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Abstract—The past decade has seen the rise of highly
successful cache replacement policies that are based on binary
prediction. For example, the Hawkeye policy learns whether
lines loaded by a given PC are Cache Friendly (likely to remain
in the cache if Belady’s MIN policy had been used) or Cache
Averse (likely to be evicted by Belady’s MIN policy). In this
paper, we instead present a cache replacement policy that is
based on multiclass prediction, which allows it to directly mimic
Belady’s MIN policy in a surprisingly simple and effective way.
Our policy uses a PC-based predictor to learn each cache line’s
reuse distance; it then evicts lines based on their predicted time
of reuse. We show that our use of multiclass prediction is more
effective than binary prediction because it allows for a finer-
grained ordering of cache lines during eviction and because it
is more robust to prediction errors.

Our empirical results show that our new policy, which we
refer to as Mockingjay, outperforms the previous state-of-the-
art on both single-core and multi-core platforms and both with
and without a prefetcher. For example, with no prefetcher, on
a mix of 100 multi-core workloads from the SPEC 2006, SPEC
2017, and GAP benchmark suites, Mockingjay sees an average
improvement over LRU of 15.2%, compared to 7.6% for SHiP
and 12.9% for Hawkeye. On a single-core platform, Mocking-
jay’s improvement over LRU is 5.7%, which approaches the
6.0% improvement of Belady MIN’s unrealizable policy. On
a single-core platform (with a prefetcher) running the high-
MPKI CVP workloads, Mockingjay’s improvement over LRU
is 20.1%, compared to 13.4% for Hawkeye.

I. INTRODUCTION

Cache replacement is an important and well-studied
problem that has grown in sophistication over the years.
Early solutions used variants of simple heuristics, such as
LRU (Least Recently Used) and MRU (Most Recently Used).
In 2007, Qureshi et al. [30] ushered in the era of adaptive
solutions by introducing a policy that used efficient sampling
to choose from among two different heuristics. The past
decade has seen a movement to prediction-based policies that
phrase the cache replacement problem as a binary prediction
problem. For example, SDBP [20] predicts whether lines
loaded by a given PC will be dead or alive, SHiP [41] predicts
whether lines loaded by a PC will have a long or intermediate
reuse distance, and Hawkeye [13] predicts whether a line
loaded by a PC would tend to be cached or not cached
if Belady’s MIN policy had been used. These prediction-
based solutions work well because they learn from historical
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behavior, which allows them to proactively evict lines that
are unlikely to receive cache hits.

However, the coarse granularity of binary classification
leads to two shortfalls: First, a small prediction error will
flip a prediction from one class to the other. Second, there
can be many ties among lines in the same class, which are
typically broken by falling back on the same LRU heuristic
that these polices attempt to improve upon.

An alternative to binary classification is multiclass pre-
diction, where the different classes represent different reuse
distances [3], [7], [10], [38]. One particularly elegant idea,
first proposed by Keramidas et al. [19] and later improved
upon by Petoumenos et al. [29], attempts to mimic Belady’s
MIN policy [6] more directly: The stated goal is to have a
predictor learn each cache line’s reuse distance and to always
evict the line that is predicted to be reused furthest in the
future. Conceptually, each reuse distance is translated into
the line’s predicted time of reuse, which is known as its
ETA (Estimated Time of Arrival), and lines are ordered by
ETA [19], [29].

Unfortunately, there are two reasons why these previous
ETA-based solutions do not in fact closely mimic Belady’s
MIN. First, their eviction policies deviate from their stated
goal by using a combination of a line’s predicted ETA and
the line’s age in the cache. Section II explains this flaw
conceptually; empirically, we find that 93% of the decisions
in Keramidas et al.’s solution and 36.2% of the decisions in
Petoumenos et al.’s solution use an age-based LRU ordering.
Second, even when these solutions use ETA-based ordering,
their predicted ETA values are often incorrect due to the low
accuracy of their reuse distance predictions, as we explain
in Section II. As a result, neither solution performs well,
with Petoumenos et al.’s solution improving IPC over LRU
by just 2.6% on a set of SPEC and GAP benchmarks. Thus,
the research community has apparently moved away from
the idea of ETA-based replacement, as none of the published
entries in the 2nd Cache Replacement Championship used
ETA-based solutions.

In this paper, we present Mockingjay,2 an ETA-based
policy that faithfully adheres to the stated goal of ETA-
based replacement. We show that Mockingjay outperforms

1Belady’s MIN is not well defined for multicore systems.
2A mockingjay is a fictional bird from the Hunger Games trilogy that

can remarkably memorize and mimic human melodies and songs.



Improvement Over LRU Year
SHiP 3.4% 2011
Hawkeye 4.5% 2016
Mockingjay 5.7% 2021
Belady’s MIN 6.0% 1966

Table I: IPC improvement over LRU for our benchmarks (on
a single core1with no prefetcher).

the previous state-of-the-art policies and approaches the
performance of Belady’s impractical MIN policy (see Table I).
Moreover, Mockingjay represents an interesting milestone,
as it is the first replacement policy that can obtain better
performance than an LRU cache that is twice as large. In
particular, in a single-core setting with no prefetcher, a 1MB
cache using Mockingjay outperforms a 2MB cache using the
LRU policy, similarly for 2MB/4MB and 4MB/8MB.

Our solution is effective because (1) it produces accurate
reuse distance predictions by using a long history of past
accesses and by using per-set reuse distances, and (2) it
considers age information only in the few cases where reuse
distance information is unavailable. As a result, Mockingjay
is able to use ETA information—and thus mimic MIN—for
92% of its evictions.

Compared to the recent state-of-the-art solutions that
use binary classification, there are three benefits of our
solution. First, multiclass prediction is more resilient to
prediction errors than binary classification because a single
misprediction has a smaller impact on the predicted ordering
of cache lines. Second, as we demonstrate empirically
in Section V, errors in the prediction of ETAs translate
to smaller errors in the prediction of the relative order
of ETAs. Third, while most recent policies [13], [20],
[34], [41] predict a line’s eviction priority at the time of
insertion, our solution computes ETAs at insertion time
but defers its interpretation as an eviction priority—i.e., its
comparison against other ETAs—until eviction time, when
more information is available.

