57], which predicts whether a branch outcomie wil
agree with a bias bit set in the branch instruction. @geeemechanism turns de-
structive aliasing into constructive aliasing, incregsatcuracy at small hardware
budgets.

Our methodology differs from our previous work on the petoap predic-
tor [33] in which used traces from x86 executables of SPEO20@l only explored
global versions of the perceptron predictor. Using the Alpistruction set, we find

that the improvement yielded by the perceptron predict@r @ther predictors is

58



higher than with the x86 instruction set. We believe thas fkibecause the Al-
pha’s RISC instruction set requires more dynamic branahas¢omplish the same
work, thus longer histories will be required. The percepipcedictor can make use

of longer histories than other predictors.

Tuning the predictors. We tune each predictor for history length using traces
gathered from the each of the 12 benchmarks and tke n inputs. We exhaus-
tively test every possible history length at each hardwadgbt for each predictor,
keeping the history length yielding the lowest harmonic measprediction rate.
For the global/local perceptron predictor, we exhausfitest each pair of history
lengths such that the sum of global and local history lengt imost 50. For the
agreemechanism, we set bias bits in the branch instructions usiagch biases
learned from thé r ai n inputs.

For the global perceptron predictor, we find, for each hiskength, the best
value of the threshold by using an intelligent search of tfeees of values, pruning
areas of the space that give poor performance. We re-usamhe thresholds for
the global/local an@greeperceptron predictors.

Table 5.2 shows the results of the history length tuning. \We &n inter-
esting relationship between history length and threshbie best threshold for a
given history lengthh is alwaysexactlyd = |1.93h + 14]. This is because adding
another weight to a perceptron increases its average obypsbme constant, so
the threshold must be increased by a constant, yieldingeadirelationship be-
tween history length and threshold. Through experimemative determine that

using 8 bits for the perceptron weights yields the best tesul
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Estimating area costs. Our hardware budgets do not include the cost of the logic
required to do the computation. By examining die photos ofivare multipliers,

we estimate that at the longest history lengths, this cagpsoximately the same
as that of 1K of SRAM. Using the parameters tuned for the 4KllWware budget,
we estimate that the extra hardware will consume about tne $agic as 256 bytes

of SRAM. Thus, the cost for the computation hardware is siw@thpared to the

size of the table.

5.4.2 Impact of History Length on Accuracy

One of the strengths of the perceptron predictor is itstgidiconsider much longer
history lengths than traditional two-level schemes, wtihielps because highly cor-
related branches can occur at a large distance from each [@ttje Any global
branch prediction technique that uses a fixed amount of iyistdormation will
have an optimal history length for a given set of benchmatlsswe can see from
Table 5.2, the perceptron predictor works best with muclyéoristories than the
other two predictors. For example, with a 4K byte hardwardget,gshareworks
best with a history length of 14, the maximum possible lerigtigshare At the
same hardware budget, the global perceptron predictorsaoekt with a history
length of 24.

5.4.3 Misprediction Rates

Figure 5.3 shows the harmonic mean of misprediction ratbeaed with increas-
ing hardware budgets on the SPEC 2000 benchmarks. At a 4khbaydsvare bud-
get, the global perceptron predictor has a mispredictimaotl.94%, an improve-
ment of 53% ovelgshareat 4.13% and 31% over a 6K byl®-modeat 2.82%.

When both global and local history information is used, tkecpptron predictor
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hardware gshare global perceptron| global/local perceptron
budget | history| number | history | number | global/local| number
in bytes | length | of entries| length | of entries| history | of entries
128 2 512 4 25 8/2 11
256 1 1K 7 32 10/2 19
512 11 2K 9 51 23/2 19
1K 12 4K 13 73 25/5 33
2K 13 8K 17 113 31/5 55
4K 14 16K 24 163 34/10 91
8K 15 32K 28 282 34/10 182
16K 16 64K 47 348 36/11 341

Table 5.2:Best History Lengths fogshareand Perceptron.

still has superior accuracy. A global/local hybrid predrctvith the same config-
uration as the Alpha 21264 predictor using 3712 bytes hasspradiction rate of
2.67%. A global/local perceptron predictor with 3315 bydéstate has a mispre-
diction rate of 1.71%, representing a 36% decrease in ndggren rate over the
Alpha hybrid. Theagreemechanism improves accuracy, especially at small hard-
ware budgets. With a small budget of only 750 bytes, the dllmizal perceptron
predictor achieves a misprediction rate of 2.89%, whicless fthan the mispredic-
tion rate of agsharepredictor with 11 times the hardware budget, and less than th
misprediction rate of gshare/agregredictor with a 2K byte budget. Figure 5.4
show the misprediction rates of two PHT-based methods andhewceptron pre-

dictors on the SPEC 2000 benchmarks for hardware budgets ahd 16K bytes.

Large Hardware Budgets

As Moore’s Law continues to provide more and more transistothe same area, it

makes sense to explore much larger hardware budgets fartbpaedictors. Evers’
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thesis [22] explores the design space for multi-compongbtiti predictors using
large hardware budgets, from 18 KB to 368 KB. To our knowledpe multi-
component predictors presented in Evers’ thesis are theanograte fully dynamic
branch predictors known in previous work. This predictoesua McFarling-style
chooser to choose between two other McFarling-style hytmaédlictors. The first
hybrid component joins gsharewith a short history to gsharewith a long history.
The other hybrid component consists of a PAs hybridized witbop predictor
which is capable of recognizing regular looping behaviarefor loops with long
trip counts.

We simulate Evers’ multi-component predictors using thmesa&onfigura-
tion parameters given in his thesis. At the same set of hasdtuadgets, we sim-
ulate a global/local version of the perceptron predictonhe Tuning of this large
perceptron predictor is not as exhaustive as for the smiadieiware budgets, due
to the huge design space. We tune for the best global histogth on the SPEC
t r ai ninputs, and then for the best fraction of global versus lbesbry at a single
hardware budget, extrapolating this fraction to the ergeeof hardware budgets.
As with our previous global/local perceptron experiments,allocate 35% of the
hardware budgets to storing the table of local historiese @tnfiguration of the
perceptron predictor is given in Table 5.3.

Figure 5.5 shows the harmonic mean misprediction rates ef€Ewnulti-
component predictor and the global/local perceptron ptedion the SPEC 2000
integer benchmarks. The perceptron predictor outperfahsmulti-component
predictor at every hardware budget, with the mispredictates getting closer to
one another as the hardware budget is increased. Both fmedare capable of
reaching amazingly low misprediction rates at the 368 KBlivare budget, with
the perceptron at 0.85% and the multi-component predi¢td:198%.
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Size | Global | Local | Numberof | Number of
(KB) | History | History | Perceptrons Local Histories
18 38 14 280 2,048

30 40 14 428 4,096

53 50 18 519 8,192

98 54 19 1093 8,192
188 64 23 1652 16,384
368 66 24 3060 32,768

Table 5.3:Configurations for Large Budget Perceptron Predictors.

We claim that our results are evidence that the perceptredigor is the
most accurate fully dynamic branch predictor known. We npasht out that we
have not exhaustively tuned either the multi-componenherperceptron predic-
tors because of the huge computational challenge. NeVesthehere is a clear
separation between the misprediction rates of the muitigmment and perceptron
predictors, and between the perceptron and all other goedieve have examined
at lower hardware budgets; thus, we are confident that oum dan be verified by

independent researchers.

5.4.4 Delay Sensitive Perceptron Predictor

As we have seen, the perceptron predictor has a substael#sl dssociated with
it. Here, we present the results of using one technique tmaté this delay. We
simulate an overriding perceptron predictor, and compareasults to the overrid-
ing hybrid branch predictor used by the Alpha 21264. Culyetite fastest Alpha
processor in 180 nm technology is clocked at a rate of 833 Mitithis clock rate,
both the perceptron predictor and Alpha hybrid predictdivdea prediction in two

clock cycles.
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Moderate Clock Rate Simulations

Using SimpleScalar/Alpha, we simulate a two-level ovengdpredictor at 833
MHz. The first level is a 256-entry Smith predictor [56], j.@ simple one-level ta-
ble of two-bit saturating counters indexed by branch addrékis predictor roughly
simulates the line predictor of the overriding Alpha preoicOur Smith predictor
achieves a harmonic mean accuracy of 85.2%, which is the aanugacy quoted
for the Alpha line predictor [35]. For the second level potdi, we simulate both
the perceptron predictor and the Alpha hybrid predictore Ppkrceptron predictor
consists of 133 perceptrons, each with 24 weights. Althabgt25 weight percep-
tron predictor was the best choice at this hardware budgetrisimulations, the 24
weight version has much the same accuracy but is 10% fastehae observed
that the ideal ratio of per-branch history bits to total digtbits is roughly 20%, so
we use 19 bits of global history and 4 bits of per-branch jysimm a table of 1024
histories. The total state required for this predictor i88Bytes, approximately the
same as the Alpha hybrid predictor, which uses 3712 bytesh B@ Alpha hy-
brid predictor and the perceptron predictor incur a sirgylele penalty when they
override the Smith predictor. We also simulate a 2048-embry-overridinggshare
predictor for reference. Thigshareuses less state since it operates in a single cy-
cle; note that this is the amount of state allocated to thedbr@redictor in the HP-
PA/RISC 8500 [39], which uses a clock rate similar to thathef Alpha. We again
simulate the 12 SPEC int 2000 benchmarks, this time allowah benchmark to
execute 2 billion instructions. We simulate the 7-cyclepresliction penalty of the
Alpha 21264.

When a branch is encountered, there are four possibiliiiistiae overriding

predictor:
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e The first and second level predictions agree and are cotretttis case, there

iS no penalty.

e The first and second level predictions disagree, and thendeme is correct.

In this case, the second predictor overrides the first, wiimall penalty.

e The first and second level predictions disagree, and thendemae is incor-
rect. In this case, there is a penalty equal to the overrigamglty from the
previous case as well as the penalty of a full mispredictfeortunately, the

second predictor is more accurate that the first, so thisisdsss frequent.

e The first and second level predictor agree and are both iectorin this case,
there is no overriding, but the prediction is wrong, so a faisprediction

penalty is incurred.

Figure 5.6 shows the instructions per cycle (IPC) for eacthefpredictors.
The figure shows the IPCs yielded g§ghare an Alpha-like hybrid, and global/local
perceptron predictor given a 7-cycle misprediction pgndlhe hybrid and percep-
tron predictors have a 2-cycle latency, and are used asidwveypredictors with a
small Smith predictor. Even though there is a penalty whenotrerriding Alpha
and perceptron predictors override the Smith predictair tincreased accuracies
more than compensate for this effect, achieving higher I#@s a single-cycle
gshare The perceptron predictor yields a harmonic mean IPC of, méfch is
higher than the overriding predictor at 1.59, which itsslhigher thargshareat
1.53.

Higher Clock Rates

The current trend in microarchitecture is to deeply pipelnicroprocessors, sac-

rificing some IPC for the ability to use much higher clock saté&or instance, the
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Intel Pentium 4 uses a 20-stage integer pipeline at a cldekafal.76 GHz, as of
this writing. In this situation, one might expect the peitcep predictor to yield
poor performance, since it requires so much time to make digtien relative to
the short clock period. Nevertheless, we will show that teeeptron predictor can
improve performance even more than in the previous case.

