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Abstract

Deeper pipelines improve overall performance by allow-

ing more aggressive clock rates, but some performance

is lost due to increased branch misprediction penalties.

Ironically, with shorter clock periods, the branch predic-

tor has less time to make a prediction and might have

to be scaled back to make it faster, which decreases ac-

curacy and reduces the advantage of higher clock rates.

We show how the lost accuracy and performance can be

reclaimed and even increased, and we show how the pre-

dictor can be simplified in the process. We present a new

technique, branch path re-aliasing, that moves complex-

ity off of the critical path for making a prediction and into

the compiler. The key component of our technique is a

hint bit set in each branch instruction that aids in reduc-

ing destructive aliasing; unlike other such techniques,

the hint bit is not needed until the less critical update

stage, so there is no extra delay in accessing the branch

predictor. When augmented with our approach, a simple

2048-entry GAg predictor achieves a misprediction rate

of 6.5%, 21% lower than the 8.2% misprediction rate of

a more complicated gshare predictor of the same size.

1 Introduction

The branch predictor for the AMD Athlon microproces-

sor represents a step backward when compared to its pre-

decessor, the K6. While the K6 has a highly accurate 8K-

entry GAs predictor, the Athlon uses a less accurate 2K-

entry GAs predictor [6]. This change reduces the delay

and real estate costs of the branch predictor and could be

one reason why the Athlon is able to achieve an aggres-

sive clock rate of 1.4 GHz. Could AMD have reduced

the size of their branch predictor without sacrificing ac-

curacy? This paper argues that the answer is yes.

The above example reveals a larger trend, namely, that

the desire for ever higher clock rates has ramifications

on branch predictor design. High clock rates motivate

smaller branch prediction tables in two ways. First, as

clock rates increase and feature sizes shrink, wire de-

lay makes it increasingly expensive—in terms of clock

cycles—to access large structures such as branch predic-

tion tables. Thus, higher clock rates favor smaller predic-

tion tables. Second, recent studies have shown that for

today’s high prediction rates, it is never a good idea to

increase predictor latency above 1 cycle in exchange for

increased accuracy [12]. Thus, the smaller clock periods

imply the need for smaller tables that can be accessed

faster.

At the same time, higher clock rates also increase the

need for higher branch prediction accuracy. As pipelines

become deeper to create less work per cycle, the penalty

of a misprediction increases. For example, the Pentium

4 has a 20 stage misprediction pipeline [9], and the next

generation Pentium is said to have a 36 stage pipeline.

Table 1 shows the clock rates and pipeline depths of sev-

eral current microprocessors.

The general problem is to design accurate branch pre-

dictors while providing low branch predictor latency.

There are two possible approaches to this solution. The

first is to devise complex mechanisms, such as the Al-

pha 21264’s overriding hybrid predictor [14] and the cas-

cading and overriding approaches proposed by Jimenez,

et al. [12]. The second approach is to favor simpler

branch predictors with minimal complexity. This paper

focuses on the second approach, which is a design space

that has been largely ignored in the literature, but which

has important engineering advantages because of the de-

creased design time and potentially shorter time to mar-

ket. In particular this paper proposes a method of build-

ing small, simple predictors that have high accuracy.

In this paper we introduce the concept of branch path

re-aliasing, which enlists the compiler’s help in moving

important functionality off of the critical path to making

a prediction. In particular, our scheme gives the com-

piler the task of decreasing destructive aliasing and in-

creasing constructive aliasing, so that the branch predic-

tor hardware can be simplified. While other approaches

have used the compiler to provide hints which decrease

aliasing, our scheme is unique in that the hint bits are

kept off the critical path for prediction. Furthermore, our

path-profiling algorithm allows us to detect and prevent



Microprocessor Integer Pipeline Depth Clock Frequency (MHz)

PowerPC 7400 4 733

HP PA-8700 7 800

Alpha 21264 7 833

AMD Athlon 9 1400

Intel Pentium 4 20 1760

Table 1: Pipeline depth vs. clock rate. This table shows the depth of the integer pipeline and the clock frequency for sev-

eral modern microprocessors. As clock frequencies become more aggressive, pipelines become deeper and the penalty for a

mispredicted branch increases.

path-aliasing as well as pattern-aliasing [20].