This paper makes three main contributions.
• We demonstrate that it is possible to effectively emulate

Belady’s MIN policy where knowledge of the future is
replaced with reuse distance prediction.

• We provide insights (see Section V) that explain why
Mockingjay’s multiclass prediction approach is superior
to recent policies that rely on binary classification.

• We demonstrate that Mockingjay comes extremely
close to the performance of Belady’s MIN policy
(see Table I) and outperforms the previous state-of-
the-art policies. For memory-intensive programs from
the CVP workloads running on a single core with a
prefetcher, Mockingjay improves performance by 20.1%
(vs. 13.4% for Harmony3). For a mix of SPEC and

3Harmony is an extension of Hawkeye that is superior in the presence of
prefetching. In the absence of prefetching, they behave identically.

GAP benchmarks running on a four-core system, the
improvements are 13.3% for Mockingjay and 11.1% for
Harmony. The Mockingjay source code can be found
at https://github.com/ishanashah/Mockingjay.

This paper also makes the following secondary contribu-
tions:

• We show that on a single core with prefetching, Mock-
ingjay reduces uncore (LLC+DRAM) energy consump-
tion by 9.1% compared to Harmony.

• We present an ablation study that shows the relative
importance of different components of ETA-based
policies [19], [29] (see Figure 6), and we find that
both accurate ETA prediction and accurate ETA-based
eviction are essential for mimicking MIN.

• We show the performance impact of using four different
prefetchers: We find that Mockingjay performs best
regardless of the prefetcher, and we show evidence that
Mockingjay performs better as the prediction accuracy
of the prefetcher improves.

The remainder of this paper is organized as follows. We
describe Related Work in Section II, and we describe our
solution in Section III. We then present our experimental
evaluation in Section IV, followed in Section V by a
discussion of the sources of Mockingjay’s performance
advantage. We conclude in Section VI.

II. RELATED WORK

In 1966, Belady proposed the clairvoyant MIN cache
replacement policy [6], which is optimal but impractical.
Since then, numerous cache replacement policies have been
devised that to varying degrees aim to emulate Belady’s
policy without looking into the future. We now discuss prior
work by relating them to Belady’s MIN, dividing previous
work into two categories: (1) memoryless policies that do
not use historical information to distinguish among lines
when they are inserted in the cache, and (2) prediction-based
policies that learn from historical behavior to predict future
caching behavior of incoming lines.

A. Memoryless Policies

Early solutions modulate replacement priority by observing
the reuse behavior of cache-resident lines. These solutions
typically emulate Belady’s MIN under strong assumptions.
For example, if we assume that lines have temporal locality,
then the line that is reused furthest in the future will be the
oldest line in the cache, yielding the LRU (Least Recently
Used) policy. However the LRU policy is susceptible to
thrashing when the working set size exceeds the cache
capacity. Therefore, other solutions [9], [17], [23], [27], [35],
[40] preferentially evict newer lines, because for a thrashing
access pattern, the newest line is likely to be reused furthest
in the future [30], [32].

Jaleel et al. recognize that a spectrum of policies exist
between LRU and MRU, and they accommodate scanning



accesses4 using their RRIP policy [15]. To adapt to changes
in access patterns over time, adaptive cache replacement
solutions [30], [36] dynamically change the replacement
policy over time. All of these policies have a key limitation:
They are customized to a few specific access patterns and
do not mimic MIN for more complex cache access patterns.

Shepherd Cache is the memoryless policy that most
closely emulates Belady’s MIN policy [31]. Shepherd Cache
repurposes some ways from the cache to extend the main
cache’s window into the future. Therefore, the fundamental
tradeoff is that that for a fixed-sized cache, the longer the
lookahead, the smaller the main cache. Previous studies [13]
have shown that Belady’s MIN requires a long window into
the future that is about 8× the size of the cache, which
suggests that for the Shepherd Cache to approach MIN’s
behavior, it would need to shrink the main cache to 1

8 its
size.

B. Prediction-Based Policies

Mockingjay is the latest in a recent trend that takes a
predictive approach to the cache replacement problem, where
past behavior is observed at a fine granularity (typically at
the granularity of load instructions) to guide future caching
decisions. These policies use past behavior to predict either
binary caching priorities or multiclass reuse distances.

Binary-Classification-Based Policies: Dead block pre-
dictors [18], [20], [22] and many recent state-of-the-art
replacement policies [13], [16], [39], [41] phrase cache
replacement as a binary prediction problem, where the goal
is to predict whether an incoming line should be cached or
not cached. For example, SDBP [20] and SHiP [41] learn
whether loads by some instructions are more likely to result
in cache hits than others, and both policies preferentially
evict lines inserted by load instructions that are predicted
to be cache-averse (SDBP correlates reuse with the load
instruction that first loaded the line, whereas SHiP correlates
reuse with the load instruction that caused the reuse). The
perceptron predictor [39] and MPPPB [16] use richer features
and more sophisticated prediction mechanisms to improve
prediction accuracy. Instead of learning from the hit and
eviction behaviors of the LRU policy, the Hawkeye cache
replacement policy [13], [14] learns the caching behavior of
the optimal solution for past accesses. The optimal solution is
produced by applying a variant of Belady’s MIN algorithm
on a long history of past cache accesses (8× the size of
the cache), and the optimal solution is learned using a PC-
based predictor. Glider [34] improves upon Hawkeye in two
ways: (1) it uses better features that were identified using
deep learning and (2) it uses a more sophisticated predictor
to perform its binary classification. Section V explains the
drawbacks of these binary classification-based policies.

4Scans refer to accesses that are never reused.

