
Using Cargo-Bot to Provide Contextualized Learning of
Recursion

Joe Tessler
University of Texas at Austin

joe.r.tessler@utexas.edu

Bradley Beth
University of Texas at Austin
bbeth@cs.utexas.edu

Calvin Lin
University of Texas at Austin

lin@cs.utexas.edu

ABSTRACT
This paper presents a new method of teaching recursion

in which students first play a video game to contextualize
recursive operations. Results from a controlled experiment
with 47 high school students taking AP Computer Science
A indicate that this instructional strategy produces signifi-
cant improvements in students’ understanding of recursion.
Additionally, survey results show that nearly every student
enjoys the learning activity and is confident in his or her
ability to accomplish the recursive exercises.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Recur-

sion; K.3.2 [Computer and Information Science Edu-
cation]: Computer Science Education

General Terms
Human Factors

Keywords
Education; Recursion; Video Games

1. INTRODUCTION
Recursion is an important computer science concept, but

one that is notoriously difficult to learn [14]. Students some-
times fail to recognize the distinctions among different in-
vocations of the same function, and they often get confused
by the bookkeeping required for each recursive call. Specif-
ically, research shows that students struggle with the unfa-
miliarity of recursive activities [1], the visualization of the
program execution [9], the backward flow of control after
reaching the base case (i.e., passive control flow) [19], the
comparison to loop structures [1], and the lack of everyday
analogies [16].
The considerable body of previous work in teaching recur-

sion includes conceptual and abstract discussions of recur-
sion and its control flow [5, 8, 17, 19, 20, 26]; comparisons

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER’13, August 12–14, 2013, San Diego, California, USA.
Copyright 2013 ACM 978-1-4503-2243-0/13/08
http://dx.doi.org/10.1145/2493394.2493411 ...$15.00.

to other topics and disciplines [6, 12, 18, 23]; and the use of
visual aids and hands-on activities [2, 7, 10, 11, 21, 24]. Gu-
nion et al. [10] claim that we need further “efforts to find use-
ful and effective instructional approaches”. Unfortunately,
although previous research does include some studies that
involve in-class experiments [2, 8, 19, 21, 24], none of the pre-
vious research includes controlled experiments that provide
statistically significant evidence that the proposed teaching
methods improve student learning of recursion. This paper
attempts to address this shortcoming.
Our work builds on the basic notion of contextualized

learning, which suggests that students learn best when they
can relate new concepts to previously understood concepts [3,
4, 25]. While there exist few natural instances of recursion in
most students’ lives, there is a growing number of computer
games that require the player to think recursively. For ex-
ample, in both Cargo-Bot and Light-Bot 2.0, players control
virtual robots by creating programs using a simple visual
language. In Cargo-Bot, the goal is to control a robotic arm
so that it moves a set of crates to a specified goal configura-
tion. Notably, Cargo-Bot supports recursion but no explicit
looping structures.
It is natural to wonder if students who play Cargo-Bot are

able to transfer their experiences thinking recursively to new
contexts (e.g., Java). Thus, we investigate a new method
of teaching recursion in which students play Cargo-Bot to
situate learning before they are formally taught recursion.
There are several reasons to suggest that this approach

might improve student learning:

• Cargo-Bot contextualizes recursive operations in con-
crete terms of crates and cranes, rather than tradi-
tional examples that rely on mathematical abstrac-
tions. The use of Cargo-Bot examples during direct
instruction connects instruction with students’ prior
experiences within the game environment.

• As with most video games, Cargo-Bot is fun and addic-
tive, so students are likely to be motivated to explore
the game independent of its instructional use.

• Cargo-Bot provides multiple opportunities for students
to practice thinking recursively, as they are given pro-
gressively more difficult problems to solve. Thus, stu-
dents are able to work through a number of examples
at their own pace.

In this paper, we describe our new approach to teaching
recursion, and we evaluate our idea using an experiment con-
ducted with 47 students across two AP Computer Science

A high school classes. One class serves as a control group
while the other serves as the experimental group. The exper-
imental group plays Cargo-Bot for an hour before learning
about recursion. In contrast, the control group first receives
a lecture on recursion; they then simply play Cargo-Bot.
Assessments are given to each group at each point in the
process to measure learning gains.
We find that the experimental group experiences a sig-

nificantly greater increase in assessment scores from playing
the game than the control group does from direct instruction
alone. Moreover, both the control and experimental groups
experience the greatest increase in scores after playing the
game.
The remainder of this paper is organized as follows. Sec-

tion 2 defines recursion and explains why it traditionally
has been difficult to learn. Section 3 places our work in the
context of prior work. Section 4, describes our experimen-
tal design, including Cargo-Bot, and Section 5 evaluates our
solution, before we conclude.