At a 1.76 GHz clock rate, the perceptron predictor descrédsave would
take four clock cycles: one to read the table of perceptrowistiaree to propagate
signals to compute the perceptron output. Pipelining thhegmron predictor will
allow us to get one prediction each cycle, so that branclestme close together
do not have to wait until the predictor is finished predictthg previous branch.
The Wallace-tree for this perceptron has 7 levels. With allstoat in latch delay,
we can pipeline the Wallace-tree in four stages: one to reageérceptron from
the table, another for the first three levels of the tree, l@rdior the second three
levels, and a fourth for the final level and the carry-lookathadder at the root of

the tree. The new perceptron predictor operates as follows:

1. When a branch is encountered, it is immediately predieidda small Smith

predictor. Execution continues along the predicted path.

2. Simultaneously, the local history table and perceptedets are accessed

using the branch address as an index.

3. The circuit that computes the perceptron output takesspig from the global

and local history registers and the perceptron weights.

4. Four cycles after the initial prediction, the perceptpoediction is available.
If it differs from the initial prediction, instructions egated since that predic-

tion are squashed and execution continues along the ottier pa
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5. When the branch executes, the corresponding percerpuickly trained

and stored back to the table of perceptrons.

Figure 5.7 shows the result of simulating predictors in arg@acchitecture
with characteristics of the Pentium 4. The mispredictionghty is 20, to simulate
the long pipeline of the Pentium 4. The Alpha overriding hetlpredictor is con-
servatively scaled to take 3 clock cycles, while the ovanggerceptron predictor
takes 4 clock cycles. The 2048-engygharepredictor is unmodified. Even though
the perceptron predictor takes longer to make a predidtistill yields the highest
IPC in all benchmarks because of its superior accuracy. Eheeptron predictor
yields an IPC of 1.48, which is 5.7% higher than that of therldpredictor at 1.40,
and 15.8% higher than the baseline IPC of 1.28 yieldeddhare

5.4.5 Training Times

To compare the training speeds of the perceptron predidatbrRHT methods, we
examine the first 100 times each branch in each of the SPECI28@hmarks is
executed (for those branches executing at least 100 tinkéglre 5.8 shows the
average accuracy of each of the 100 predictions for eactedtttic branches. The
x axis is the number of times a branch has been executedy-akis is the average,
over all branches in the program, of 1 if the branch was mdipted, O otherwise.
The average is weighted by the relative frequencies of eentich. Over time, this
statistic tracks how quickly each predictor learns. Theggitron predictor achieves
greater accuracy earlier than the other two methods.
The perceptron method learns more quickly gsbareor bi-mode For the

perceptron predictor, training time is independent ofdristength. For techniques

such agysharethat index a table of counters, training time depends on rinauat
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of history considered; a longer history may lead to a largerkimg set of two-
bit counters that must be initialized when the predictorrst fearning the branch.
This effect has a negative impact on prediction rates, amadcattain point, longer
histories begin to hurt performance for these schemes [A&]we will see in the
next section, the perceptron prediction does not have thekness, as it always

does better with a longer history length.

5.4.6 Why Does it Do Well?

We hypothesize that the main advantage of the perceptralicpoeis its ability to
make use of longer history lengths. Schemesdiglearethat use the history register
as an index into a table require space exponential in therlig&ngth, while the
perceptron predictor requires space linear in the histmgth.

To provide experimental support for our hypothesis, we sategshareand
the perceptron predictor at a 64K hardware budget, wherpatmeptron predictor
normally outperformgshare However, by only allowing the perceptron predictor
to use as many history bits gshare(18 bits), we find thaggshareperforms better,
with a misprediction rate of 1.86% compared with 1.96% fa fferceptron pre-
dictor. The inferior performance of this crippled predichas two likely causes:
there is more destructive aliasing with perceptrons bexthey are larger, and thus
fewer, thangsharés two-bit counters, and perceptrons are capable of legroirty
linearly separable functions of their input, whidsharecan potentially learn any
Boolean function.

Figure 5.9 shows the result of simulatigghareand the perceptron predic-
tor with varying history lengths on the SPEC 2000 benchmdtlese, we use a 4M
byte hardware budget to allogshareto consider longer history lengths than usual.

As we allow each predictor to consider longer historieshdscomes more accu-
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rate untilgsharebecomes worse and then runs out of bits at a history lengtB of 2
(sincegsharerequires resources exponential in the number of histos),bithile

the perceptron predictor continues to improve. With thigeahistically huge hard-
ware budgetgshareperforms best with a history length of 23, where it achieves a
misprediction rate of 1.55%. The perceptron predictor & béa history length of

66, where it achieves a misprediction rate of 1.09%.

5.4.7 When Does It Do Well?

The perceptron predictor does well when the predicted brarhbibitslinearly sep-
arable behavior. To define this term, lek,, be the most recent bits of global
branch history. For a static branéh there exists a Boolean functigig(h,,) that
best predicts3’s behavior. It is this functionfp, that all branch predictors strive
to learn. If fg is not linearly separable thegsharemay predictB better than the
perceptron predictor, and we say that such branchebrealy inseparable We
computefg(hy4) for each static branci for each benchmark and test for linear
separability of the function.

Figure 5.10 shows the misprediction rates for each bendhioara 4KB
budget, as well as the percentage of dynamically executatthes that is linearly
inseparable. For each benchmark, the bar on the left sh@wsigprediction rate of
gshare while the bar on the right shows the misprediction rate olioda percep-
tron predictor. Each bar also shows, using shading, theomoof mispredictions
due to linearly inseparable branches and linearly sepatafainches. We observe
two interesting features of this chart. First, most mispoed branches are lin-
early inseparable, thus linear inseparability correlaighly with unpredictability
in general. Second, the perceptron predictor outperfasigarein all cases ex-

cept for that ofL86. cr af t y, the benchmark with the lowest fraction of linearly
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separable branches.

Some branches require longer histories than others foratecprediction,
and the perceptron predictor often has an advantage far irasches. Figure 5.11
shows the relationship between this advantage and theregbhistory length, with
one curve for linearly separable branches and one for inabjgabranches. The
y axis represents the advantage of our predictor, computadltyacting the mis-
prediction rate of the perceptron predictor from thagshare We sorted all static
branches according to their “best” history length, whictejgresented on theaxis.
Each data point represents the average misprediction fatatec branches (with-
out regard to execution frequency) that have a given besiriigength. We use
the perceptron predictor in our methodology for finding thbsst lengths: Using
a perceptron trained for each branch, we find the most disfahe three weights
with the greatest magnitude. This methodology is motivatethe work of Evers
et al, who show that most branches can be predicted by lookingeg fbrevious
branches [21]. As the best history length increases, tharddge of the percep-
tron predictor generally increases as well. We also seeotimapredictor is more
accurate for linearly separable branches. For linearlgpagble branches, our
predictor performs generally better when the branchesmetpng histories, while
gsharesometimes performs better when branches require shootieist

Linearly inseparable branches requiring longer histoaswell as all lin-
early separable branches, are always predicted bettethvetherceptron predictor.
Linearly inseparable branches requiring fewer bits ofdmstare predicted better
by gshare. Thus, the longer the history required, the b#teeperformance of the
perceptron predictor, even on the linearly inseparabledires.

We found this history length by finding the most distant ofitimee weights

with the greatest magnitude in a perceptron trained for eaghch, an application
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of the perceptron predictor for analyzing branch behavior.

5.4.8 Additional Advantages of the Perceptron Predictor

This subsection describes two additional benefits of userggptrons to perform
branch prediction.

Branch prediction with perceptrons has other advantagagwevious meth-
ods. A perceptron output can give a confidence in the prediciihe weight vector
can be used to find correlations between branches, so thisotheain be used in

simulation to analyze the behavior of a program.

Assigning confidence to decisions. Our predictor can provide a confidence-level
in its predictions that can be useful in guiding hardwarecafaion. The outputy,

of the perceptron predictor is not a Boolean value, but a reurtiiat we interpret
astakenif y > 0. The value ofy provides important information about the branch
since the distance gffrom 0 is proportional to theertaintythat the branch will be
taken [30]. This confidence can be used, for example, to alavcroarchitecture
to speculatively execute both branch paths when confidenlosvj and to execute
only the predicted path when confidence is high. Some braredfigtion schemes
explicitly compute a confidence in their predictions [29]f in our predictor this
information comes for free. We have observed experimentiadlt the probability
that a branch will be taken can be accurately estimated amearlfunction of the
output of the perceptron predictor. Figure 5.12 shows anriealpneasurement of
the sample probability that a branch is taken as a functidgheperceptron output
for the SPEC int 2000 benchmarks.
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Analyzing branch behavior with perceptrons. Perceptrons can be used to ana-
lyze correlations among branches. The perceptron predisgigns each bit in the
branch history a weight. When a particular bit is stronglyreated with a par-
ticular branch outcome, the magnitude of the weight is highan when there is
less or no correlation. Thus, the perceptron predictone&r recognize the bits
in the history of a particular branch that are important fegdiction, and it learns
to ignore the unimportant bits. This property of the percaptpredictor can be
used with profiling to provide feedback for other branch p&on schemes. For
example, our methodology in Section 5.4.7 could be usedavttofiler to provide

path length information to the variable length path prexif58].

5.5 Summary

In this chapter we have introduced a new branch predictouges neural networks—
the perceptron in particular—as the basic prediction meisha Perceptrons are
attractive because they can use long history lengths wittemuiring exponential
resources. A potential weakness of perceptrons is theieased computational
complexity when compared with two-bit counters, but we hslvewn how a per-
ceptron predictor can be implemented efficiently by usinigyiaiding hierarchi-
cal organizations. Another weakness of perceptrons is thability to learn lin-
early inseparable functions. Nevertheless, the percepredictor performs well,
achieving a lower misprediction rate, at all hardware basigdan well-known
global predictors on the SPEC 2000 integer benchmarks.cBemnexhibiting lin-
early inseparability are hard to predict in general, not luasd for perceptrons.

In the Introduction, the reader may have momentarily wdrtieat the era of

proposals for increasingly complex branch predictors isro\fhe reader can rest
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assured that, with hierarchical organizations, reseasclie free to explore more
expensive and exotic solutions to the problem of increalmgch predictor accu-
racy. Nevertheless, we must ask ourselves whether thimapiprcan be sustained
indefinitely, and whether there are simpler ideas that as$dveanch predictor delay
and accuracy without increasing the complexity that theroaichitect has to deal
with. In the next two chapters, we explore alternative idisas address delay by

reducing complexity, rather than increasing it.
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Chapter 6

Cooperative Prediction with Branch
Path Re-Aliasing

We have seen how to mitigate the problem of branch predi&arydy using more
complex hardware. However, it seems intuitive that we woattler uséesshard-
ware, because branch predictor delay is due in large pdretpropagation delay of
signals through complex circuitry and long wires. In thigpter and the next chap-
ter, we explore the idea of shifting some of the work of malangyediction to the
compiler, so that the compiler and processor cooperate ke i prediction. By
reducing the complexity of the hardware, these cooperat®dictors have reduced
access delay.