In our scheme, the compiler uses path profiling in-

formation to provide hints to branch instructions so that

paths with different outcomes will have histories that

map to different locations in the branch predictor’s ta-

bles. A small, simple predictor is used to make a branch

prediction, after which the branch history is updated so

that destructive aliasing is decreased. Our scheme places

a branch inversion bit in each branch instruction to in-

dicate whether the branch outcome should be inverted

before it is recorded in the global history register. Even

in CPUs with multi-cycle instruction caches, our scheme

can deliver a prediction in parallel with the instruction

cache access, and only needs to read the hint bit to up-

date the branch predictor.

Our simulations show that a 2048-entry GAg predic-

tor enhanced with branch path re-aliasing has a mispre-

diction rate of 6.5%, 21% lower than the misprediction

rate of 8.2% for the same sized, but more complicated,

gshare predictor, and equivalent to the misprediction rate

of a gshare predictor with twice the size. We also show

that our predictor can improve accuracy for other PHT-

based predictors.

This paper makes the following contributions:�
We present branch path re-aliasing, a technique in

which the compiler reduces destructive aliasing by

setting a hint bit in the ISA, thereby allowing dy-

namic predictors to use smaller tables more effec-

tively.�
We describe an algorithm for using path profiles to

set these hint bits.

� We present experimental evidence that branch

path re-aliasing allows small branch predictors to

achieve greater accuracy than other, slower predic-

tors.

� We show that our technique improves accuracy even

for the agree predictor, which was designed to con-

vert destructive aliasing into constructive aliasing,

and we show that our technique can improve the

accuracy of complex predictors, such as the Alpha

21264.

This paper is organized as follows. Section 2 de-

scribes the problem of delay in branch predictions. In

Section 3, we present background and related work. We

describe branch path re-aliasing in detail in Section 4.

Then, we present our experimental methodology and re-

sults in Section 5, and finally we conclude.

2 Delay in Branch Predictors

This section describes some of the details behind delay

in branch predictors, and explains delay in technology-

independent terms.

Branch prediction should take at most one cycle, so

that the result from a branch prediction for a branch

fetched in one cycle can be fed into the fetch stage of the

next cycle. Current trends in clock scaling make it diffi-

cult to access the branch predictor in a single cycle. It is

estimated that, with an aggressive clock period of 8 fan-

out-of-four (FO4) inverter delays, the largest PHT that

can be read in a single cycle in current and future pro-

cess technologies has only 1024 entries [12]. Complex

predictor organizations and dependences on microarchi-

tectural state further exacerbate delay. Moving to smaller

process technologies with less gate delay will not help

for two reasons: clock scaling is increasing at a faster

rate than the increase in gate switching speeds; and wire

delay is increasing relative to gate delay, making it rel-

atively harder to access large SRAM structure, such as

branch predictors, in future technologies.

As mentioned in the Introduction, the AMD Athlon’s

2K-entry GAs branch predictor [13] is a step back from

the previous AMD core, the K6, which used a more ac-

curate 8K-entry GAs [6]. At the time of this writing,

the fastest Athlon chip available is clocked at 1.4GHz

in �����	� technology, an estimated clock period estimated



of about 11 FO4 delays. The fastest K6 available is

clocked at 550MHz in ��

��� technology, an estimated 20

FO4 delays. Even though the Athlon is fabricated in a

smaller technology, the clock is relatively more aggres-

sive, since FO4 is a technology-independent measure of

delay. Clearly, reducing the length of the critical path to

allow for more aggressive clocking was a motivation in

the decision to reduce the size of the predictor. Unfortu-

nately, the Athlon’s branch predictor is less accurate, and

its misprediction penalty is higher. Ideally, the goal is to

design a highly accurate branch predictor that has a small

delay, as this would allow for both aggressive clocking

and a higher rate of instructions per cycle (IPC).