2. BACKGROUND
In this section, we briefly define recursion and present

common misconceptions that students develop when first
introduced to the topic.
Recursion is a powerful programming tool that elegantly

solves many complex problems. A recursive function is one
that either directly or indirectly makes a call to itself, typ-
ically defined in terms of a smaller instance of itself, [22]
as shown in Figure 1. In our experiment, we concentrate
on simple functional recursion, which is typically taught to
novice students in introductory courses. Thus, we do not
discuss the distinctions among recursive data types, the dif-
ferences between generative and structural recursion, or ties
to formal languages. Every recursive function should obey
the following rules:

1. The function must include a means for terminating
with at least one base case that can be solved without
using recursion.

2. The function should rely on a recurrence relation to
compute at scale.

3. Successive recursive calls must progress toward a base
case.

Students typically struggle with recursion because it re-
quires a mental model of the program stack to recognize the
backward flow of control after reaching a base case [9, 19].
For example, students may incorrectly conclude that the
functions in Figures 1(a) and 1(b) produce the same out-
put. However, with a proper understanding of the program
stack, it is clear that f1 will output x before the recursive
call, which then outputs x - 1, so f1 prints the numbers
in descending order. By contrast, each invocation of f2 is
pushed on the stack before anything is printed; after reach-
ing the base case, f2 outputs 0, and then there is a backward
flow of control through each invocation of f2. So f2 prints
the numbers in ascending order.
Beyond this, students are sometimes confused by simple

but contrived examples of recursion, such as the one in Fig-
ure 1, that have better iterative counterparts, because the
students then incorrectly associate recursion with loop struc-
tures [1]. Furthermore, such examples fail to show students
the benefits of recursion [16].

// Precondition : x > 0
public void f1(int x) {

System .out. print (x);
if (x > 0)

f1(x - 1);
}

(a) Print before recursive call.

// Precondition : x > 0
public void f2(int x) {

if (x > 0)
f2(x - 1);

System .out. print (x);
}

(b) Print after recursive call.

Figure 1: Two functions that highlight the flow of control in
recursion.

3. RELATED WORK
There is a considerable body of research dedicated to im-

proving the ways in which we teach recursion.
Ginat and Shifroni [8] found that “teaching recursion with

an emphasis on the declarative, abstract, level of recursion
considerably improves the student’s ability”. Similar to the
work of Sooriamurthi [20], they claimed that focusing on
what the recursive function should accomplish, rather than
how it goes about doing it, is the “key” to comprehending
recursion. Cargo-Bot requires students to focus on the end
goal rather than the bookkeeping and procedural internals
of the recursive process.
Edgington [5] suggested using the “concept of someone

delegating a task to another person” as an example of a
divide-and-conquer algorithm. Wirth [26] suggested asking
students to solve an inherently recursive problem: How can
they randomly parallel park cars on a city street? Given
the lack of real-world examples, Wiedenbeck [23] advocated
recursion analogies that come from programming. Our work
incorporates these suggestions by introducing students to a
video game that actually elicits recursive thinking.
Scholtz and Sanders [19] studied the use of tracing re-

cursive methods as exercises for students. They found that
“trace methods are essentially mechanical processes that can
allow students with little understanding of recursion to cor-
rectly evaluate a recursive function but that students do not
fully understand recursion and in particular have difficulties
with the passive flow”. They suggested the use of diverse re-
cursive examples so that students can “learn recursion from
different perspectives,” and they claimed that students re-
quire sufficient practice designing their own recursive func-
tions. Our use of video games gives students ample time
to explore many recursive examples and to practice writing
recursive functions in an interactive and visual manner.
A number of authors encourage the use of visual aids when

teaching recursion. Hsin [11] developed a recursive graph
that “can help students understand the flow of a recursion
process”. Similar to the work of George [7], Wilcocks and
Sanders [24] use a program animator to assist students in
“extrapolating a correct mental model of what recursion
is”. However, experiments by Stasko et al. [21] found no
significant result suggesting that algorithm animators as-

sist learning. They suggested that future research focus on
allowing students to construct their own animations. Our
work directly addresses this recommendation, as students
use a video game to create functional solutions and their
accompanying animated visualizations.
Closely related to our work, Chaffin et al. [2] developed a

video game that allows students to write depth-first search
algorithms and interact with a visualization of a binary
tree. They found that students achieve statistically signifi-
cant learning gains after playing the game. However, their
solution provides limited experiences with recursion, while
Cargo-Bot offers many problems of various levels of difficulty
in a fun and engaging environment.