Reuse-Distance Prediction Policies: Many cache re-
placement policies [3], [7], [8], [10], [19], [21], [25], [38]
perform reuse distance prediction but differ fundamentally
from Mockingjay in three respects. First, instead of mimick-
ing MIN, these solutions [3], [7], [10], [38] protect lines until
their age exceeds their predicted reuse distance, even if those
reuse distances are long. Thus, these policies protect lines
that are reused furthest in the future, instead of evicting lines
that are reused furthest in the future. Second, the effectiveness
of such protection-based policies is exposed to even small
errors in reuse distance predictions. By contrast, Mockingjay
is exposed to errors in the relative ordering of ETAs, which
we show in Section V occur less frequently than errors
in reuse distance prediction. Leeway [8] introduces novel
prediction techniques to adapt to variability in reuse distances,
but Leeway continues to rely on line protection, which is
wasteful when the line will be eventually evicted anyway.
Third, none of these policies learn long reuse distances (8×
the size of the cache), which limits their prediction accuracy.

The EVA policy [5] differs from other reuse distance
prediction based policies as it computes a line’s priority
based on the statistical distribution of age values for which
cache hits are observed. Mockingjay enjoys two benefits
over EVA. First, Mockingjay estimates reuse distances at a
fine granularity by estimating a different reuse distance for
each PC, whereas EVA estimates reuse distances for just two
classes of lines, those that have been reused at least once
and those that have not. Second, Mockingjay uses a simpler
hardware solution, whereas EVA uses a software routine to
update eviction priorities.

Figure 1: KPK and IbRDP use max(ETR, age) to make
eviction decisions, so they erroneously evict A, while MIN
would evict B, whose ETA is further in the future. Here,
[20,0] represents an ETR of 20 and an age of 0, and the
bold lettering highlights the max of the two values.

Two prior solutions, KPK [19] and IbRDP [29], share
Mockingjay’s goal: Evict lines based on their ETA. However,
both solutions suffer from the fundamental flaw that instead
of evicting lines based on their ETA, they take the larger
of the line’s ETR (Estimate Time Remaining) and its age
in the cache, where ETR is a counter, initialized to a line’s
reuse distance, that counts down as it ages. But this scheme
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Figure 2: Overview of the Mockingjay cache replacement policy.

does not order lines based on ETA. Figure 1 shows an
example where A will be reused earlier than line B, so at
the point where a new line is inserted, line B should be
evicted. However, both KPK and IbRDP would instead evict
A because max(ETR,age) for A is max(15,5) = 15, which
is greater than max(ETR,age) for B, which is max(10,0)
= 10. In general, once a line’s age reaches half of its
reuse distance, KPK and IbRDP ignore the line’s ETA
and instead use the line’s age to make eviction decisions,
which means that a line is most likely to be evicted just as
it reaches its ETA. By contrast, under Belady’s MIN policy,
lines that approach their ETA are the last to be evicted.

Even when KPK and IbRDP use ETA-based eviction, they
are limited because of their low reuse distance prediction
accuracy, as we now explain.

KPK observes low reuse distance prediction accuracy
because it does not use a long history of the past and instead
predicts reuse distances based only on the contents of the
cache—prior results show that Belady’s MIN performs worse
than LRU if given a window into the future that is equal to
the size of the cache [13].

IbRDP improves upon KPK by using a long history, but it
measures reuse distances and ETRs in terms of global cache
accesses, and we find empirically that global reuse distances
have extremely high variability. As a result, IbRDP has a
prediction accuracy of just 43%. Mockingjay is much more
accurate than both KPK and IbRDP, achieving a prediction
accuracy of 85%. Mockingjay’s superior accuracy can be
attributed to its use of long history and its use of per-set
reuse distances.

Finally, Liu et al. present a machine learning model
to directly imitate Belady’s MIN policy for the past to
predict future eviction decisions [24], but their solution is
too expensive to deploy in hardware.

III. OUR SOLUTION

Our Mockingjay solution, which we apply to the last-level
cache (LLC) is designed to evict the line that is predicted to
be reused furthest in the future. Conceptually, for each cache
insertion, the line’s estimated time of arrival (ETA) is the
sum of the current timestamp and the line’s predicted reuse

distance; at each insertion, the line with the largest ETA is
evicted. To predict reuse distances, a PC-based predictor is
used to estimate each cache line’s reuse distance.

A. Key Components
We now describe the three components of our solution,

which are the Sampled Cache, the Reuse Distance Predictor
(RDP), and the ETA Counters that reside in the LLC
(see Figure 2). We defer the discussion of their hardware
implementation to Section III-B.

Sampled Cache: The goal of the Sampled Cache is to
track past reuse distances to train the RDP, which predicts
future reuse distances. To track reuse distances, the Sampled
Cache maintains a long history of past cache accesses for a
few sampled cache sets. In keeping with previous claims that
Belady’s MIN policy requires a long view of the future [13],
Mockingjay maintains a history length that is 8× the size
of each sampled set. Thus, the Sampled Cache enables
Mockingjay to learn both short and long reuse distances.

The Sampled Cache is organized as a set-associative cache
and is indexed using the cache line address. Each entry in
the Sampled Cache maps block addresses to their last access
timestamp and their last PC signature. Since the Sampled
Cache only stores unique lines in the 8× history, the required
space is much smaller than 8× the total capacity of the
sampled sets.

Reuse Distance Predictor (RDP): The RDP is a PC-
based predictor that learns reuse distances for loads initiated
by a given program counter (PC). The RDP is organized
as a direct-mapped cache and is indexed by a PC signature.
Mockingjay uses separate predictor entries—and therefore
learns separate reuse distances—for loads by a PC that hit
in the cache and for loads by that same PC that miss in the
cache. In Section III-B, we describe how we combine the
PC and the hit/miss information into a hashed PC signature
for indexing the RDP.

Each entry in the RDP is initialized to 0, and as lines are
reused in the Sampled Cache, the RDP entry corresponding
to the PC that last accessed the line is updated with the
observed reuse distance. Section III-B explains how we use
coarse-grained timestamps in the Sampled Cache to efficiently
produce reuse distance observations.