Traditional predictors such agshare[41], bi-mode[38], YAGS [18], and
hybrid predictors [20] reduce destructive aliasing in th€lFby introducing more
levels of logic onto the critical path for making a predictjavith aggressive clock
rates, these branch predictors will become less feasible.

In this chapter, we propoderanch path re-aliasinga branch prediction
technique which enlists the compiler’s help in moving intpat functionality off
of the critical path to making a prediction, providing a dujrediction in a sin-

gle cycle while moving other prediction work to the lessicst predictor update
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stage. In particular, our scheme gives the compiler thedbd&creasing destructive
aliasing and increasing constructive aliasing, so thabtaach predictor hardware
can be simplified. While other approaches have used the ¢empiprovide hints

which decrease aliasing, this scheme is unique in that thtebits are kept off the

critical path for prediction. Branch path re-aliasing isilied in scope to branch
predictors that use GAg, i.e., a simple PHT indexed only leyglobal history, as

the prediction mechanism.

In our scheme, the compiler uses path profiling informatmprbvide hints
to branch instructions so that paths with different outcem@l have histories that
map to different locations in the branch predictor’s tabks our purposes, a path
through the program is a sequence of conditional branchuéioes up to a certain
length; path profiling is a technique that keeps a count ohtimaber of times each
path through the program is executed. A small, simple ptedis used to make
a branch prediction, after which the branch history is updato that destructive
aliasing is decreased. Our scheme placésaamch inversion biin each branch
instruction to indicate whether the branch outcome shoalthierted before it is
recorded in the global history register. Even in CPUs witHtiraycle instruction
caches, our scheme can deliver a prediction in parallel thighinstruction cache
access, and only needs to read the hint bit to update thetbpmadictor.

Our simulations show that a 2048-entry GAg predictor enbdndgth branch
path re-aliasing has a misprediction rate of 6.5%, 21% |dinam the misprediction
rate of 8.2% for the same sized, but more complicajstarepredictor, and equiv-
alent to the misprediction rate ofgsharepredictor with twice the size. We also
show that our predictor can improve accuracy for other PESel predictors.

In this chapter we introduce the concept of branch pathiesiag. We

discuss the motivation behind this idea, discuss the proloialiasing in branch
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predictors, describe our optimization and algorithm, amal/ile results showing

how our scheme improves accuracy.

6.1 Branch Path Re-Aliasing

In this section, we describe the problem of history aliasimbich is common to
many two-level branch predictors. We then describe a tectenthat increases

accuracy by decreasing aliasing.

6.1.1 Path and Outcome Histories

Branch path re-aliasing gives the compiler explicit cohtnger how paths through
the program are mapped to PHT entries. Branch outcomes ginéy ldorrelated
both with path and pattern histories [43, 65, 58]. Pattestohnies are easier to use
than path histories since they require recording only alsibg for each branch.
However, pattern histories are highly susceptible to mggsboth between differ-
ent static branches and within the same branch. That isyaleddferent paths
correlated with different branch behaviors may all indutesame pattern history,
leading to destructive aliasing. Our optimizati@aliasespattern histories to bet-

ter reflect path histories, improving accuracy by decrepdastructive aliasing.

6.1.2 History Aliasing in a Global Predictor

Several types of aliasing have been identified in branchighead [42]. Our focus
is onconflict aliasing Consider a GAg predictor, which consists of a PHT indexed
by a global history register. Two different paths in the pezg may coincidentally
lead to the same global history, even though the code beieguéxd is unrelated.
In this case, the same PHT entry will be used for both brandhéghe prediction

84



may not correlate highly with the outcome of either. Thus,lthanch predictor will

have poor accuracy for these branches.

6.1.3 Our Solution: Branch Path Re-Aliasing

Our approach to solving the history aliasing problem is senha hint bit into each
instruction that tells the branch history update mechanigrather or not to invert
the branch outcome before recording it in the history regisiVe choose the hint
bits, which we calinversion bits such that paths leading to branches with opposite
outcomes will have different histories. Essentially, bgieging the way paths alias
one another in the PHT, we reduce destructive aliasing.

We introduce our idea by modifying the simplest possible-texel branch
predictor: the GAg. A global history register is used to @ePHT of two-bit
saturating counters, from which the prediction is directlggd. Once the prediction
is read and made available to the fetch engine, the critio@ to make a prediction
is over, so the predictor is no slower than a normal GAg. Thadn prediction is
then used to speculatively update the global history regigthich is backed up and
corrected after a misprediction. With branch path re-algshe difference comes
in how the history register is updated. Each branch insotn@ncodes an inversion
bit. If this bit is set, then the branch outcome is invertetbleeit is recorded in
the global history register. In short, the value recordethenhistory register is the
exclusive-OR of the inversion bit and the branch outcome.

At first glance, it might seem that this technique could belengnted by
simply changing branch senses and reordering code; howtbigetransformation
would be at odds with techniques such as branch alignmehtha8seek to mini-
mize the number of taken branches to increase fetch banuvBdanch alignment

can increase performance, even though it may decreasefioedaccuracy [47].
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Our technique can nicely complement branch alignment bye@sing the destruc-

tive aliasing introduced by alignment.

Path Profiles

Path profiling collects information on the the executionhgadf a program [7].
Branch path re-aliasing uses path profiles to determinehnrianches should have
their inversion bits set. For a history lengthf i.e., a GAg with anV-bit history,

each path profile stores the following information for a path

1. The addresses of the la$tbranches encountered.

2. The outcomeg#gkenor not taken of the lastV branches encountered.
3. freq(p), the frequency with which this path was executed.

4. ntakerip), the number of times this path led to a taken branch.

Algorithm

Once the path profiles have been collected, we use a two-@thgsethm to set

inversion bits. In the first phase, the algorithm tries to mpahs to PHT entries by
setting the inversion bits of certain branches, causingtroative aliasing between
paths that agree on branch outcome and choosing differentepitfies for paths
with different outcomes. Each path is examined in decrgasider of execution

frequency. For each path, we choose a set of inversion latetther map the path
to PHT to which similarly-biased paths are mapped, or to arsed PHT entry. As
inversion bits are set, they become fixed for paths that aamaned later; thus, this
greedy local algorithm is augmented with a second phasetmsiders the global

situation. In the second phase, a hill-climbing heuriséitsghe inversion bits of
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each branch sense one at a time, keeping the set of inverssothét maximizes
a fitness function based on the estimated amount of conisgumhd destructive

interference. The details the two phases are as follows:

1. The first phase of the algorithm maps paths to PHT entriésveyting or not
inverting branches along the path. The algorithm considach path profile
in descending order of frequency. For each prafjléhe algorithm looks for
an entry; in the PHT to which similarly biased paths are mapped, or tizkvh
no paths are mapped at all. If one is found, then paith mapped to PHT

entryi; otherwise, the inversion bits of the patlare left the same.

2. The second phase considers each static branch, cholbsimyérsion hint bit
for that branch that maximizes a fitness function over alhbhas. LetP; be
the set of paths all mapped to PHT eniyand letn be the history length, so
that there ar@” counters in the PHT. Let a Booleasken be the aggregate
bias (i.e. true fotakenor false fornot taken of all the paths mapped to PHT

entryi, i.e.,taken is true if and only if:

" ntakerip) > % >~ freq(p)

pPEP; pPEP;

In other wordstaken is true if and only if all the paths mapped to PHT entry
i lead to taken branches at least half the time. For a patet a Boolean
bias, be true if and only iftakerip) > freq(p)/2, i.e.,bias, is the bias of an

individual path. Then the value of the fithess function is:

Z { freq(p)  if taken; = bias,

o<iconpep; | —freq(p) otherwise
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Each path is mapped to a particular PHT entry. Intuitivélg,fitness function
is the sum, over all paths, of the frequencies of paths mafipB# T entries
with the same bias, minus the frequencies of paths mappetiToetries

with different bias. The higher the fitness function, the exconstructive and

less destructive interference there is.

6.1.4 Implementing Inversion Bits

An important consideration for branch path re-aliasindhes representation of the
inversion bits. Each branch instruction encodes an inwerkit, which is reason-
able since several existing ISAs already dedicate one orbitgoin each branch
instruction to managing branch prediction. For example, H*/PA-RISC archi-
tecture allows each branch to encode a bias bit [39], whicisésl either for static
or agreebranch prediction. The Pentium 4 microprocessor extenel$A2 in-
struction set to include branch hints [28]. The 1A-64 arebitire encodes several
hint bits in branch instructions [25]. These extra bits ia IBA could be re-used to
represent inversion bits. Old binaries would still run wigluced performance, and

newer ones could be optimized to use the inversion bits famdir path re-aliasing.

6.2 Results and Analysis

In this section, we give the results of branch path re-algsin the SPEC 2000 in-
teger benchmarks, measuring the decrease in mispredratesmon several branch
predictors. We show that our optimization also helps moraglexagreeand hy-

brid predictors. Finally, we measure the decrease in aljpsésponsible for the

improved accuracy.
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6.2.1 Predictor Simulation Methodology

We use the r ai n inputs for collecting the path profiles, and we userteé inputs
to evaluate the accuracy of the predictors. We use tracestheigour path profiles.
This method is costly, but there are techniques in the tibeeathat would make
this task much more efficient, for example, the efficient atpm of Young [66],
which gathers bounded-length paths with both forward amtétward edges, or the
forward-path profiling of Ball and Larus [7]. We considerIpatofiles with history
lengths of 8 to 15.

We use branch path re-aliasing to decrease the mispratieties of three
dynamic branch predictors: GAg, agreepredictor, and a hybrid predictor. We
compare our improved predictors with several other predsctWe first tune each
predictor for optimal history length using the traces odkel with thet r ai n in-

puts.

6.2.2 Algorithm Implementation

We measure misprediction rates using a trace-driven stiroolarogram. For our
simulations, we use a 733MHz Pentium Il that reads compes®ces from an
NFS server. On this machine, the branch path re-aliasingyithign takes from 5
to 30 minutes, depending on the history length, number digpat the program,
and compression ratios of the traces. We did not pay paati@ttention to the
efficiency of the program, using C++ and STL for rapid deveiept. If profiling

performance becomes a problem in a production version otthrpath re-aliasing,
Young’s more complex path profiling algorithm could be usegtovide greater

efficiency.
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6.2.3 Hownot to do Branch Path Re-Aliasing

Before we go on to our main results, we will explore two obwdut unwise ideas
that may come to mind when implementing branch path reiatias/\Ve describe
them here, and explain why, although they may seem like gieaki at first glance,

they are not.

- -»—-GAg + random inversion hints
—-=- GAg + compiler simulated BPR
- GAs

—— GAg + BPR

Percent Mispredicted

256 512 1K 2K K 8K
Hardware Budget (Bytes)

Figure 6.1:Misprediction rates for alternate implementations of brapath re-aliasing,
along with GAs.

Random Inversion Bits

One idea is to set the inversion bits randomly. Branch hissazome from a very
non-uniform distribution. Thegsharepredictor uses the branch address as a way to
more randomly distribute accesses among the PHT. Perhapsuwle use random
inversion bits to achieve the same effect. If this worksntheybe the inversion
bits would not be needed in the ISA at all, but could be derivenh, say, the bits
in the branch address. Figure 6.1 shows the results of siimgl@Ag with pseudo-

random inversion bits over a range of hardware budget, atigGAs and GAg
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with branch path re-aliasing. At almost every hardware letdgut especially at
the small ones with which we are most concerned, this teclenyeelds the poorest
misprediction rates. Without using some intelligence ittiisg the inversion bits,

this technique fails.