3 Background and Related Work

In this section, we review some of the concepts of branch

prediction, and describe related research.

3.1 Branch Prediction

Branch prediction is a form of speculation that breaks

control dependences. When a branch is encountered,

a branch predictor is consulted to predict whether the

branch will be taken or not. Instructions are specula-

tively fetched and executed down the predicted path. If a

misprediction occurs, the speculatively executed instruc-

tions are squashed and fetching and execution continue

from the correct path. A misprediction incurs a several-

cycle cost, which increases with pipeline length.

3.2 Dynamic Branch Prediction

Most modern microprocessors use two-level adaptive

branch prediction, introduced by Yeh and Patt [25].

Two-level predictors keep track of the recent history of

branches in a first-level table of shift registers. A second-

level pattern history table (PHT) of two-bit saturating

counters is indexed by a combination of a first-level reg-

ister and branch address. The high bit of the references

counter is used as the prediction. When the table is up-

dated, either speculatively or when the branch retires,

the corresponding counter is incremented if the branch

was taken, decremented otherwise. Thus, the PHT keeps

track of the correlation between branch history and out-

come.

3.3 GAg and GAs Predictors

Our work focuses on improving the accuracy of GAg

branch predictors. Yeh and Patt taxonomize two-

level branch predictors using a three-letter naming

scheme [26]. The first letter represents how the first level

branch history is kept. G means a single global history

register is used. The second letter denotes the prediction

mechanism: A means that a two-bit saturating counter

is used. The third letter indicates how the second level

table is indexed; g means a single column of counters is

used for all addresses while s means that bits extracted

from the branch address are used to select a set of coun-

ters, and the set is indexed by the history register. Thus, a

GAs predictor selects a set of counters from a PHT using

bits from the branch address, and chooses a particular

counter from that set using bits from the global history.

A GAg predictor uses only the global history to index the

PHT.

3.4 Aliasing in Branch Predictors

Recent efforts to improve branch prediction focus pri-

marily on eliminating aliasing in variants of two-level

adaptive predictors [18, 16, 22, 7], which occurs when

two unrelated branches destructively interfere by using

the same prediction resources. With a GAg or GAs pre-

dictor, two unrelated branches with the same branch his-

tories might lead to different branch outcomes. If these

branches map to the same entry in the PHT, they will

destructively interfere with one another, leading to poor

prediction accuracy. All of the proposed methods for re-

ducing aliasing put some extra complexity in the criti-

cal path for branch prediction. In the context of aggres-

sive clock rates, the cost of reducing aliasing must be

weighed against the extra delay and complexity of these

schemes. Some branch predictors use pattern history in-

formation and experience pattern-aliasing, while others

use path history to correlate with branch outcome, and

experience path-aliasing [20]. Our idea combines path

and pattern history information to reduce both kinds of

aliasing.

3.5 Branch Predictors in Current CPUs

Current microprocessors use two-level branch predic-

tors. The following are three notable examples:

� The AMD K6 and K7 (Athlon) processors use GAs

predictors [6].

� The HP-PA 8700 uses a 2048-entry GAs with the

agree mechanism [17, 24]. Rather than correlating

with branch outcome, the PHT entries keep track of

whether a branch outcome will agree with a bias bit

set in the branch instruction. The agree mechanism

turns destructive interference into constructive in-

terference, increasing accuracy. However, since the



branch instruction opcode must be read and com-

bined with the PHT prediction, the instruction cache

is on the critical path for branch prediction.