Since reuse distances for a PC can oscillate, we use
temporal difference learning [37] to train the RDP gracefully
in the presence of outliers. Temporal difference learning
updates predicted values as a linear function of the difference
between the predicted and observed values. Thus, to limit the
effect of outliers, the counter update is biased to maintain the
old value but is still influenced by the new reuse distance.

More concretely, RDP entries are trained as follows: If
the new reuse distance is larger than the previous RDP entry,
then the entry value is incremented by w, where w is defined
to be min(1, diff

16 ) and diff is the absolute difference between
the previous entry and the new reuse distance. If however the
new reuse distance is smaller than the previous RDP entry,
then the entry value is decremented by w. If the signature
does not exist in the RDP, its entry is set to be the sampled
reuse distance.

ETA Counters: Finally, the cache itself maintains the
ETA for each line. Upon insertion into the cache, a line’s
predicted reuse distance is converted to an ETA, and these
ETA values are used to make eviction decisions for future
cache misses. Cache insertions that are predicted to have
ETA values larger than any existing line in the set are
bypassed, which means that they are not inserted in the
cache. Promotions are treated the same as insertions, so
Mockingjay produces an ETA prediction on both cache hits
and misses.

To reduce the expense of maintaining precise ETA times-
tamps for each cache line, we use a smaller but logically
equivalent value, known as the Estimated Time Remaining
(ETR). The ETR value is initialized to the line’s predicted
reuse distance and is decremented each time some other line
in the set is accessed. As the difference between the present
time and the predicted ETA of a cache line decreases, the
ETR of that line also decreases. Thus, the relative ordering
of ETRs is exactly the same as the relative ordering of ETAs.

At times, our solution will underestimate a line’s reuse
distance, and its ETR counter value will reach 0 without
seeing a reuse. If our policy were to let the counter value
saturate at 0, this line would always retain the highest caching
priority, which is undesirable. If on the other hand, such lines
were given an infinite ETR value, then lines whose ETA were
underestimated by just a small amount would immediately
be evicted, which is also undesirable.

To handle these imprecise predictions, our solution contin-
ues to decrement ETR counters after they reach a value of 0.
The negative ETR value indicates the time that has elapsed
since the line’s expected ETA. For example, an ETR counter
value of −4 indicates that the line has exceeded its ETA by
4 set accesses. Upon eviction, our policy evicts the line with
the largest absolute ETR value, which is the line furthest
from its ETA. Thus, the evicted line is either predicted to be
reused furthest in the future or it was predicted to be reused
furthest in the past. Ties are broken by evicting lines with a
negative ETR in favor of lines with a positive ETR.

B. Implementation Details
We now provide additional details for Mockingjay’s three

components.
Sampled Cache: The Sampled Cache maintains a long

history of cache accesses for 32 sampled sets (the Sampled
Cache maintains only tags, not data). For a 16-way cache,
this history includes the past 128 cache accesses for each
sampled set. We implement the Sampled Cache as a 5-way
set-associative cache with 512 sets. Conceptually, we can
view the 512 sets in the Sampled Cache as a collection of 32
smaller sub-caches, where each sub-cache has 16 sets and
maintains the history of cache accesses for one of the 32
sampled sets. Thus, the Sampled Cache is indexed using a
concatenation of the 5 set id bits that identify the 32 sampled
sets and the bits [3:0] of the block address tag. Sampled
Cache lines are tagged with bits [13:4] of the block address
tag.

The Sampled Cache is managed using an LRU replacement
policy. Each Sampled Cache entry maps block addresses to
their last access timestamp and their last PC signature. In
particular, each entry includes a valid bit, a 10-bit block
address hash, an 11-bit PC signature, and an 8-bit timestamp
indicating the time of last access.

For every access to a sampled LLC set, the Sampled Cache
is searched. On a Sampled Cache hit, the last timestamp of
the block is used to train the RDP with the observed reuse
distance. On a Sampled Cache miss, the least recently used
line is evicted from the Sample Cache, and the PC signature
corresponding to the evicted line is trained to learn that it
was not reused and was thus a scan. We associate scanning
accesses with an infinite reuse distance and represent them by
the maximum possible reuse distance value INF RD, which
in our case is 127. In either case, the Sampled Cache is
updated with the current timestamp and the PC signature
of the new access. The current timestamp is maintained as
an 8-bit running counter for each sampled LLC set and is
incremented on every set access. Timestamps wrap around
on overflow, but since the current timestamp must occur later
than the last access timestamp, we can detect overflow when
the current timestamp has a smaller value than the last access
timestamp. In this case, we add 1 << TIMESTAMP BITS
to the current timestamp before computing the difference.
It is possible that the current timestamp’s wrapped around
value can exceed the last access timestamp, but since we
evict cache lines that are observed to be more than 128 set
accesses old, this case is rare.

Reuse Distance Predictor: The RDP is a direct-mapped
array that is indexed by the PC signature, and it stores the
predicted reuse distance for the blocks corresponding to
this signature. The PC signature is a hash of the 11 least-
significant bits of the program counter with a bit indicating
whether the cache access was a hit or a miss. Each entry in
the RDP is a 7-bit saturating counter representing the number
of set accesses before a cache line is predicted to be reused.



ETR Counters: On insertion and promotion, a line’s
ETR is initialized with its predicted reuse distance obtained
from the RDP. As explained earlier, scans are associated
with an infinite reuse distance, INF RD, which in our case is
127. To ensure that scanning lines retain the highest eviction
priority, lines with a predicted reuse distance of INF RD are
never aged.

Since reuse distance predictions are not perfect, there is
uncertainty about lines with a large reuse distance: Should
they be considered to be a part of a scan, or should they be
given the opportunity to be cached? We find that the former
is preferred, because the latter ties up valuable cache space,
so we define a threshold, MAX RD, whose value is close
to INF RD, and any line whose ETR value is greater than
this threshold is treated as a scan. In our evaluation, we use
MAX RD = 104, but we find that it can be set to any value
that is slightly smaller than INF RD.