Simulating Inversion Bits with Branch Senses

Another way to implement branch path re-aliasing withouemsion bits in the ISA
is to use branch senses to simulate inversion bits. Fornostaf we would nor-
mally set the inversion bit for a “branch if zero” branch, wewd instead change
the branch to a “branch if not zero” branch and re-order tisé&cd@locks in the code
to maintain the correct program semantics. Thus, it woutshsthat our optimiza-
tion could be used with an unmodified GAg predictor in exigtrardware, such as
the GAg component of the Alpha 21264.

Figure 6.1 shows the misprediction rates resulting fromugtimg this idea.
We modified the branch path re-aliasing algorithm to take agcount the fact that
the actual predictions were changing, not just the contehtke history register,
so that the fitness function would provide meaningful ini@rdints for changing
branch senses. Again, this technique performs more pooaly GAs. Our reg-
ular branch path re-aliasing technique only changes thahdison of the bits in
the global history register, to distribute accesses to tH€ Buch that aliasing is
avoided. Changing branch senses also changes the distnilofithe values in the
PHT itself, introducing many more degrees of freedom to tlebdlem and funda-
mentally increasing the complexity of finding an optimalutin.

There is a much more compelling reason not to do branch paahaging
by changing branch senses. On many microarchitecturesn thkanches incur

a penalty, since instruction fetch usually cannot be acdishigd across a taken
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branch, and instruction cache misses are more likely whene thre non-sequential
accesses. Changing branch senses to increase prediatoa@ccs at odds with
code-reordering optimizations such as branch alignme3jttfiat try to minimize
the number of taken branches. Even though code-reordersimgtémes results in
slightly reduced predictor accuracy [47], performanceeases overall because
there are fewer taken branches. Indeed, our hardware mes$ibranch path re-
aliasing might help regain some of the lost accuracy and éemmgnt code-reordering
transformations.

Our conclusion from this subsection is that the best apré@enplement-
ing branch path re-aliasing is to use inversion bits andcaexardware in the micro-

processor, and extra intelligence in the compiler.

6.2.4 Simple Two-Level Predictors

104> e e GAg
R -a- GAs
' . —-»- gshare
~al T~ c —— GAg + BPR

Percent Mispredicted

256 512 1K 2K K 8K
Hardware Budget (Bytes)

Figure 6.2:Branch misprediction rates on the SPEC 2000 integer bentisma

Figure 6.2 compares our basic scheme, GAg with branch padhasing,

against three simple two-level predictors: GAg, GAs, galdare The graph shows
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misprediction rates for hardware budgets ranging from 8%tbytes. At all hard-
ware budgets, our basic scheme achieves the lowest mispoadiate. The graph
does not show, of course, that our scheme allows fasterialg&ly removing work
from the critical path. For a branch predictor with 2K-eesithe same hardware
budget used in the AMD Athlon, branch path re-aliasing redube misprediction
of GAg by 32%, from 9.5% down to 6.5%. The misprediction rdtesa 2K-entry
GAs andgshareare 7.5% and 8.2%, respectively; for 2K-entries, our basdig-
tor sees misprediction rates that are lower than GAsgamdreby 13% and 21%,
respectively.

To see how these numbers might be used to design future fegjisuppose
the microarchitects of a CPU core that uses a 4K-entry GAdigia decided it was
necessary to shrink the branch predictor to 2K entries tmalibr more aggressive
clocking. Our simulations show that the misprediction rateild increase by 12%,
from 6.7% to 7.5%. Instead, the microarchitects could mplhe 4K-entry GAs
with a 2K-entry GAg and provide inversion bits. Branch paghatiasing could
achieve a misprediction rate of 6.5%, decreasing the ndsgiren rate of the larger

predictor by 3%.

6.2.5 More Complex Predictors

We have argued that high-latency, complex predictors witldime less feasible as
clock rates increase and pipelines get longer. Neverthedesne CPU designs will
continue to keep shorter pipelines and less aggressivk cbes. Even with more

complex predictors, branch path re-aliasing offers higtoeuracy.
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Agree Predictors

Theagreepredictor achieves increased accuracy by turning theutgste aliasing
of a normal PHT predictor into constructive aliasing. Rattian predicting the
outcome of a branch, the PHT is used to predict whether theomg will agree
with a bias bit. Still, there is a different kind of destrwetialiasing to whicltagree
predictors are susceptible. Instead of paths that leadémtand not taken branches
colliding in the PHT, we may have paths that lead to agreermedtdisagreement
with the bias bit aliasing each other. We modify the brancth pe-aliasing algo-
rithm to reduce aliasing in a GAg-basadreepredictor that uses bias bits set in
each branch instruction. Instead of keeping track of thertalot taken bias of a
particular path, the new algorithm keeps track of the adisagree bias of a path.
That is, for each PHT entry, the algorithm determines whetheh path leading to
that entry usually agrees or disagrees with the correspgras bit.

Figure 6.3 shows harmonic means of misprediction ratesdeersl hard-
ware budgets, as well as the misprediction rates on each 8R&ger benchmark
means for 2K-entry GAgyshare and GAg predictors with branch path re-aliasing,
each using thagreemechanism. These predictors use the same size table as the
agreepredictor of recent HP-PA/RISC cores such as the 8700 [3P, Bganch
path re-aliasing achieves the lowest harmonic mean migpi@ud rate of 4.4%,
compared with 4.8% for GAs withgreeand 4.5% forgsharewith agree

Although reading the bias bit is still on the critical pathr fnaking a pre-
diction with branch path re-aliasing, reading address dniid propagating values

through exclusive-OR gates is not.
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Hybrid Predictors

One of the components of the Alpha 21264 hybrid branch predis a 4K-entry

GAg predictor. The choice predictor, which predicts whettie global or per-
branch component will be more accurate, is also a 4K-enbte taf 2-bit counters
indexed by the global branch history. We modified the brarath pe-aliasing pro-
gram to measure the bias of a particular branch to be prediostter by a global
or per-branch predictor by tracking the mispredictionsateboth prediction com-
ponents. We modified the fitness function to take into accbattt taken/not taken
and global/per-branch biases. This way, aliasing is rediboth in the global PHT
as well as in the choice table.

We simulate the unmodified Alpha 21264 hybrid predictor, af as a ver-
sion of the Alpha predictor augmented with branch path i&salg. We allow the
global and chooser PHTSs to range in size from 256 to 32K emtsiealing the per-
branch table of histories and PHT with 1/4 the entries as liblead) PHT, yielding a
sequence of Alpha-like predictors at increasing hardwadgbts. Figure 6.4 shows
a plot of the harmonic means of misprediction rates as aimaf hardware bud-
get for the hybrid predictors as well as twagreepredictors, one with branch path
re-aliasing. Figure 6.4 also shows a bar graph for the 4Ky@hbbal PHT versions
of the hybrid predictors, using the same configuration a&tpka 21264 predictor.
The bargraph shows a 16K-entaigreepredictor using branch path re-aliasing. This
agreepredictor uses about the same hardware budget (4096 bysEde to the
Alpha 21264 (3712 bytes). Using branch path re-aliasing Wié hybrid predictor
reduces the harmonic mean of the misprediction rate by 108 8.1% to 2.8%.
Using GAg with branch path re-aliasing and #greemechanism, the mispredic-

tion rate is 3.0%, slightly better than the original hybrrégictor and with reduced

96



154

m 21264 hybrid
B 21264 hybrid + BPR
o GAg + BPR + agree
o 'l a
]
5 10| _
£
o
a il -
0
=
€
3
s °
o
269 275 ,2 zsﬂ 156 19, 2slﬂ 2!ﬂ 25, 2§Ih 256,300,
.92 oy 0903 et craﬁi;ﬂarseé,@on‘gper/g}rg]ip‘i Vor b2 oy a/%ggjc
Benchmark
\,
\
\
104 N\
o \,
3 —e— Hybrid
S h —=— Hybrid + BPR
Pt \,
2 —-+--GAs + agree
= e --a-- GAg + agree + BPR
g 5 i
[
<
[
[a 8
T T T T T T T
256 512 1K 2K 4K 8K 16K

Hardware Budget (Bytes)

Figure 6.4:Branch misprediction rates on each SPEC 2000 integer bear&srfor hybrid
andagreepredictors.

97



complexity.

6.2.6 Aliasing Rates

The purpose of branch path re-aliasing is to reduce desteualiasing in the PHT
for a GAg predictor. In our experiments, we model a “de-aiispredictor, i.e.,
a predictor where different paths cannot alias the same Ritfies. We use this

predictor to measure three kinds of aliasing [42]:

e Destructive aliasing occurs when PHT aliasing leads to gradiction in

GAg where the de-aliased predictor has no misprediction.

e Constructive aliasing occurs when PHT aliasing leads targecbprediction

where the de-aliased predictor mispredicts.

e Harmless aliasing occurs when aliasing in the PHT has noteffe whether

or not a prediction is correct.

Note that these cases are mutually exclusive and accouatl faliasing in
the PHT. Figure 6.5 shows these different types of aliasatesrin a 2K-entry GAg
predictor for the SPEC 2000 integer benchmarks, before #i@dapplying branch
path re-aliasing. The harmonic mean of the destructiveialigrate is reduced by
21%, from 6.1% before re-aliasing to 4.8% after re-aliasi@gnstructive aliasing
is also reduced slightly, from 0.41% to 0.31%. Total aligss reduced by 48%,
from 18.3% to 9.5%.

On181. ntf, re-aliasing reduces destructive aliasing by 30%, fron6%s.
down to 11.5%, explaining the 64% decrease in the mispiiedicate, from 7.9%

for GAg down to 2.8% for GAg with branch path re-aliasing.
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Figure 6.5:Branch aliasing rates on the SPEC 2000 integer benchmarks.

6.3 Limitations of Branch Path Re-Aliasing

In its current form, branch path re-aliasing works only fokgspredictors and pre-
dictors that use GAg as a component. It may have limited egipility to GAs
predictors, but it cannot be used for per-branch predidimg PAg and PAs) or
other kinds of global predictors like the perceptron preaticlt is also unable to
improve the accuracy of certain predictors lg&harethat use a dynamic technique
to reduce destructive aliasing. Branch path re-aliasitignised to GAg because it
reduces aliasing by explicitly controlling how differerdths map to PHT entries.
Other predictors choose PHT entries (or perceptrons, asagemay be) based on
some combination of branch address and global history. draath re-aliasing is
frustrated in these cases, since the algorithm has no kdgelef branch addresses.
In the case of the perceptron predictor, the majority ofrdesive aliasing that oc-
curs is between unrelated static branches. Since the pieyngpedictor uses only

the branch address and not the global history to select jpeotes, there is no way
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that branch path re-aliasing could reduce this kind of destre aliasing.