� The Alpha 21264 core uses a hybrid predictor com-

posed of two two-level predictors [14]: a 4K-entry

GAg is indexed by a 12-bit global branch history

while a 1K-entry PHT of 3-bit saturating counters

is indexed by one of 1024 local 10-bit branch his-

tories. The final branch prediction is chosen by in-

dexing a third predictor that keeps track of the rela-

tive accuracies of the two predictors for a particular

global history. The Alpha predictor is very accu-

rate; indeed, it is the most accurate of implemented

branch predictors that we have observed. However,

its implementation complexity comes with a cost.

The Alpha branch predictor overrides a less accu-

rate instruction cache line predictor, introducing a

single-cycle bubble into the pipeline whenever the

two disagree [14].

3.6 Hint Bits in Branch Predictors

Our scheme is one of many that provides hints through

the ISA to the branch instruction. One highly success-

ful technique is branch classification [5], in which a

branch instruction specifies which predictor is best for

that branch. Many branches are predicted well with a

static prediction; these branches can be “filtered” out of

the stream of branches that are allowed to update the

PHT, thus reducing aliasing. A version of the agree pre-

dictor predicts whether a branch outcome will agree with

a bias bit set in the branch instruction [22].

Unfortunately, for any of these techniques to work,

the branch instruction has to have been at least par-

tially decoded before the branch prediction can be made.

These techniques will not be feasible in aggressively

clocked CPUs with multi-cycle instruction cache laten-

cies, since the predictor is in series with the instruction

cache. Our predictor is different; it uses a hint bit in the

branch instruction, but the hint is not needed until the

branch predictor is updated.

3.7 Compiler-Assisted Branch Prediction

Several schemes use the compiler to assist in branch

prediction. The variable length path branch predic-

tor [23] encodes profiling information in branch instruc-

tions. This information guides a dynamic predictor, in-

creasing accuracy by choosing the best history length

and hash function to form an index into the PHT. Jimenez

et al. propose changing the ISA to allow each branch

instruction to represent a Boolean formula chosen at

compile-time used to guide branch prediction; this work

also considers branch predictor delay [11]. August et

al. [1] propose placing hint bits in each branch instruc-

tion that tell a dynamic predictor what kind of state to

examine to make a prediction. Each of these schemes

places the contents of the branch instruction on the crit-

ical path for branch prediction, which will cause prob-

lems in CPUs with multi-cycle instruction caches.

Other techniques use the compiler to help with branch

prediction without changing the prediction mechanism.

For instance, branch alignment [4, 28] increases instruc-

tion fetch bandwidth by minimizing the number of taken

branches in a program. Static correlated branch predic-

tion [27, 29] is another optimization that introduces du-

plicate basic blocks, encoding in the program counter in-

formation about the path taken to reach a particular static

branch and increasing the accuracy of static prediction.

Our idea works on the same principle as branch al-

location [15]. Branch allocation uses the working set

characteristics of branches to explicitly assign each con-

ditional branch a set of PHT resources at compile time.

The analysis forms a conflict graph between branches

and uses a technique similar to register allocation to al-

locate PHT resources among branches such that destruc-

tive aliasing is reduced. With branch allocation, the pro-

cess of reading the contents of the branch instruction is

on the critical path to making a prediction. Also, branch

allocation sets aside many bits in the branch instruction,

requiring a significant change to the ISA. Our predictor

has neither of these undesirable properties.

4 Branch Path Re-Aliasing

In this section, we describe the problem of history alias-

ing, which is common to many two-level branch predic-

tors. We then describe a technique that increases accu-

racy by decreasing aliasing.

4.1 Path and Outcome Histories

Branch path re-aliasing gives the compiler explicit con-

trol over how paths through the program are mapped to

PHT entries. Branch outcomes are highly correlated both

with path and pattern histories [20, 27, 23]. Pattern histo-

ries are easier to use than path histories since they require

recording only a single bit for each branch. However,

pattern histories are highly susceptible to aliasing, both

between different static branches and within the same

branch. That is, several different paths correlated with

different branch behaviors may all induce the same pat-

tern history, leading to destructive aliasing. Our opti-



mization re-aliases pattern histories to better reflect path

histories, improving accuracy by decreasing destructive

aliasing.