For space efficiency, Mockingjay tracks coarse-grained
reuse distances (and corresponding ETRs), which are obtained
by dividing the precise value by a constant factor f , where
f is set to 8 in our evaluation. To age a line’s ETR value, its
counter is decremented by an average of 1 on every set access.
Thus, the ETR counters for all non-scanning lines in a set
are aged every f set accesses. To support this aging scheme,
we use a 3-bit clock for every set; the clock is initialized to
zero and is incremented on every set access. Every eight set
accesses, the set’s clock is reset to 0, and every line in the
set is aged. As mentioned earlier, a line that has exceeded
its ETA—i.e., its ETR counter has reached 0—is still aged
by decrementing its ETR. The absolute ETR value in this
case indicates the extent to which the line has exceeded its
predicted ETA. These aging operations are similar to those
of the RRIP policy [15] and are off the critical path.

The insertion and promotion operations also lie off the
critical path because they do not interfere with the cache
controller’s ability to determine whether the line hits or
misses. The complexity of Mockingjay’s insertion and
promotion operations is similar to those of prior prediction-
based solutions [13], [41].

Finally, on a cache miss, the line with the largest absolute
ETR value is evicted. The use of the max function makes
eviction in Mockingjay more expensive than in prior solutions,
but these operations can be performed while the cache miss
is being serviced from main memory, so they do not affect
Mockingjay’s hit or miss latencies.

C. Multicore Implementation

Mockingjay’s multicore implementation does not signifi-
cantly differ from its single-core implementation, but a few
parameters are scaled to accommodate the increased pressure
from multiple cores. First, we increase the signature size to
10 + log(number of cores), and the load address is hashed
with the core identifier to produce the RDP signature. Second,
the RDP is scaled with the number of cores. Finally, the

Table II: Baseline configuration.

Out-of-order 352-entry ROB, 128-entry LQ,
Core 72-entry SQ, FetchWidth=6,

ExecWidth=4, RetireWidth=4
L1 I-Cache 32 KB, 8-way

4-cycle latency, 8 MSHRs
L1 D-Cache 32 KB, 8-way

4-cycle latency, 16 MSHRs
L2 Cache 256 KB, 8-way

8-cycle latency, 32 MSHRs
LLC per core 2 MB, 16-way

20-cycle latency, 64 MSHRs
DRAM tRP,tRCD,tCAS=12.5ns

800 MHz, 25.6 GB/s

number of sampled sets is scaled with each core, so a 4-core
application uses 128 sampled sets.

D. Prefetching Implementation

Since MIN is not optimal in the presence of a
prefetcher [14], Mockingjay emulates Flex-MIN [14] in the
presence of a prefetcher. The key idea behind Flex-MIN is to
preferentially evict lines that will be prefetched in the future.

To identify such lines, Jain and Lin describe the concept
of a cache usage interval, which refers to the time interval
between consecutive accesses to the same line. Since the
endpoints of usage intervals can be caused by either a demand
access or a prefetch, there are four kinds of usage intervals,
namely, D-D, D-P, P-D, and P-P intervals, where a D-D
interval represents a demand reuse, while a P-D interval
represents a useful prefetch, and a *-P interval represents a
line that will be prefetched.

Except for possibly improved timeliness, *-P intervals do
not need to be cached because the subsequent prefetch will
bring the data back into the cache. However, the eviction of
*-P intervals can result in extra prefetcher traffic, since every
prefetch request will miss in the cache and will be sent to
memory. Thus, Flex-MIN gives *-P intervals low priority
only when they are long enough to allow other cache lines
to use the freed up cache space.

Mockingjay emulates Flex-MIN by increasing the reuse
distance prediction of all *-P lines by a constant factor,
thereby discouraging the Mockingjay policy from caching
*-P lines. In single core applications, Mockingjay penalizes
*-P lines by a factor of 2. In particular, for *-P intervals, the
RDP receives a sample reuse distance that is equal to the
observed reuse distance times 2. In case the inflated reuse
distance is larger than INF RD, it is saturated at INF RD.
In multicore applications, traffic to main memory is generally
higher, so our solution inflates reuse distances by a factor of
1.5. In Section IV, we show Mockingjay’s sensitivity to this
penalty parameter.

Finally, to distinguish demand requests and prefetch
requests, the RDP signature is hashed with the prefetch bit,



where the prefetch bit corresponds to the program counter
of the load instruction that triggered the prefetch.

E. Hardware Budget

Our solution requires a hardware budget of 31.91 kilobytes
on one core and 127.62 kilobytes on 4 cores. The introduction
of a prefetcher does not affect the hardware budget.

Sampled Cache History: The total hardware budget for
the Sampled Cache is 9.41KB in a single-core setting and
37.63KB in a 4-core setting. In the 4-core version, we scale
the Sampled Cache size by a factor of 4 as we sample 4×
more sets. We use 8-bit block address hashes and 13-bit
signature hashes per entry.

Reuse Distance Predictor: The reuse distance predictor
(RDP) maps an 11-bit signature to a 7-bit reuse distance
prediction. The total hardware cost for the RDP is 1.75KB.
The total 4-core hardware cost for the RDP is 7KB, since
signatures are instead 13 bits.

ETR Counters: We use a 5-bit ETR counter, such that
counter values can range from −15 to 15 for each line
(INF ETR is set to 15). Each cache set also requires a 3-
bit clock to age the cache lines correctly. Thus, the total
hardware cost to maintain the ETRs is 20.75KB on a 2MB
single-core cache and 83KB on a 8MB 4-core cache.

IV. EVALUATION

This section presents our empirical evaluation of Mock-
ingjay.

A. Methodology

Simulator: We evaluate our solution using the most
recent version of the ChampSim simulator [2], which was
originally released by the 2nd JILP Cache Replacement Cham-
pionship. Table II shows the parameters for our simulated
core and memory hierarchy.