6.4 Summary

We have seen how, by moving complexity off the critical patimaking a predic-
tion and into the compiler, we can reduce the size of a GAsigi@dand replace
it with an enhanced GAg predictor with much the same accuBggnch path re-
aliasing works by enlisting the help of the compiler, thrbygofiling, to control
aliasing explicitly. We have also seen that branch patHiasiag can be applied to
other predictors that use GAg as a component, suaygeesepredictors or hybrid
predictors. Nevertheless, branch path re-aliasing ony)s lus some time. As we
have seen with the example of the AMD K6 and Athlon, brancin pataliasing
will allow us to move to the next generation of processorsratain much the same
accuracy. But we will still have the same fundamental pnobfer future genera-
tions: tables are slow. In the next chapter, we propose a nadieal solution that

will work in any CMOS technology generation.
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Chapter 7

Cooperative Prediction with Boolean
Formulas

Up until this point in the dissertation, we have not elimeththe fundamental
source of the problem: the slow access time to tables. Ratleehave shifted the
burden in various ways. In this chapter, we propose a lotegen-solution to the
problem: eliminate the tables altogether, and replace twémsomething much
faster. Due to its unique implementation, the delay of thedjctor remains low
relative to the most aggressive clock rates and smallasteyirocess technologies.

Existing architectures such as IA-64 allow hint bits in afafainstruction to
specify whether to use the dynamic branch predictor or &giegdiction, thus fil-
tering the accesses to the dynamic predictor and redudiagjray (i.e., contention
for branch prediction resources). If the static predictiane chosen well, we can
obtain better branch prediction accuracy, even with a gndinamic branch pre-
dictor.

We extend this idea to consider history-based predictocedsd in the
branch instruction. In our scheme, a branch instructioroées a Boolean func-
tion, learned through profiling, whose input is the brandtdry and whose output

is a prediction [31]. The key to our solution is a concise elireg of Boolean
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functions—based omonotone read-once Boolean formuathat is well-suited

for branch prediction. Whereas an arbitrary Boolean famctn N variables re-

quiresO(2") bits to encode, monotone read-once Boolean formulas onglyine

N bits. Figure 7.1 shows such a formula as a logic diagram. i&ecaf our unique
encoding and implementation, our Boolean formula predicém deliver a branch
prediction in a single cycle even at aggressive clock raies/hich accurate PHT-
based predictors are infeasible. The primary contribubibthis chapter is a new
branch prediction scheme that encodes into branch inginsca predictor in the
form of a Boolean formula. Our method is particularly attiaein light of trends

in technology scaling and wire delays. Secondary coniobstinclude the follow-

ing: (1) We describe the hardware implementation of ouriptedand analyze it in

terms of delay and power; (2) we describe a profiling algamitar training our pre-

dictor; (3) we describe hybrid versions of our predictott t@mbine our technique
with dynamic predictors; and (4) we evaluate the accurauoimethod using the
SPEC 2000 integer benchmarks.

7.1 Branch Prediction with Boolean Formulas

In this section, we describe the main ideas behind predjtiianches with Boolean

formulas.

7.1.1 Boolean Formulas as Branch Predictors

History-based branch prediction can be viewed as the pmoldtlearning the
Boolean function of the branch history that gives the bestigtion. Leth be a
BooleanN-vector containing the outcomes of the I@étbranches executed. For

now, we can think of this branch history as being either globg@er-branch. For a
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static branclB, there exists a Boolean functigig (h) that best predicts whethér
will be taken given the historli. The goal of dynamic branch predictors is to learn
this function as quickly as possible to provide accurateligtion.

One approach to branch prediction is to leggth) for each branch in a
profiling run, then somehow encode egg{h) in the branch instruction and have
the hardware use the dynamic history to compute the funetiprovide a branch
prediction. Statically chosen bias bits, such as thosdabtaion HP-PA/RISC and
IA-64, encode constant Boolean functions, which requir@istory information.

If the behavior of branches is stable across different @iognputs, then we
would expect branch prediction using these functions tdoper very well, even
better than dynamic branch predictors, which have the daa#dges of destructive
aliasing. In practice, input-dependent behavior, sucloap trip counts that vary
from run to run, limits the accuracy of a Boolean formula peceat. But as we will
see, these functions still provide highly accurate preéatist

One problem with this approach is that of representing a &oofunction
within a branch instruction. For instance, with a moderastony length of 10,
there are2?”” different Boolean functions. Branch instructions wouledé¢o have
over 1000 bits to allow all of these functions to be encodduer&fore, we consider

an extremely compact, but sufficiently expressive, enapdirBoolean formulas.

7.1.2 Read-Once Monotone Boolean Formulas

We now describe a subset of Boolean formulas that can be ailypepresented.
The basic idea is to restrict the Boolean formulas such thet gariable appears in
the formula only once, and the only operations allowed ar®Addd OR.

Letx,y € {0,1}",i.e.,x andy are N-bit vectors of Boolean values. We say

thatx < y if, for all i, x; < y;. Consider a Boolean functiofi{0, 1}V — {0, 1},
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i.e., a functionf mapping a vector ofV bits to a single bit. We say that is
monotondf x < y implies f(x) < f(y) [37]. A monotone Boolean formuia a
Boolean formula that uses only ANDY and OR {/), without NOT, as connectives.

The functions induced by these formulas are monotone [&fcé the name.

XXX KX %X %

Figure 7.1:Tree representation of the formular, V z2) V (23 Az4)) A ((z5 V 26) A (27 V

zg))-

In aread-once formulaach variable appears exactly once in the formula.
Read-once formulas are also knownatrmulas or Boolean trees [3]. Read-once
monotone Boolean formulas have a concise description aseawthose internal
nodes are ANDs and ORs and whose leaves are the Booleanlgari&ts an ex-
ample, Figure 7.1 shows the tree representation of the flarfiu; vV z3) VvV (z3 A

z4)) A ((z5 V 26) A (27 V 28)) @S @ logic diagram.

7.1.3 Using Monotone Read-Once Formulas for Branch Predic-
tion

A read-once monotone Boolean formulaMfvariables can be encoded as a bit vec-
tor of sizeN — 1, each bit representing a connective in the Boolean tred, Ovior

AND and 1 for OR. Thus, each branch instruction encodes a@aad monotone
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Boolean formula usingv — 1 bits. We also store another bit that, if set to 1, causes
the value of the function to be inverted, so that we can alpoesent the comple-
ments of monotone read-once formulas. No two different &itggns represent the
same Boolean function, so this encoding is quite efficieot. &history length of
N, the formula encoding in the branch instruction takébits. Monotone Boolean
formulas are incapable of representing Boolean constsmtse allow the formula
whose connectives are all ANDs to compute O (ifalse. By choosing to invert
the output, this formula can also produce 1 (iteug). These two values are nec-
essary, since they allow us to represent “always predietrtalind “always predict
not taken,” which are the most common Boolean functions fanbh prediction.

For branch prediction, we keep a branch history shift registto which the
Boolean outcomes (i.e., 1 ftakenand O fornot taken of branches are shifted. We
keep a global history, using the same shift register for@hbhes. When a branch
instruction is fetched, the Boolean formula is sent, alonity Whe contents of the
history register, to a circuit that decodes the formula asrdputes the prediction.

We use a profiling phase to decide which formulas to encodadh branch
instruction. The profiling algorithm uses statistics aklibetbehavior of each static
branch to choose the best monotone read-once formula folbrtaach.

The following formula is an example of a monotone read-oncel&an for-

mula used for branch prediction with a history length of 8:
(330\/2131)/\2132/\333/\(334\/2135\/2136\/337>,

This formula corresponds to a branch prediction policy afetjct taken
if either of the last two branches were takamd the third and fourth most recent

branches were both takesmydany of the other branches in the history were taken.”
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7.1.4 Profiling Algorithm

We now describe our algorithm for determining which fornsuteest predict each
static branch. Using a trace of each branch address andmoeitdbe algorithm
simulates the dynamic contents of the history register. dagh static branch, the
algorithm keeps a list of the different histories that leqdta that branch, along
with the number of times each history leads to the branchgaiken or not taken.
After the algorithm has examined every dynamic branch,eckk the list for each
static branchB and exhaustively tests every monotone Boolean formula &nd i
complement to see which one would have yielded the fewegiredgctions given
all the histories that led up tB. This best formula is then encoded into the branch
instruction.

For branches that are executed fewer than 500 times in tfiéeprprogram,
we simply use the constant formula (0 or 1) that best prethetranch, rather than
considering alR” formulas. We are investigating ways to speed up the algarith
with a more intelligent search. Section 7.2.5 gives timiaguits for the profiling
algorithm and argues that the cost is reasonable for histagths up to 16.

We have found that we can find formulas with a value Aoof up to 18 in
a reasonable amount of time, i.e., up to a few hours per beathrivith N < 10,
we can find the formulas in a few minutes, during which a largetipn of the time

is devoted simply to reading the profiled traces from disk.

7.1.5 Hardware Implementation

A hardware implementation of a Boolean formula branch mtedis simple. Each
Boolean connective (i.e., AND or OR) in the formula is regr@ed by a circuit

with three inputs: two data inputs, corresponding to theales or outputs of other
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gates, and one control input that specifies whether the Boatennective should
compute AND or OR. Coincidentally, this function is equimad to the carry-out
computed by a full adder. Figure 7.2 shows a logic diagrantHis four-NAND
circuit. With a history length ofV, our predictor is built fromV — 1 connectives
and a single XOR gate at the output that acts as an inverten visénput is 1.
Figure 7.3 shows a circuit implementation of the predictor¥ = 8. For clarity,
the extra logic to produce 0 when all the connectives are AND®t shown, since
this logic requires relatively few gates and is not on theaai timing path.

We simulate a straightforward static CMOS implementatibtihe Boolean
formula predictor with the HSPICE circuit simulator. Firgte create a sub-circuit
composed of four NAND gates as shown in Figure 7.2. Then, staitiate log, N
of these subcircuits and add an XOR, which is a sub-circuisisting of two in-
verters and two NAND gates. The connections between thersulis are shown
in Figure 7.3. Finally, we add capacitance between the datewdel local inter-
connect.

Note that although the concept of a read-once monotone Bodtemula is
somewhat similar to the actual implementation as a cirbwidvoid confusion, the
two should be thought of separately as function vs. implgatem. In particular,
the circuit is optimized for static CMOS technology with NBNyates and is not a

read-once circuit.

7.1.6 Delay

The depth of the formula evaluation circuit with inputs is2 log, N plus the final
XOR gate. For instance, fa¥ = 16, the critical delay path passes through eight
NAND gates and one XOR gate. In contrast, gsharepredictor looks up values

from a table by reading from an SRAM array. We use the metlaagogiven in
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Chapter 3 for obtaining the access times for the patterofyisables.

We estimate the access time of the Boolean formula predigteimulating
the combinational circuit and measuring the delay from ttaabh instruction and
history register inputs to the output of the XOR gate. Theagleheasurements
are the time from the midpoint of the input signal switchinghe midpoint of the
output signal switching. We calculated the lookup time fgsharepredictor using
our modified CACTI tool. Table 7.1 shows the access times #K-a&ntry gshare
predictor and two sizes of the Boolean formula predicdok- 8 and N = 16, for a
range of fabrication technologies. We chose the 4K-entegiotor because, as we
will see in Section 7.2, thé&/ = 8 version of the Boolean formula predictor only
slightly exceeds the accuracy of a 4K-enggghare Thus, our delay comparisons
show that we can achieve higher accuracy with lower latency.