4.2 History Aliasing in a Global Predictor

Several types of aliasing have been identified in branch

predictors [19]. Our focus is on conflict aliasing. Con-

sider a GAg predictor, which consists of a PHT indexed

by a global history register. Two different paths in the

program may coincidentally lead to the same global his-

tory, even though the code being executed is unrelated.

In this case, the same PHT entry will be used for both

branches, but the prediction will not correlate highly

with the outcome of either. Thus, the branch predictor

will have poor accuracy for these branches.

4.3 Our Solution: Branch Path Re-

Aliasing

Our approach to solving the history aliasing problem is

to insert a hint bit into each instruction that tells the

branch history update mechanism whether or not to in-

vert the branch outcome before recording it in the history

register. We choose the hint bits, which we call inversion

bits, such that paths leading to branches with opposite

outcomes will have different histories. Essentially, by

changing the way paths alias one another in the PHT, we

reduce destructive aliasing.

We introduce our idea by modifying the simplest pos-

sible two-level branch predictor: the GAg. A global

history register is used to index a PHT of two-bit sat-

urating counters, from which the prediction is directly

read. Once the prediction is read and made available

to the fetch engine, the critical time to make a predic-

tion is over, so the predictor is no slower than a normal

GAg. The branch prediction is then used to speculatively

update the global history register, which is backed up

and corrected after a misprediction. With branch path

re-aliasing, the difference comes in the how the history

register is updated. Each branch instruction encodes an

inversion bit. If this bit is set, then the branch outcome

is inverted before it is recorded in the global history reg-

ister. In short, the value recorded in the history register

is the exclusive-OR of the inversion bit and the branch

outcome.

At first glance, it might seem that this technique could

be implemented by simply changing branch senses and

reordering code; however, this transformation would be

at odds with techniques such as branch alignment [4] that

seek to minimize the number of taken branches to in-

crease fetch bandwidth. Branch alignment can increase

performance, even though it may decrease prediction

accuracy [21]. Our technique can nicely complement

branch alignment by decreasing the destructive aliasing

introduced by alignment.

4.3.1 Path Profiles

Path profiling collects information on the paths taken

during the execution of a program [2]. Branch path re-

aliasing uses path profiles to determine which branches

should have their inversion bits set. For a history length

of � , i.e., a GAg with an � -bit history, each path profile

stores the following information for a path � :

1. The addresses of the last � branches encountered.

2. The outcomes (taken or not taken) of the last �
branches encountered.

3. ������������� , the frequency with which this path was ex-

ecuted.

4. ������ ����!�"��� , the number of times this path led to a

taken branch.

4.3.2 Algorithm

Once the path profiles have been collected, we use a two-

phase algorithm to set inversion bits. In the first phase,

the algorithm tries to map paths to PHT entries by setting

the inversion bits of certain branches, causing construc-

tive aliasing between paths that agree on branch outcome

and choosing different PHT entries for paths with dif-

ferent outcomes. In the second phase, a hill-climbing

heuristic sets the inversion bits of each branch sense one

at a time, keeping the set of inversion bits that maximizes

a fitness function based on the estimated amount of con-

structive and destructive interference. The details the two

phases are as follows:

1. The first phase of the algorithm maps paths to PHT

entries by inverting or not inverting branches along

the path. The algorithm considers each path pro-

file in descending order of frequency. For each pro-

file � , the algorithm looks for an entry # in the PHT

to which similarly biased paths are mapped, or to

which no paths are mapped at all. If one is found,

then path � is mapped to PHT entry # ; otherwise,

the inversion bits of the path � are left the same.