Benchmarks: To evaluate Mockingjay, we use the 33
memory-sensitive applications of the SPEC CPU2006, SPEC
CPU2017, and GAP [4] benchmark suites, where we define
memory-sensitive applications to be those that have an LLC
miss per kilo instructions (MPKI) greater than 1. For the
SPEC CPU2006 and SPEC CPU2017 benchmark suites, we
run the benchmarks using the reference input set, and for
GAP benchmarks, we use graphs of size 217 nodes. For each
benchmark, we use the SimPoint tool [33] to generate a
single sample of 1 billion instructions. We warm the cache
for 200 million instructions and measure the behavior of the
next 1 billion instructions.

We also evaluate Mockingjay on benchmarks provided
by Qualcomm for the CVP1 Championship [1]. Since this
suite includes over 1300 benchmarks, we choose the 25
benchmarks that have the highest LLC MPKI with the LRU
policy.

Multi-Core Workloads: Our multi-core simulation
methodology is similar to that of the 2nd Cache Replacement
Championship [2]. We simulate four benchmarks running on
4 cores, choosing a random set of 100 mixes from all possible
workload mixes that could be created by combining our 33
SPEC CPU2006, SPEC CPU2017, and GAP benchmarks.
For each mix, we simulate the simultaneous execution of
SimPoint samples of the constituent benchmarks until each
benchmark has executed at least 1 billion instructions. If a
benchmark finishes early, it is rewound until every other appli-
cation in the mix has finished running 1 billion instructions;
each application is warmed up for 200M instructions. Thus,
all the benchmarks in the mix run simultaneously throughout
the sampled execution.

To evaluate performance, we report the weighted speedup
normalized to LRU for each benchmark mix. This metric
is commonly used to evaluate shared caches [2], [13], [16]
because it measures the overall performance of the mix and
avoids domination by benchmarks that have high IPC. The
metric is computed as follows. For each program sharing
the cache, we compute its IPC in a shared environment
(IPCshared) and its IPC when executing in isolation on the
same cache (IPCsingle). We then compute the weighted IPC of
the mix as the sum of IPCshared /IPCsingle for all benchmarks
in the mix, and we normalize this weighted IPC with the
weighted IPC using the LRU replacement policy.

Baseline Replacement Policies: We compare Mocking-
jay with two state-of-the-art replacement policies, namely,
SHiP [41], and Hawkeye [13]. For configurations that include
a prefetcher, we replace Hawkeye with Harmony [14] since
Harmony is an extension of Hawkeye that performs better in
the presence of prefetching, and in the absence of prefetching,
Harmony defaults to Hawkeye. For a fair comparison, all
policies are given a 32 KB hardware budget. The baseline
policies all use binary classification, while Mockingjay, of
course, predicts reuse times.

We also compare against KPK [19] and IbRDP [29],5

which are closest to Mockingjay in terms of ETA-based
eviction, as both KPK and IbRDP predict reuse distances
and evict lines based on a combination of their ETAs and
age.

Metrics: To evaluate performance in a single-core
setting, we report IPC speedup over LRU; for multi-core
settings, we report the weighted speedup over LRU. The
weighted speedup metric is commonly used to evaluate
shared caches [2], [13], [16] because it measures the
overall performance of the mix and avoids domination by
benchmarks of high IPC. The metric is computed as follows.
For each program sharing the cache, we compute its IPC in a
shared environment (IPCshared) and its IPC when executing in
isolation on the same cache (IPCsingle). We then compute the

5We present results for the best version of IbRDP, which is referred to
as IbRDP+SC in the original paper.
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Figure 3: Summary of results on all evaluated configurations.

weighted IPC of the mix as the sum of IPCshared /IPCsingle for
all benchmarks in the mix, and we normalize this weighted
IPC with the weighted IPC using the LRU replacement policy.

We also report Mockingjay’s impact on uncore energy
consumption. To estimate energy consumption, we assume
1 unit of energy for each LLC access and an average of 25
units of energy for each DRAM access [11], [42].

B. Summary of Results

Figure 3 shows that Mockingjay outperforms the baselines
on all evaluated configurations. On a single-core system
without prefetching, Mockingjay improves performance
over LRU by 5.7%, while SHiP and Hawkeye improve
performance by 3.4% and 4.4%, respectively. Mockingjay’s
improvement over the baselines improves in the presence of
a prefetcher, as Mockingjay improves performance by 3.6%,
whereas Harmony improves performance by 2.0%.

Mockingjay also works well in multi-core configura-
tions. In the absence of prefetching, Mockingjay improves
performance on a 4-core system by 15.2%, while SHiP
and Hawkeye improve performance by 7.6% and 12.9%,
respectively. In the presence of prefetching, Mockingjay
improves performance on a 4-core system by 13.3%, while
SHiP and Harmony improve performance by 6.7% and 11.1%,
respectively.
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Figure 4: Mockingjay sees larger benefits for the CVP
workloads.

Figure 4 shows that for the CVP workloads, which
have much higher MPKI than SPEC, Mockingjay’s benefits
over the baselines improve. With a prefetcher, Mockingjay
improves performance by 20.1%, compared to 13.4% for

Harmony. When there is no prefetcher, Mockingjay improves
performance by 16.4%, compared to 12.9% for Hawkeye.
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Figure 5: Mockingjay reduces uncore energy consumption.

Figure 5 shows that Mockingjay reduces uncore energy
consumption by 9.1% compared to Hawkeye. Mockingjay’s
energy reduction can be attributed to its 9.8% lower DRAM
traffic. Since uncore energy is a large proportion of total
system energy, we expect Mockingjay to have a visible impact
on overall system energy consumption.
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Figure 6: Understanding the difference between KPK, IbRDP,
and Mockingjay.

Figure 6 shows that Mockingjay significantly outperforms
both KPK and IbRDP. To better understand Mockingjay’s
improvement over IbRDP, we also show results for two
modified versions of IbRDP. The first version uses Mocking-



jay’s ETA-based eviction policy instead of combining ETA
and age-based decay, and we see that despite mimicking
MIN more faithfully, this version provides a marginal
performance improvement because its ETA predictions are
only 43% accurate. The second version of IbRDP uses per-
set reuse distances, and we find empirically that this change
improves reuse distance prediction accuracy from 43% to
85%. However, since this version continues to use IbRDP’s
original eviction policy that combines ETA with age-based
decay, it underperforms Mockingjay (4.8% for IbRDP with
per-set reuse distance prediction vs. 5.7% for Mockingjay).
These ablation studies show that Mockingjay’s benefit comes
both from using an accurate per-set reuse distance predictor
and from using an ETA-based eviction scheme that mimics
MIN more faithfully.