As fabrication technology improves, transistors can beemsmaller and
faster, resulting in higher clock frequencies and fastentwoational circuits. As
Table 7.1 shows, access times for each structure improvgeasinimum feature
size decreases.

The Boolean formula predictor is consistently faster ttneK-entrygshare
predictor, allowing more time for communication and congiain within a clock
cycle. At the projected clock rate of 7 Ghz for 50 nm techng|dbe clock pe-
riod would be 144 picoseconds. A traditional table-lookugdictor such agshare
would require more than a single cycle—167 picosecondssicise—for the pre-
diction. In the same technology, the Boolean formula ptediesould provide a
prediction in 59 picoseconds, leaving over half of the cyol@repare for and act
upon the prediction.

One concern with our predictor is that the contents of theditaopcode

are on the critical path to making a prediction; the Booleaimfula must be read
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Minimum Access Time (picoseconds)

Feature | 4K-entry | Formula,| Formula,
Size (nm)| gshare | N=8 | N =16
180 551 211 260
130 402 168 208
100 321 112 138
70 228 85 103
50 167 50 59

Table 7.1:Access times for a 4K-entrgsharepredictor vs. two versions of the Boolean
formula predictor.

before it can be evaluated. However, this delay is commomydaanch predictor
that uses bias bits or any other type of information from ttabh instruction, such
as the agree predictor used on the HP-PA/RISC or the statiafdic and bias bits
provided by IA-64. One solution is to provide pre-decodes lnit the instruction

cache that provide the opcode information quickly.

7.1.7 Power

Power consumption has recently become a primary concerncioprocessor de-
sign. In this section, we contrast the power consumptiomaafitional branch pre-
dictors with that of the Boolean formula predictor.

The Boolean formula predictor is a combinational circudtthses less dy-
namic power than an SRAM-based predictor. This small pteditas smaller gate
and interconnect capacitance than an SRAM structure, wiashdecoding logic, a
memory array, sensing logic, and output logic.

Table 7.2 shows the Boolean formula predictor's dynamicgrosonsump-
tion for N = 8 and N = 16, as measured with the HSPICE simulator. This table

also shows the power of a 4K-entggharepredictor, measure using the modified
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Minimum Power (milliwatts)

Feature | 4K-entry | Formula,| Formula,

Size (nm)| gshare | N=8 | N =16
180 51.4 0.61 1.28
130 31.0 0.28 0.58
100 27.4 0.11 0.24
70 12.9 0.06 0.12
50 8.40 0.06 0.13

Table 7.2:Dynamic power consumption for two versions of the Booleamida predictor
and a 4K-entrygshare

CACTI 2.0. TheN = 8 results show that the Boolean formula predictor consumes

between 0.4% to 2.9% of the power ajsharepredictor with comparable accuracy.
With lower transistor threshold voltages in emerging textbgies, static
power—due to leakage current through transistors—is bewpensizable percent-
age of the total power consumed [61]. With fewer transistotde circuit to leak
current, the Boolean predictor circuit will also have lesdis power than an SRAM
structure. Furthermore, the Boolean circuit implementats amenable to a low
static power design technique that takes advantage ofdlkest transistors within

gates to bias transistors into a low-leakage mode [61].

7.1.8 Impact of Encoding

Since each branch instruction encodes a Boolean formuleuet find an efficient
way to encode the formula in the instruction without havingegative impact on
performance. Some instructions sets already provide exsdor communicating
hints to the microarchitecture. For instance, the Alpha AXR provides 14 bits
in each indirect branch instruction for profiling informati[55]. In their work on

variable length path branch prediction, Statlal.[58] use extra bits such as these
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to communicate to the microarchitecture information orhtfaactions for a branch
predictor.

We propose changing the ISA so that branch instructionsdenttee formu-
las. For example, each branch instruction on the Alpha isi@2ltng: six bits
indicate the op code of the instruction, five more bits inthdhe register to test,
and 21 bits are for the branch offset. For a Boolean-formatset branch predictor
requiring N bits in a branch instruction, we propose to reallocatef the offset
bits to the formula. Some long branches will need to be sptiit & branch followed
by a jump to the target, increasing the number of instrustexecuted.

Figure 7.4 shows the harmonic mean over the SPEC 2000 inbegeh-
marks of the percentage of extra instructions executed erAtbha when offset
bits are reallocated to Boolean formula predictors. We inbththese figures by
assuming that every branch with an offset larger than woutlghfen the restricted
number of offset bits would incur an additional jump instrag, and adding the
number of such dynamically executed branches to the totabeu of instructions
executed.

We measure the harmonic mean over the SPEC 2000 integerrbarichof
the percentage of extra instructions executed on the Algtenwffset bits are re-
allocated to Boolean formula predictors. With formulas pfta 9 bits, the number
of extra instructions is negligible. With 12-bit formulamly 0.2% more instruc-
tions are executed. With 14-bit formulas, 1.0% more insioms are executed. As
history length increases beyond 16 bits, this encodingiigcie becomes less fea-
sible. For longer histories, we have developed a more stpditisd technique that
exploits the fact that most of the functions are constanth\ttiis technique, only
those branches for which the Boolean formula is more aceuran bias bits use

Boolean formulas. The rest use simple bias bits, keepingdseof the branch
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instruction opcode for storing the branch offset.
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Figure 7.4:Impact of Formula Encoding on Performance.

7.2 Results and Analysis

In this section, we give the results of simulating our brapadictor on the SPEC
2000 integer benchmarks, and we compare our results agpaitisstatic (i.e., bias
bits) and dynamic branch prediction. We also give resultafpredictor that com-
bines Boolean formulas with dynamic prediction, and we caraghis to similar

work that combines static and dynamic prediction.
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7.2.1 Methodology

We use the 12 SPEC 2000 integer benchmarks running undeleSogar/Alpha [10]
to collect traces. For each benchmark, we gather tracesgifie branch address
and outcome for up to 300 million branches. We usetthai n inputs for the
profiling runs, and we use theef inputs to evaluate the accuracy of the various
predictors. To better capture the steady-state perforenahithe branch predictors,
our evaluation runs skip the first 50 million branches, agssof the benchmarks
have an initialization period (lasting fewer than 50 mitlioranches), during which
branch prediction accuracy is unusually high. Each benckhmgecutes at least
300 million branches and over one billion instructions oattlest inputs before

the simulation ends.

7.2.2 Predictors Simulated

We simulate monotone read-once Boolean formula predidtorg < N < 18.
We use only global history information, i.e., we do not usthpa per-branch in-
formation. We also simulate thgshare[41], bi-mode[38] and agree [57] branch
predictors, three well-known global dynamic branch premtefrom the literature.
The gshareand bi-modepredictors use only dynamic history information. The
agree predictor combines static and dynamic informatiopreglicting whether a
branch will agree with a bias bit.

History length has been observed to have a significant impagtredictor
accuracy [41], so for each predictor and each hardware buagery all possible
history lengths on the r ai n inputs and keep the one with the lowest average
misprediction accuracy.

To give a lower-bound on misprediction rates for any Booleamula based
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predictor, we also measure the results of usirigtrary Boolean formulas. That is,

we measure the results of using the best possible stati@Bodlinction for a given

branch, over a training set, regardless of the cost of imeidimng the function. To

find the best arbitrary Boolean formula for a particularistatanch, we measure

the number of taken versus not-taken branches for eachmistading up to that

branch in the training set, then assign to each history thdigtion yielding the

most correctly predicted dynamic branches. Out of all thesjime histories leading

to a branch, only a small fraction will actually be observallipther histories are

assigned the bias bit for that branch. The arbitrary predistrepresented by the

profiling algorithm as a set of rows in a truth table where tipits are the histories

and the output is the prediction. Note that this arbitraryfola predictor is actually

implementable for history lengths of up to four, since thetrtable for a Boolean

function in four variables can be encoded in only 16 bits.

Percent Mispredicted
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Figure 7.5:Accuracy of dynamic branch predictors vs. static predicind the Boolean
formula predictor.
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7.2.3 Misprediction Rates

Figure 7.5 shows misprediction rates for the monotone wead Boolean formula
predictor at history lengths of 4, 8 and 16, compared \gghare agree andi-
modepredictors at hardware budgets from 512 to 256K entries elsastbove the
512 and 1K-entry hardware budgets show the process tediasltor which the
corresponding budget is reachable in one cycle at an agggedeck rate. Also
shown is the misprediction rate for the global perceptradjmtor from Chapter 5
in the same range of hardware budgets, to provide a compasistie accuracies
of the perceptron and formula predictors. Note that theggron predictor cannot
work in a single cycle at any hardware budget without deliaylg techniques, so
the labels above the-axis apply only to the PHT-based predictors.

At today’s 180 nm and 130 nm technologies, for which branadjmtors
with only about 1K to 2K table entries state are available ataraggressive clock
speeds, a 4-bit Boolean formula predictor with a mispréatiatate of 6.6% roughly
matches the accuracy of the-modepredictor. With a history length of 16, the
Boolean formula predictor has a misprediction rate of 5.0a#improvement of
24% over the 1.5K-entrpi-modepredictor, and roughly matching the mispredic-
tion rate of the perceptron predictor at the equivalent dkaeftry budget.

To put these figures another way, a 4-bit Boolean formulaipt@dachieves
roughly the same predictive power as a 4K-egsharepredictor. A 16-bit Boolean
formula predictor is about as accurate as an 8K-entry ggiradictor, a 3K-entry
bi-modepredictor, or a 2K-entry agree predictor.

Figure 7.6 shows, for history lengths ranging from 2 to 18sprediction
rates for the monotone read-once Boolean formula prediasowvell as for the pre-

dictor that uses arbitrary formulas. For reference, it alsows the misprediction
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rates with history lengths from 0 to 18 for pure static préadic with bias bits, as
well as for dynamic prediction with a 1K entgshare a 1K entry agree predictor,
and a 1.5K entrpi-modepredictor; these table sizes represent the predictorsacce
sible in a single cycle in 50 through 130 nm technology witgragsive clock rates.
As history length increases, the misprediction rate of tbel&an formula predictor
decreases and remains close to the performance of theagylditrmula predictor.
As a lower bound on dynamic branch predictor mispredictaie,rFigure 7.6 also
shows the misprediction rate of a perceptron predictor atsitrarily many per-
ceptrons and an increasing history length, i.e., a predicitth no conflict aliasing.
Clearly, this ideal perceptron predictor is more accuttaa@ even arbitrary Boolean
formulas, so the idea of encoding any static function in tf@bh instruction has
its own limitations.

Figure 7.7 shows misprediction rates on each benchmark théhsame
limited-budget two-level predictors as well as Booleamfata predictors with his-
tory lengths of 8 and 16. The Boolean formula predictor uguas a mispredic-
tion rate lower than that of the dynamic predictors. Howgirea few cases, such
as256. bzi p2, the formula predictor’s misprediction rate is high, mdstly due
to input-dependent program behavior that cannot be ledmedofiling.