2. The second phase considers each static branch,

choosing the inversion hint bit for that branch that

maximizes a fitness function over all branches. Let$&%
be the set of paths all mapped to PHT entry # ,



and let � be the history length, so that there are 

'
counters in the PHT. Let a Boolean ���( )��� % be the

aggregate bias (i.e. true for taken or false for not

taken) of all the paths mapped to PHT entry # , i.e.,���� ���� % is true if and only if:

*
+�,
-/. ������ ����!�"�0�21

�

*
+�,
-/. ���3�3�������

In other words, ���( )��� % is true if and only if all

the paths mapped to PHT entry # lead to taken

branches at least half the time. For a path � , let a

Boolean 45#���6 + be true if and only if ������ ����!�"�0�71�����3���"�0�98/
 , i.e., 45#���6 + is the bias of an individual

path. Then the value of the fitness function is:

*
:�; % ;�<5=

*
+�,
-/.

> �����3���"�0� if ���� ���� %@? 45#���6 +A �����3���"�0� otherwise

Each path is mapped to a particular PHT entry. In-

tuitively, the fitness function is the sum, over all

paths, of the frequencies of paths mapped to PHT

entries with the same bias, minus the frequencies

of paths mapped to PHT entries with different bias.

The higher the fitness function, the more construc-

tive and less destructive interference there is.

4.4 Implementing Inversion Bits

An important consideration for branch path re-aliasing

is the representation of the inversion bits. Each branch

instruction encodes an inversion bit, which is reasonable

since several existing ISAs already dedicate one or two

bits in each branch instruction to managing branch pre-

diction. For example, the HP/PA-RISC architecture al-

lows each branch to encode a bias bit [17], which is used

either for static or agree branch prediction. The Pentium

4 microprocessor extends the IA-32 instruction set to in-

clude branch hints [10]. The IA-64 architecture encodes

several hint bits in branch instructions [8]. These extra

bits in the ISA could be re-used to represent inversion

bits. Old binaries would still run with reduced perfor-

mance, and newer ones could be optimized to use the

inversion bits for branch path re-aliasing.

5 Experimental Results

In this section, we give the results of branch path re-

aliasing on the SPEC 2000 integer benchmarks, measur-

ing the decrease in misprediction rates on several branch

predictors. We show that our optimization also helps

more complex agree and hybrid predictors. Finally, we

measure the decrease in aliasing responsible for the im-

proved accuracy.

5.1 Predictor Simulation Methodology

We use the 12 SPEC 2000 integer benchmarks running

under SimpleScalar/Alpha [3] to collect traces. For each

benchmark, we gather traces giving the branch address

and outcome for 300 million branches for both train

and ref inputs. Each benchmark executes over one bil-

lion instructions before the simulation ends.

We use the train inputs for collecting the path pro-

files, and we use the ref inputs to evaluate the accu-

racy of the predictors. We use traces to gather our path

profiles. This method is costly, but there are techniques

in the literature that would easily make this task much

more efficient, e.g. the efficient algorithm of Young [30],

which gathers bounded-length paths with both forward

and backward edges, or the forward-path profiling of

Ball and Larus [2]. We consider path profiles with his-

tory lengths of 8 to 15.

We use branch path re-aliasing to decrease the mispre-

diction rates of three dynamic branch predictors: GAg,

an agree predictor, and a hybrid predictor. We compare

our improved predictors with several other predictors.

We first tune each predictor for optimal history length

using the traces collected with the train inputs.

5.2 Algorithm Implementation

We measure misprediction rates using a trace-driven

simulation program. For our simulations, we use a

733MHz Pentium III that reads compressed traces from

an NFS server. On this machine, the branch path re-

aliasing algorithm takes from 5 to 30 minutes, depend-

ing on the history length, number of paths in the pro-

gram, and compression ratios of the traces. We did not

pay particular attention to the efficiency of the program,

using C++ and STL for rapid development. However, we

are confident that a production version of branch path re-

aliasing using Young’s path profiling algorithm would be

reasonably quick.