Figure 7 confirms that long histories are essential for
Mockingjay. In particular, we see that in the absence of
prefetching, Mockingjay’s performance suffers when it tracks
reuse distances that are smaller than 4× the size of the cache.
Increasing the history length to 8× the size of the cache
provides a marginal benefit in the presence of prefetching
and incurs no additional storage cost, so Mockingjay uses a
history length of 8× the size of the cache.
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Figure 7: Mockingjay benefits from a long history.

C. Results: Without Prefetching
Figure 8 presents detailed results on the single-core

configuration without prefetching. We see that Mockingjay
outperforms SHiP and Hawkeye on all benchmarks except
libquantum and milc. Mockingjay is not the best solution
for such streaming workloads because streaming workloads
benefit from a less aggressive bypassing policy. If Mockingjay
were to use a less aggressive bypassing policy, its perfor-
mance on libquantum would improve from 2.5% to 8.3%,
but its average performance improvement would decrease
from 5.7% to 5.2%.

While Figure 8 shows results for just the memory-intensive
benchmarks, Mockingjay works well for the entire SPEC

2006, SPEC 2017, and GAP benchmark suites. In particular,
for the entire suites, Mockingjay improves performance by
3.9% in the absence of prefetching (vs. 3.2% for Hawkeye).

A key difference between Hawkeye and Mockingjay
is the way that they handle mispredictions. Hawkeye’s
mispredictions result in the eviction of the least-recently used
cache-friendly line, whereas Mockingjay’s mispredictions
result in the eviction of a line whose ETA has elapsed. We
refer to both of these cases as an LRU eviction for the
respective policies. Figure 9 shows that Mockingjay defaults
to LRU for only 7.8% of the total evictions, whereas Hawkeye
defaults to LRU for 13.8% of its evictions.

Figure 11 shows that Mockingjay’s reuse distance
predictions—the initial ETR values—are quite diverse and
that Mockingjay can learn both short and long reuse distance.
The x-axis shows the initial ETR values that are quantized
from 0 to 15, and the y-axis shows the percentage of
insertions for the given ETR value. We see that across all
of our evaluated benchmarks, 20% of reuse distances are
infinite, 40% are short (within a 2× history), and 40% are
long (2×-8× history). These results highlight Mockingjay’s
ability to cache lines with diverse reuse distances.

D. Results: With Prefetching

Figures 10 and 12 show results in the presence of a
prefetcher for the single-core and multi-core configurations,
respectively.

As we discussed in Section III, Mockingjay penalizes *-
P intervals to improve demand hit rate. Figure 13 shows
the sensitivity to this penalty; we see that Mockingjay’s
performance improvement levels out once the *-P penalty is
greater than or equal to two.

Figure 14 shows that Mockingjay works well for a variety
of prefetchers, including regular prefetchers, such as, IP-
Stride, Best Offset Prefetcher [26], and IPCP [28], and for
irregular prefetchers, such as, ISB [12]. In particular, we
observe that Mockingjay’s gap over the baselines improves
for accurate prefetchers, such as IPCP and ISB.

E. Results: Neural Cache Replacement

Our results so far have compared replacement policies that
use the same 32KB hardware budget, but a recently proposed
solution called Glider [34] uses neural learning to improve
upon Hawkeye’s predictor accuracy. The resulting solution,
which essentially uses perceptrons, uses a 64KB budget.
Figures 15 and 16 compare two versions of Mockingjay,
one with a 32KB hardware budget, another with a 43KB
budget, against Glider. We see that even at half of Glider’s
hardware budget, Mockingjay still outperforms Glider on
all four configurations. We also see that Mockingjay sees
marginal improvements beyond a 32KB hardware budget.

The larger picture is that Mockingjay and Glider represent
two different ways to improve upon Hawkeye. Mockingjay
asks the question, “What should we predict?” By predicting
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Figure 8: Comparison on single-core system (no prefetching).
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Figure 9: Mockingjay results in fewer LRU evictions than
Hawkeye.

ETAs, Mockingjay gets an accuracy benefit and can make
decisions at eviction time, when more information is available
(see Section V). Glider instead retains Hawkeye’s prediction
problem and asks the question, “How can we improve
predictor accuracy?” These graphs show that the change
in prediction problem yields a greater benefit at lower cost—
in terms of hardware budget—than the attempt to improve
predictor accuracy through the use of neural learning.

V. DISCUSSION

Hawkeye and Mockingjay would both behave identically to
Belady’s MIN if their predictions were completely accurate.
In particular, with a perfect predictor, Hawkeye would classify
as Cache Friendly any line that would be retained until its
next access by the MIN policy, and it would classify as Cache
Averse any line that MIN would evict before its next reuse.
Thus, with a perfect predictor, Hawkeye would make the

same eviction decisions as MIN. Of course, if Mockingjay
had a perfect predictor, then its ETA ordering would be
equivalent to MIN’s ordering.

Of course, we don’t have perfect predictors, so this section
provides insights that explain why Mockingjay performs
better than policies that use binary classification, such as
Hawkeye and its variants [13], [14], [34], which predict
whether lines will be Cache Friendly or Cache Averse. We
will use Hawkeye as a point of comparison, but our discussion
applies broadly to any policy that uses binary classification.
We first describe our three insights, followed by empirical
evidence that supports the first two insights.

A. Resilience to Prediction Inaccuracy

First, Mockingjay’s reuse distance predictions are used to
order lines in terms of predicted reuse, so errors in reuse
distance prediction only have an impact if they are large
enough to change the ordering of the lines. For example, if
lines A and B have predicted reuse times (ETAs) that differ
by 100, then any reuse prediction error for line A that is
smaller than 100 will not affect the order of the two lines.