Figure 7.8 shows the misprediction rates of predictorsgigia agree mech-
anism combined with our formula predictor. An agree prautipredicts whether a
branch outcome will agree with a bias bit, turning destuecéliasing into construc-
tive aliasing. Our combined agree/formula predictors uBel@ to predict whether
the branch outcome will agree with the output of a Booleamtda, rather than a
bias bit. With a 1K-entry PHT, the agree predictor with bids pields a mispredic-
tion rate of 5.3%. The 8-bit version of our agree/formuladictor decreases this

rate to 4.4%, an improvement of 17%. The 16-bit version of mmadictor has a
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Figure 7.6:Misprediction rate for the Boolean formula predictor as @action of history
length.
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Figure 7.7:Accuracy of the predictors on each benchmark.
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misprediction rate of 3.9%, an improvement of 25%.

For reference, we compare our predictor with the Alpha 218@4id branch
predictor, which is the most accurate existing predictonibich implementation
details are readily available [35]. This predictor uses aefkiy global history
predictor and a 1K-entry per-branch history predictor comat with a 4K-entry
chooser, consuming roughly 4KB of state. The Alpha 21264lipter achieves a
misprediction rate of 2.93% on the traces we gathered. Asgnee hardware bud-
get, the agree predictor, when enhanced with the 16-bitorecs our Boolean for-
mula predictor, achieves a misprediction rate of 2.55%.nEatehalf the hardware
budget of the Alpha 21264 predictor, an 8K-entry versionwfagree/formula hy-
brid achieves a misprediction rate of 2.86%, narrowly lvettan the Alpha hybrid.
Using our aggressive clock modeling, the largest hybriceafjiormula predictor
available in a single cycle will achieve a mispredictiorerat 3.97%, which is 35%
higher than that of the Alpha predictor. However, an imparpoint of our research
is that complex predictors such as the Alpha’s are infeasibhigher clock rates.
Even today’s Alpha must employ an overriding mechanism,[Bbyvhich branch
predictions that do not agree with the less sophisticatedecéine predictor intro-
duce a single-cycle bubble into the pipeline, reducing teiégopmance advantage

of the more accurate hybrid predictor.

7.2.4 Distribution of Formulas

An analysis of the distribution of Boolean formulas chosgrthe profiling algo-

rithm shows that most of the Boolean formulas chosen arewbeconstant func-
tions, 0 and 1. This dependence on constant formulas desreashistory length
increases. For instance, with a history length of 4, 78% aticsbranches in the

SPEC 2000 integer benchmarks are best predicted with aagarfstmula, as op-
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Figure 7.8:Accuracies of Boolean formula predictors using the agreehaugism. Mis-
prediction rates are harmonic means over SPEC 2000.

posed to only 49% for a history length of 16. As history lengtbreases, the
predictive power of the Boolean formula predictor increased the constant func-
tions representing “predict taken always” and “predict taden always” give way
to more intelligent choices. Figure 7.9 shows, for histemygths from 2 to 18, the
percentage of dynamic and static branches for which confstanulas are chosen.
Table 7.3 shows the dynamic frequencies for each formula wihistory
length of four, along with the misprediction rate for eachniala using a 4-bit
Boolean formula predictor and for bias bits. For brevity,aveit similar tables for

the other history lengths.

7.2.5 Profiling Cost

The cost of determining the best Boolean formula for eachdiras an important
component of the cost of our branch predictor. Here, we dfiyathis cost.
The majority of the time of the profiling algorithm is spenakyating Boolean

formulas for the set of histories leading up to a branch. Tine to evaluate a for-
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Formula % Dyn. | % Mispredicted

Freq. | Formula| Bias

1 40.84 9.4 9.4

O 37.14 10.0 10.0

—((zo V 1:1) (xaVz3)) | 2.36 246 | 36.6
(xg V1) V (22 A T3) 2.06 215 | 293
—((zo V 1:1) (xa ANz3)) | 1.73 144 | 245
(g V 351) (xo A x3) 1.30 26.4 | 349
(xg ANx1) V (22 A T3) 1.23 20.3 | 38.7
=((zo A 1:1) (xa Nz3)) | 1.16 35.6 | 421

Table 7.3:Distribution of Boolean formulas for a history length of 4.
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mula for a given input (i.e. history) is roughly constant.th\& history length of up
to 12, we have found that generating a lookup table to holduhetion values is

most efficient; for these history lengths, the cost of evatigea formula is the cost
of a single memory access. Beyond a history length of 12, weauS++ function

call to evaluate formulas. With efficient coding and formtgaresentation, using
a history length of 16, a single formula evaluation takes\arage of 270 ns on a
733MHz Pentium 111

Figure 7.10 shows the amount of time taken for profiling, asrection of
history length. The graph shows the arithmetic mean of the,tin seconds, that
our algorithm spent for each benchmark. These times weteatetl by running
our program on our network of 733MHz Pentium Il computers.

Our current implementation takes time exponential in thetdny length.
However, for the small history lengths that we consider is #iudy, the time is
not unreasonable. For instance, with a history length otl&profiling algorithm
takes about 12 minutes on a 733MHz Pentium Ill. For a histength of 10, the
program takes about 2 minutes. For history lengths less dbant 12, the time
for the program is dominated by activities unrelated to figdihe best Boolean
function. For instance, much time is spent simply readirglénge trace file from
the disk and performing other tasks that any typical feekHuliected optimization
would require. Our algorithm is also easy to parallelizee Time-consuming part
of the algorithm—during which the best Boolean formula isided for each static
branch—is embarrassingly parallel, as the various stedicdihes can be partitioned
among many processors. Thus, we feel that our profiling ghgorwould be ap-
propriate in a framework in which other optimizations arecabeing explored by

simulation.
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Figure 7.10: Average, over all benchmarks, of the amount of time sperfilipg as a
function of history length.

7.3 Summary

We have introduced and evaluated a new branch predicticensehhat borrows
from complexity theory the concept of a read-once monotooel&n formula.
These Boolean formulas provide a compact encoding of a ofdssictions that is
expressive enough to perform branch prediction yet corenseigh to be encoded
in branch instructions. By off-loading most of the predctiwork to the com-
piler, our Boolean formula predictor is small, fast and aonss little power. While
our scheme provides a competitive alternative to existymachic branch predic-
tors, the real benefit of our scheme lies in the future, as cherse is significantly
less sensitive to the impending technology scaling issaesed by increased wire
delays. Our predictor can also form a valuable componenhdaigaee or hybrid
predictor, decreasing misprediction rates by providintidoeestimates of branch

outcomes than bias bits.
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Chapter 8
Related Work

Our work builds on the contributions of many other researixla@d engineers. To
place our work in the context of other research, we now reweme of the recent

related work.

8.1 Hint Bits in Branch Predictors

Our Boolean formula predictor and branch path re-aliasohgsie are two of many
prediction ideas that provide hints through the ISA to thaenish instruction. One
highly successful techniquelisanch classificatiofil4], in which a branch instruc-
tion specifies which predictor is best for that branch. Margnbhes are predicted
well with a static prediction; these branches can be “filleut of the stream of
branches that are allowed to update the PHT, thus reduciagiraj. A version

of the agreepredictor predicts whether a branch outcome will agree withias

bit set in the branch instruction [57]. August al. propose placing hint bits in
each branch instruction that tell a dynamic predictor wiiad lof state to examine
to make a prediction [5]. The variable length path brancldister [58] encodes

profiling information in branch instructions; this inforti@n guides a dynamic pre-
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dictor, telling it what history length to use and what hashclion of past branch
addresses to use to form an index into a table of counters.

Unfortunately, for most of these techniques to work, thenbhainstruction
has to have been at least partially decoded before the bpaedittion can be made.
These techniques will not be feasible in aggressively ddc€PUs with multi-
cycle instruction cache latencies, since the predictar gries with the instruction
cache. Our Boolean formula predictor suffers from the saroblpm. However,
our branch path re-aliasing predictor is different; it uaelsint bit in the branch

instruction, but the hint is not needed until the branch jatedis updated.

8.2 Combining Static and Dynamic Branch Predic-
tion

Branch prediction accuracy can be increased by combiniatgcswith dynamic
branch prediction. Some of the branches can be predictddandtatic bias bit,
while others with less biased behavior can use the dynanedigior. Since the
easily predictable branches are filtered out, aliasingendynamic predictor is al-
leviated and accuracy is improved. This technique, alortg wimethodology for
choosing the bias bits, was introduced by Changl. as branch classification. Patil
and Emer study the technique, measuring its utility in retyidestructive aliasing
and refining the heuristics used to decide which brancheddlbe predicted stati-
cally [46].

8.3 Branch Prediction and Machine Learning

Our perceptron predictor borrows from neural learning tégqiies, which are a sub-

set of the field of machine learning. Our Boolean formula mted is also similar
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in some respects to other branch predictors based on detis&s. In this section,

we review other work related to branch prediction and mazkearning.

8.3.1 Neural Networks

Neural networks have been used for doing branch predicegdoré, but in a quite
different context. Neural networks have been used to parkiatic branch predic-
tion [11]. The likely branch direction of a static branch regicted at compile-time
by supplying program features, such as control-flow and dpaaformation, as in-
put to a trained neural network. This approach achieves &h@&brect prediction
rate, compared to 75% for static heuristics [6, 11]. Our wardposes putting a
neural structure inside the microprocessor itself, so ithedn learn on-line from

the branch history.

8.3.2 Genetic Algorithms

Machine learning also includes genetic algorithms. Emédr@loy use genetic al-
gorithms to “evolve” branch predictors [19], butit is impamt to note the difference
between their work and ours. Their work uses evolution tagiesiore accurate
predictors, but the end result is something similar to allgigimed traditional pre-

dictor. We perform extra work in the microarchitecture, Ise branch predictor can

learn and adapt on-line.

8.3.3 Decision Trees

Decision trees are predictors learned through training;imike neural networks.
The work of Caldeeet al. in static branch prediction with neural networks also ex-
plores the use of decision trees [11]. Lindsay explores sgeafl decision trees to

encode statically-learned Boolean functions [40]. Thesiew trees are learned by
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profiling and are encoded in programmable logic arrays (BLBy contrast, our
Boolean formula predictor encoding is represented onljéldranch instruction,
requiring little hardware in the CPU itself. Although Liralgs thesis addresses
latency issues, PLAs representing the behavior of largeddiranch instructions
will have the same technology scaling issues in future telduies as large banks
of SRAM. Similarly, Ferret al.[24] study the use of decision trees, grown dynam-
ically, for branch prediction. The trees are kept in a lafgecture in the CPU and
would have the same problems with delay as other predicidéngs, our technique

is distinctly well-suited to the issues of technology sogli

8.4 Latency-Sensitive Branch Prediction

Although the problem of delay in branch predictors has nenb&udied in detall,
there are quite a few studies in which related issues havesapg.

Lookahead branch prediction, including predicting mudtipranches per
cycle, has been suggested as a means for predicting brahelhésive not yet been
presented to the predictor. One of the first lookahead branetlictors was pro-
posed by Yetet al. [64] as the Multiple Branch Two-Level Adaptive Branch Pre-
dictor. This predictor uses the result of the first branchdjmtéon to speculatively
update the history register for a second branch predichierbranch addresses are
required since only the global history register is used teas the pattern history
tables. Sezneet al. improve on this idea by enhancing the branch target buffer
(BTB) to enable the predictor to use the address of the cumestruction block
to perform prediction for the next instruction block [54]hi$ scheme enables the
fetches to multiple blocks to be pipelined. Onder, Xu and t@ygpopose a similar

scheme in which predictions for an entire branch sequemcaade all at once, and
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instruction fetch can continue unimpeded through the lesstdh [44].