5.3 Simple Two-Level Predictors

Figure 1 compares our basic scheme, GAg with branch

path re-aliasing, against three simple two-level predic-

tors: GAg, GAs, and gshare. The graph shows mispre-

diction rates for hardware budgets ranging from 256 to

8K bytes. At all hardware budgets, our basic scheme

achieves the lowest misprediction rate. The graph does
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Figure 1: Branch misprediction rates on the SPEC 2000 in-

teger benchmarks. Branch path re-aliasing is able to improve

GAg beyond the accuracies of GAs and gshare while keeping

the critical path for prediction short.

not show, of course, that our scheme allows faster clock-

ing by removing work from the critical path. For a

branch predictor with 2K-entries, the same hardware

budget used in the AMD Athlon, branch path re-aliasing

reduces the misprediction of GAg by 32%, from 9.5%

down to 6.5%. The misprediction rates for a 2K-entry

GAs and gshare are 7.5% and 8.2%, respectively; for

2K-entries, our basic predictor sees misprediction rates

that are lower than GAs and gshare by 13% and 21%,

respectively.

To see how these numbers might be used to design

future predictors, suppose the microarchitects of a CPU

core that uses a 4K-entry GAs predictor decided it was

necessary to shrink the branch predictor to 2K entries

to allow for more aggressive clocking. Our simulations

show that the misprediction rate would increase by 12%,

from 6.7% to 7.5%. Instead, the microarchitects could

replace the 4K-entry GAs with a 2K-entry GAg and

provide inversion bits. Branch path re-aliasing could

achieve a misprediction rate of 6.5%, decreasing the mis-

prediction rate of the larger predictor by 3%.

5.4 More Complex Predictors

We have argued that high-latency, complex predictors

will become less feasible as clock rates increase and

pipelines get longer. Nevertheless, some CPU designs

will continue to keep shorter pipelines and less aggres-

sive clock rates. Even with more complex predictors,

branch path re-aliasing offers higher accuracy.

5.4.1 Agree Predictors

The agree predictor achieves increased accuracy by turn-

ing the destructive aliasing of a normal PHT predictor

into constructive aliasing. Rather than predicting the out-

come of a branch, the PHT is used to predict whether the

outcome will agree with a bias bit. Still, there is a differ-

ent kind of destructive aliasing to which agree predictors

are susceptible. Instead of paths that lead to taken and

not taken branches colliding in the PHT, we may have

paths that lead to agreement and disagreement with the

bias bit aliasing each other. We modify the branch path

re-aliasing algorithm to reduce aliasing in a GAg-based

agree predictor that uses bias bits set in each branch in-

struction. Instead of keeping track of the taken/not taken

bias of a particular path, the new algorithm keeps track

of the agree/disagree bias of a path. That is, for each

PHT entry, the algorithm determines whether each path

leading to that entry usually agrees or disagrees with the

corresponding bias bit.
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Figure 2: Branch misprediction rates on each SPEC 2000 in-

teger benchmarks for agree predictors.

Figure 2 shows harmonic means of misprediction



rates for several hardware budgets, as well as the mispre-

diction rates on each SPEC integer benchmark means for

2K-entry GAs, gshare, and GAg predictors with branch

path re-aliasing, each using the agree mechanism. These

predictors use the same size table as the agree predictor

of recent HP-PA/RISC cores such as the 8700 [17, 24].

Branch path re-aliasing achieves the lowest harmonic

mean misprediction rate of 4.4%, compared with 4.8%

for GAs with agree and 4.5% for gshare with agree.

5.4.2 Hybrid Predictors

One of the components of the Alpha 21264 hybrid

branch predictor is a 4K-entry GAg predictor. The

choice predictor, which predicts whether the global or

per-branch component will be more accurate, is also a

4K-entry table of 2-bit counters indexed by the global

branch history. We modified the branch path re-aliasing

program to measure the bias of a particular branch to be

predicted better by a global or per-branch predictor by

tracking the misprediction rates of both prediction com-

ponents. We modified the fitness function to take into

account both taken/not taken and global/per-branch bi-

ases. This way, aliasing is reduced both in the global

PHT as well as in the choice table.