4. EXPERIMENTAL DESIGN
The goal of our experiment is to determine whether Cargo-

Bot can be used to improve the way that we teach recur-
sion to novice computer science students. Specifically, we
measure performance gains on a traditional code-based as-
sessment over recursive routines before and after game play.
We also measure the students’ learning gains achieved by
playing the game both prior to direct instruction and af-
ter. Thus, our experiment tracks two groups of students.
One group, the experimental group, plays Cargo-Bot before
receiving a lecture on recursion. The other group, the con-
trol group, receives the lecture on recursion and then plays
Cargo-Bot.1

Day One
Control Pre-Test Lecture Mid-Test

Experimental Pre-Test Cargo-Bot

Day Two
Control Cargo-Bot Post-Test

Experimental Mid-Test Lecture Post-Test

Table 1: Experimental time line for day one and two.

To measure the effects of the various teaching components,
we give each group a series of tests, (1) a pre-test, which
measures the students’ initial facility with recursion, (2) a
mid-test, which evaluates the effectiveness of one teaching
component, and (3) a post-test, which measures the effec-
tiveness of the second teaching component.
Students in both the control and experimental groups

have 20 minutes to complete the pre-test, 15 minutes for
the mid-test, and 20 minutes for the post-test. The lecture
requires approximately 50 minutes, and students have 70
minutes of in-class time available to play Cargo-Bot. Ac-
cordingly, students utilize the entirety of each 90 minute
class period even though the individual activities vary each
day and between groups.

4.1 The Video Game
Cargo-Bot is a video game for the Apple iPad in which

users “teach a robot how to move crates”2 (see Figure 2) by

1On day two the control group essentially becomes the ex-
perimental group, so the term “control group” is perhaps a
misnomer.
2http://twolivesleft.com/CargoBot

Figure 2: Screen shot of the original Cargo-Bot iPad game.

writing recursive programs in a lightweight visual program-
ming language. The game was not designed for educational
use, and its developers are not directly involved in our re-
search. Other recursion-based video games, such as Light-
Bot 2.03, have similar traits and may be just as effective.
With the developers’ permission, we rewrote Cargo-Bot in

JavaScript to make it accessible to all students with Internet
access. We also modified the game to include user identifi-
cation and tracking, allowing us to associate game play with
individual students. Our rendition includes all of the 36 lev-
els and GUI components that are found in the original video
game; our version is open source and available online4.
Figure 3 shows our rendition of the game. The user-

defined program in Figure 3c consists of five commands fol-
lowing the label F0: The first command tells the robot to
move down, picking up or dropping any cargo that it might
hold. The second command moves the crane right if the
crane is currently holding any cargo, and the third com-
mand moves the crane right again if it is holding yellow
cargo. The fourth command moves the crane left if it holds
no cargo. Finally, the last command calls the function again
to repeat the actions.
The 36 levels of game play are separated into six difficulty

categories: Tutorial, Easy, Medium, Hard, Crazy, and Im-
possible. In the original game, players must complete one
level before moving on to the next. We remove this restric-

3http://armorgames.com/play/6061/light-bot-20
4https://github.com/jtessler/cargo-bot

http://twolivesleft.com/CargoBot
http://armorgames.com/play/6061/light-bot-20
https://github.com/jtessler/cargo-bot

(a) Goal configuration (top), animator window with initial con-
figuration, and game controls (bottom).

(b) Available actions and conditionals.

(c) User-defined functions.

Figure 3: Various components of the Cargo-Bot GUI.

tion, allowing students to explore as many levels as they
wish within the allotted time.

4.1.1 Recursive Thinking in Cargo-Bot
At first glance, it is not clear that Cargo-Bot programs

utilize recursion. The simplest programs use tail recur-
sion, which is indistinguishable from iteration given the lan-
guage’s visual nature. For example, Figure 3c shows a sim-
ple Cargo-Bot routine, F0, which iterates by calling itself,
F0; however, it is not clear if the program is calling a new
instance of F0 or simply executing a GOTO F0 command—in
effect, interpreting F0 as a label rather than as a recursive
function.
Harder problems, however, require the user to make the

nuanced distinction between the recursive and iterative in-
terpretations of the code. For example, the solution in Fig-
ure 4 uses the program stack to store the number of leftward
movements needed to return the crane to the leftmost plat-
form. A non-recursive interpretation of the code fails to
account for this implicitly stored value and would execute
at most one leftward movement.

Figure 4: An advanced recursive solution requiring passive
control flow.

4.2 Direct Instruction
Students in both the control and experimental groups re-

ceive the same material for an equivalent amount of time—
50 minutes. The discussion begins with an introduction to
recursion similar to the one presented in Section 2. After
defining recursion, we provide a basic overview of the pro-
gram stack and work through a series of tracing problems
that exhibit the backward flow of control.
Examples mimicking Cargo-Bot scenarios are included to

situate recursive operations within the concrete Cargo-Bot
environment. We present recursion using examples that uti-
lize the program stack, such as the one depicted in Figure 4.
Additionally, Cargo-Bot examples are presented for com-
parison in Java-like syntax, with explicitly named methods
representing each of the available actions in the Cargo-Bot
visual programming language.
For the control group, this lecture is a first introduction

to the game and its environment; the experimental group
attends the lecture after playing Cargo-Bot to contextualize
direct instruction with the prior experience of game play.