Driesen and Holze propose a “cascaded” predictor thatrdiaadly filters
easily predicted branches, relieving aliasing effecte@yattern history table (PHT) [17].
Our work borrows the idea of cascading, but uses it to altevielay. Similarly,
Evers describes the use of two PHTs with different histongths and different
access times, where the slower one can override the othprT2 Alpha 21264
branch predictor uses the idea of overriding: the branctipi@ can override the
less accurate instruction cache line predictor, with a |bermd a single cycle, as
opposed to the seven-cycle branch misprediction pendbly [3

Some of our work builds on the fact that there is often mora tirae cycle
between branches, even on a wide-issue processor, andéfaklranch prediction
work can be done in between branches. This fact was alscedlatiavork by Onder
et al. in their paper on predicting branch

sequences [44].

Of course, the real goal in these strategies is to improveuctson fetch
bandwidth and preferably take branch prediction off théicai path. Recent re-
search has focused on trace caches as a mechanism to calotogesream of se-
guential instructions that can be easily fetched at peakWwatth [51, 45]. Branch
prediction guides the trace selection in the instructidnifeengine, at times pre-
dicting multiple branches per cycle. A more radical appho&cthe Fetch Target
Buffer (FTB) proposed by Reinman, et al. [48]. The FTB stdfesaddresses of
predicted blocks of instructions and is designed as a twekteache for fast access
and accurate block prediction. Like our study, Reinretial. consider technology
constraints in the design of the FTB. Frameworks like the [EaB benefit by using
our delay-sensitive branch prediction stategies as thraindh prediction compo-

nents.
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Chapter 9

Conclusions

In this chapter, we review the contributions of this disson and discuss the rela-

tionships between the various proposed techniques.

9.1 Contributions

Recall the thesis statement from the introduction:

Despite the effects of aggressive clock scaling, wire delagl complex
organizations, future branch direction predictors carehiaproved ac-

curacy while still providing a prediction in a single cycle.

Until now, branch prediction design has focused on accuvdule ignor-
ing delay. We have shown that as wire delays and clock rataease, branch
predictor designs that optimize for accuracy can have ativegenpact on overall
IPC (see Figures 4.7 and 4.6). Thus, future branch predétfimacy depends on
both accuracyanddelay, and researchers should account for both when reporting
branch prediction results. According to our scalable mefielbranch predictor ac-
cess time, today’s predictors will not be accessible in glsioycle in sub-100nm

technologies with aggressive clocking. In deep sub-mit¢emhnologies that are
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latency rather than capacity-dominated, a branch preticecea will become less
important than its latency in the critical path.
In this section, we show how the various techniques destpbevide com-

pelling evidence for our thesis.

9.1.1 Hierarchical Organizations

In this dissertation we have examined a number of altera@&tianch predictor ar-
chitectures and evaluated them in the context of futurege®technologies. These
hierarchical organizations are capable of extending ticadil predictors such as
gshareinto future technologies, as well as enabling more compiexiptors such
as the perceptron predictor. A cascading lookahead poedicat uses the time
in between branches to make predictions performs well. Aerraing predictor
that allows a slow predictor to cancel the prediction of @adasdut less accurate
predictor performs the best.

We have introduced a new branch predictor that uses neusabriess—the
perceptron in particular—as the basic prediction mecmaniBerceptrons are at-
tractive because they can use long history lengths witheguiring exponential
resources. A potential weakness of perceptrons is theieased computational
complexity when compared with two-bit counters, but we hsivewn how a per-
ceptron predictor can be implemented efficiently with respeboth area and delay
using hierarchical organizations. The perceptron predmgrforms well at all hard-
ware budgets, achieving a lower misprediction rate tharrs¢well-known global
predictors on the SPEC 2000 integer benchmarks; indeexk gie perceptron pre-
dictor outperforms Evers’ multi-component predictor, Ve that the perceptron
predictor is the most accurate fully dynamic branch predikhown. Despite its

higher latency, the perceptron predictor yields higherdB@n the other predictors
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because of our use of hierarchical organizations.

In our simulations, we have taken into account both clock eatd wire
delay in future technologies, and shown that hierarchicghwizations, both for
traditional predictors and for the perceptron predictbovabranch prediction in a
single cycle while making use of slower structures to imprprediction accuracy.

These techniques and experiments provide strong evidenceif thesis.

9.1.2 Cooperative Predictors

Cooperative branch predictors break the tradeoff betwedgnydand accuracy by
off-loading a significant amount of the prediction work targale-time. We have
evaluated two cooperative branch prediction schemes.

Branch path re-aliasing is a new branch prediction tectenthat improves
accuracy for GAg predictors. By using path profiles to maphpéeading to dif-
ferent outcomes to different PHT locations and paths withilar outcomes to the
same PHT locations, re-aliasing decreases destructiasiradj. An advantage of
branch path re-aliasing is its simplicity and low delay. Tinee to access the pre-
dictor is limited only by the time to access the PHT; thereasother logic on the
critical path. Moreover, variations of our technique imyae accuracy in complex
predictor organizations such agreeand hybrid predictors.

The Boolean formula predictor eliminates tables and trespeaiated delays
altogether, using a compact encoding of Boolean functionetform branch pre-
diction. This predictor is feasible even with the most aggiee future clock rates
and smallest process technologies.

A disadvantage of both the Boolean formula predictor anadhrgath re-
aliasing is that they require profiling, whereas the perogpand hierarchical pre-

dictors are not burdened by this constraint.
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Our cooperative branch prediction approach fits in with thaegal trend
towards moving more work out of the processor and into thepilem By making
prediction simpler without reducing accuracy, we can enfwy benefits both of
high IPC and high clock rates enabled by these single-cyel@igtors. This work
addresses part of the thesis statement relating to impe@gdacy at higher clock

rates, and provides an alternative to the hierarchicahigcies.

9.2 Comparison of the Techniques

We have proposed several different techniques that adthregzroblem of delay
in branch predictors. In this section, we compare the tegles with one another,
providing information useful to a microarchitect tryingdecide which one to use.
To illustrate the comparison, Figure 9.1 shows the misptexi rates of
many of the predictors introduced in this dissertation, al as the misprediction

rates ofgshare agreeand hybrid predictors.
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3 10 - - global/local hybrid

2 - ~ ---a-- gshare with agree
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Figure 9.1:Misprediction Rates of Our Predictors
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9.2.1 Advantages of Hierarchical Organizations

The main advantage of hierarchical organizations is thatpsler and ISA support
is not needed; predictors with hierarchical organizatamesstrictly a microarchitec-
tural technique, with no directly observable consequencethe ISA or compiler.
Conversely, cooperative predictors require changes tdSAe(although branch
path re-aliasing may re-use existing ISA bits), and prailiRigure 9.1 shows that,
at hardware budgets over one kilobyte, the global/localgggron predictor has the
lowest misprediction rate of any of the predictors examinetiis dissertation. We
recommend this predictor for situations where unmodifiggdy programs must
be run as quickly as possible, with design complexity beinly @ secondary con-
cern. Unfortunately, the perceptron predictor introdumasplexity into the design
of the processor, particularly in the layout of the irregiylshaped Wallace-tree
circuit. A less ambitious design could still use hierarehiorganizations with a
more traditionalgshareor hybrid predictor, taking advantage of the accuracy of a

large structure as well as the speed of a small structure.

9.2.2 Advantages of Cooperative Predictors

Recent trends in computer architecture point to a greaténgmess to modify the
ISA and rely on profiling or even dynamic compilation to aseigoerformance
improvements [28, 4]. Our cooperative predictors are ia iinith this trend. Both
of our cooperative predictors greatly simplify the hardevaspects of the branch
predictor at the expense of profiling. The Boolean formudpotor uses about 1%
of the area and power, and 33% of the delay gfsharepredictor with the same
predictive power. Branch path re-aliasing allows us to usenaller, faster table

while maintaining the same accuracy previously achievéls aviarger table.
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Figure 9.1 shows that the best predictor at small hardwadgdis is a
Boolean formula predictor combined with a smadreepredictor. This organiza-
tion enables quick prediction and a low misprediction rai#) low implementation
costs. At a cost of 1024 two-bit counters, this predictoriegs a misprediction
rate of 2.59%, which is slightly better than a much larggnarewith 16,384 coun-
ters at 2.76%.

9.2.3 Recommendations

We make the following recommendations for delay-senskinaach predictors, ac-
cording to the particular goals of a microarchitect and tlogpess in process tech-

nology:

Hierarchical Organizations. We recommend the hierartlioganizations as a
cheap way for a microarchitect to continue using tradititcananch predictors
with large budgets in a situation where high clock rates gmégingle-cycle
access. Hierarchical organizations are sensible in thefuiege, when binary
compatibility with previous generations of microprocessarevents invasive

changes to the ISA.

Hierarchical Perceptron Predictor. We recommend a gllazall hierarchical per-
ceptron predictor when the microarchitect is unconsthimechip area and
power, and is simply concerned with the most accurate brpredictor pos-
sible. The perceptron predictor will make sense in the nexemal years,
when increasingly deep pipelines for high-performanceopimcessors will

cause branch prediction accuracy to become a bottlenegefésrmance.

Branch Path Re-Aliasing. We recommend branch path rehadjas two cases.

First, for processors with small branch prediction tabled lranch bias bits
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in the ISA, the bias bits can be reused to implement brandh neasliasing
for a performance boost. Second, in future technologieshwhstruction
cache latencies cause techniques such as bias bits and aleaBdormula
predictor to become infeasible because they are on theainitath to making
a prediction, branch path re-aliasing will still be feasilaind allow fast and

accurate predictions.

Boolean Formula Predictor. We recommend the Boolean famrédictor when
performance as well as power and chip area are a concerrSAwhanges
are not a problem. For instance, this predictor can be usecivedded or
DSP systems, such as hand-held devices, that require hifgiirpance with
minimum resources. For general purpose computing, theeadnolormula
predictor will make more sense in about the next 10 yearsnvwehg mul-
tiprocessors may become the dominant computing subs®atee the area
occupied by the branch predictor can be essentially elitachlay the Boolean
formula predictor, the area savings can be devoted to o#iseurces such as

caches or more cores.

9.3 Final Thoughts

Branch predictor delay is a important barrier that futurenwarchitectures must
overcome to achieve higher performance. Microarchitesmisiot simply ignore the
problem by settling for smaller, less accurate predictersaively implementing
multi-cycle predictors. We have shown that branch predidday can be over-
come with a variety of techniques to enable processors ofuttuee to maintain
and even improve IPCs in the face of technology constraifités work provides

a point from which microarchitects of future processors lsegin designing faster
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and more accurate branch predictors. Although there amr ¢¢ichnological is-
sues that will complicate future microarchitecture desjgwe are confident that, if
future microarchitects will use the ideas presented in digsertation, the branch
predictor will not be a performance bottleneck. Rathernbhaprediction research
can continue to provide improved accuracy and greatemcstn fetch bandwidth

needed for the challenges facing high-performance comguti
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