We simulate the unmodified Alpha 21264 hybrid pre-

dictor, as well as a version of the Alpha predictor aug-

mented with branch path re-aliasing. We allow the global

and chooser PHTs to range in size from 256 to 32K en-

tries, scaling the per-branch table of histories and PHT

with 1/4 the entries as the global PHT, yielding a se-

quence of Alpha-like predictors at increasing hardware

budgets. Figure 3 shows a plot of the harmonic means

of misprediction rates as a function of hardware budget

for the hybrid predictors as well as two agree predictors,

one with branch path re-aliasing. Figure 3 also shows a

bar graph for the 4K-entry global PHT versions of the

hybrid predictors, using the same configuration as the

Alpha 21264 predictor. The bargraph shows a 16K-entry

agree predictor using branch path re-aliasing. This agree

predictor uses about the same hardware budget (4096

bytes) available to the Alpha 21264 (3712 bytes). Us-

ing branch path re-aliasing with the hybrid predictor re-

duces the harmonic mean of the misprediction rate by

10%, from 3.1% to 2.8%. Using GAg with branch path

re-aliasing and the agree mechanism, the misprediction

rate is 3.0%, slightly better than the original hybrid pre-

dictor and with reduced complexity.
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Figure 3: Branch misprediction rates on each SPEC 2000 in-

teger benchmarks for hybrid and agree predictors.



5.5 Aliasing Rates

The purpose of branch path re-aliasing is to reduce de-

structive aliasing in the PHT for a GAg predictor. In

our experiments, we model a “de-aliased” predictor, i.e.,

a predictor where different paths cannot alias the same

PHT entries. We use this predictor to measure three

kinds of aliasing [19]:

� Destructive aliasing occurs when PHT aliasing

leads to a misprediction in GAg where the de-

aliased predictor has no misprediction.

� Constructive aliasing occurs when PHT aliasing

leads to a correct prediction where the de-aliased

predictor mispredicts.

� Harmless aliasing occurs when aliasing in the PHT

has no effect on whether or not a prediction is cor-

rect.

Note that these cases are mutually exclusive and ac-

count for all aliasing in the PHT. Figure 4 shows these

different types of aliasing rates in a 2K-entry GAg pre-

dictor for the SPEC 2000 integer benchmarks, before

and after applying branch path re-aliasing. The har-

monic mean of the destructive aliasing rate is reduced

by 21%, from 6.1% before re-aliasing to 4.8% after re-

aliasing. Constructive aliasing is also reduced slightly,

from 0.41% to 0.31%. Total aliasing is reduced by 48%,

from 18.3% to 9.5%.

On 181.mcf, re-aliasing reduces destructive alias-

ing by 30%, from 16.6% down to 11.5%, explaining the

64% decrease in the misprediction rate, from 7.9% for

GAg down to 2.8% for GAg with branch path re-aliasing.

6 Conclusion

Branch path re-aliasing is a new branch prediction tech-

nique that improves accuracy. By using path profiles to

map paths leading to different outcomes to different PHT

locations and paths with similar outcomes to the same

PHT locations, re-aliasing decreases destructive aliasing.

An advantage of our idea is its simplicity and low de-

lay. The time to access the predictor is limited only by

the time to access the PHT; there is no other logic on the

critical path. Moreover, variations of our technique im-

proves accuracy in complex predictor organizations such

as agree and hybrid predictors.

Our approach fits in with the general trend towards

moving more work out of the processor and into the com-

piler. By making prediction simpler without reducing ac-

curacy, we can enjoy the benefits both of high IPC and

high clock rates.
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Figure 4: Branch aliasing rates on the SPEC 2000 integer

benchmarks. For each benchmark, the left bar shows the alias-

ing rates before applying re-aliasing, and the right bar shows

the aliasing rates after the transformation is applied.
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