By contrast, any inaccuracy in a binary prediction will
incorrectly place the mispredicted line either at the top of
the priority queue or at the bottom of the priority queue.

B. Local Impact of Classification Errors

Second, when a prediction error does change the relative
order of Mockingjay’s predicted ETAs, these errors are more
localized, so they are less costly than Hawkeye’s errors.

To understand this point, consider a false positive predic-
tion for Hawkeye, in which a Cache Averse line is incorrectly
predicted to be Cache Friendly. As shown in Figure 17, this
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Figure 10: Comparison on single-core systems with prefetching.

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fr
eq

ue
nc

y 
(%

)

Reuse Distance Values

Figure 11: Predicted ETR values are distributed among short,
long, and infinite reuse.

-10

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge
 s

pe
ed

up
 o

ve
r L

R
U

Benchmark Mixes

Harmony Mockingjay

Figure 12: Multi-core comparison with prefetching.

misprediction causes the line to be inserted with the highest
priority, since it is prioritized over all Cache Averse lines and
since ties among Cache Friendly lines are broken in LRU
order. Thus, all existing cache lines in the set—including
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Figure 13: Mockingjay benefits from not caching lines that
will be prefetched. In particular, penalizing *-P intervals by
2× is the most performant configuration.

other correctly predicted Cache Friendly lines—need to be
evicted before this mispredicted line can be evicted. Moreover,
the mispredicted line will occupy the cache for a long period
of time only to be evicted without a cache hit. As a result,
false positives are expensive for Hawkeye because their
impact is not isolated; in the worst case, they can result
in lost cache hits even for lines that are correctly predicted.

Mockingjay does not suffer from this same pathology for
false positive predictions. Instead, prediction errors have only
local impact. For example, as shown in Figure 18, if line A’s
reuse distance is incorrectly predicted to be shorter by 50,
the relative order of A and B will change, but this error will
not affect the caching priorities of C or D; C will continue
to have the highest priority while D will continue to have
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Figure 14: Mockingjay works well with different prefetchers,
and its benefit increases for more accurate prefetchers.
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Figure 15: On a single-core single-core system, Mockingjay
with a lower hardware budget outperforms Glider.

the lowest priority in the cache. Mockingjay’s reuse distance
prediction error would have to be significant ly larger for it
to give line A the highest priority.

Prediction errors in the other direction—false negatives for
Hawkeye (in which a Cache Friendly line is predicted to be
Cache Averse) and pessimistic predictions for Mockingjay (in
which reuse distances are over-estimated), are less expensive
because their impact is isolated to the mispredicted line.
For example, for Hawkeye, the line with the false negative
prediction will itself not receive a cache hit, but this error
does not consume cache resources and does not prevent other
correctly predicted Cache Friendly lines to receive cache hits.

C. Late Interpretation of Priorities

The final benefit of Mockingjay is that it interprets
priorities at the time of eviction, when reuse information
about other lines is available, whereas previous solutions
based on binary prediction assign priorities at the time of
insertion. In particular, the ETA that Mockingjay predicts at
the time of insertion does not represent the line’s priority;
the line’s priority is determined at the time of eviction when
its ETA is compared to the ETAs of other candidates.
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Figure 16: On a multi-core system, Mockingjay with a lower
hardware budget outperforms Glider.
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Figure 17: A costly binary classification error in Hawkeye.

This difference is significant because it allows subsequent
lines to impact a line’s priority. For example, a line A that is
inserted with a predicted reuse distance of 100 could have
the highest priority if subsequent insertions had predicted
reuse distances that were greater than 100, since A would
then have the earliest ETA (Figure 19). At some other point
in time, line A with the same predicted reuse distance of
100 could have the lowest priority if subsequent lines were
inserted with sufficiently short predicted reuse distances that
A would have the latest ETA (Figure 20). Thus, Mockingjay
is more resilient to variability in how other lines use the
cache.

D. Empirical Confirmation

Figure 21 quantitatively confirms these first two benefits
for SPEC benchmarks: We see that large errors in ETA
(x-axis), correspond to much smaller ordering errors (y-
axis); we define the ordering error to be the error between
the victim’s ideal predicted position—the victim’s position
as chosen by MIN—and its actual position in the order.
Each dot in the figure represents one benchmark; the value
on x-axis represents Mockingjay’s error in predicting reuse
distances; and the value on y-axis represents Mockingjay’s
error in predicting the ordering of eviction candidates. Across
all benchmarks, Mockingjay’s ordering error is just 3.2,
whereas LRU and Hawkeye see ordering errors of 8.2 and
4.1, respectively.
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VI. CONCLUSIONS

In this paper, we have introduced the Mockingjay cache
replacement policy, which mimics Belady’s 1966 MIN policy
but replaces MIN’s knowledge of future reuse times with
predicted reuse times. There are several keys to Mockingjay’s
success:

• It uses a long history of the past, which enables Mock-
ingjay to perform accurate reuse distance prediction.

• It performs multiclass prediction, which is more resilient
to prediction errors than binary prediction.

• It bases priorities on the relative order of predicted
reuse times, rather than on predicted reuse times, which
inoculates Mockingjay against prediction errors that are
too small to change the relative order of reuse times.

• It infers priorities at the time of eviction—when addi-
tional information is available—rather than at the time
of insertion.

We have evaluated Mockingjay’s performance in systems
that use various state-of-the-art data prefetchers, and we
find that Mockingjay retains its superiority for all cases. We
also observe that Mockingjay’s performance gap over the
baseline solutions appears to increase with the accuracy of
the prefetcher.

Finally, we have shown that Mockingjay compares fa-
vorably to the recent Glider cache replacement policy [34],
which uses a perceptron to combine an unordered history of
past PCs. At a bit more than half the hardware budget, the
32KB Mockingjay outperforms the 64KB Glider.
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Figure 20: Line A has the lowest caching priority because
subsequent insertions have shorter reuse distances.
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Figure 21: Mockingjay’s error in predicting relative ordering
of eviction candidates is low despite high errors in precise
reuse distance prediction.
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