4.3 The Pre-, Mid-, and Post-Tests
Each of our tests assesses the students’ understanding of

recursion in two ways: (1) Students trace a provided recur-
sive function and determine its return value, and (2) stu-

dents write their own recursive functions to solve a given
problem. The pre- and post-tests also contain several sur-
vey questions using a Likert scale to measure student en-
gagement.

public int exec(int n){
if(n == 0)

return 0;
else

return n + exec(n - 1);
}

Figure 5: Code for the pre-test tracing question.

The pre-test includes a code-tracing problem (see Fig-
ure 5) in which students determine the value that is returned
by the method call exec(5). It also includes the task of writ-
ing a recursive function that determines whether a given
string of nested parentheses is balanced, (i.e., every open-
ing parenthesis has a matching closing parenthesis). The
pre-test survey determines whether students have had any
previous experience with Cargo-Bot by asking students if
they have played it before. This item includes a number
of distractors to reduce any possible confirmation bias that
might occur if students suspect that Cargo-Bot may improve
their understanding of recursion. The pre-test includes ad-
ditional survey questions that ask the students to rate their
knowledge of recursion (see Section 5.2).

public int tough (int x) {
if(x < 0)

return 2;
else

return x + tough (x - 1) + tough (x - 1);
}

Figure 6: Code for the mid-test tracing question.

The mid-test asks students to trace the code in Figure 6
and determine the value that is returned by the method call
tough(3). It also includes an iterative implementation of
binary search and asks students to write a recursive version
of the same search routine.
The post-test asks students to trace the code in Figure 7

to determine the value that is returned by mystery(3, 35). It
also asks students to implement the “bucket fill” tool—seen
in typical image editing software packages—which fills all
instances of a target color with a replacement color at a given
location in the image. In addition, the post-test includes
survey questions that measure the students’ opinions about
playing Cargo-Bot (see Section 5.2).

4.4 The Students
Our experiment uses two sections of AP Computer Sci-

ence A at a public school magnet program in a large urban
district, with one section serving as the control group and
the other as the experimental group.
The control group contains 21 students; the experimen-

tal group contains 26. The control group is anecdotally the
stronger of the two groups, as indicated by teacher commen-
tary and an average first semester grade of 91.5% versus the
experimental group’s 87.7%. The first semester grades of

public int mystery (int a, int b) {
if (b == 0)

return 0;
else if (b % 2 == 0)

return mystery (a + a, b / 2);
else

return mystery (a + a, b / 2) + a;
}

Figure 7: Code for the post-test tracing question.

the control group are much less spread out than those of
the experimental group, and the control group had only a
single outlier of 78%, whereas the experimental group had
three, each with a failing grade. In spite of the anecdotal
evidence, however, there is no statistically significant differ-
ence between the groups’ grades.
The control group meets from 9:50 a.m. to 11:30 a.m.,

before lunch, and the experimental group meets from 12:35
p.m. to 2:05 p.m., after lunch. Both classes follow the same
schedule of topics, and neither group had any in-class expo-
sure to recursion prior to our experiment.

5. RESULTS AND ANALYSIS
Using the pre-, mid-, and post-test results, we show with

statistical significance that playing Cargo-Bot increases stu-
dents’ learning of recursion. In this section, we present the
experimental results that justify this conclusion.

5.1 Test Results
We start by analyzing the writing portions of the pre-,

mid-, and post-tests, in which students create their own re-
cursive solutions. Figure 8 shows that students in the con-
trol group see a drop in performance from the pre-test to the
mid-test, (i.e., after receiving direct instruction). After then
playing Cargo-Bot, their scores increase by approximately
19.48%. By contrast, students in the experimental group,
experience the greatest increase in performance between the
pre- to mid-tests, which corresponds with their playing of
Cargo-Bot. After the subsequent direct instruction, their
test scores increase by just 4.48%.

Pre−test Mid−test Post−test

A
ve

ra
ge

 W
rit

in
g

G
ra

de
 (

%
)

0
20

40
60

80
10

0

●

●

●

●

●

●

Control Group

Experimental Group

Figure 8: Average grade for the writing portion on each test.

Using a two-sample Student’s t-test, we show that the
learning gains (i.e., the difference in test scores) from the
pre- to mid-tests for the experimental group are—with sta-
tistical significance—greater than those of the control group

Factors Testing Group(s) Mean Learning Gain (%) t df p-value (2-tailed)

Pre- to mid-test writing scores Control Group -4.286 -2.0872 43.349 0.0428Experimental Group 15.000
Pre- to mid-test writing scores Control Group -4.286 -2.0664 36.245 0.0460Mid- to post-test writing scores 19.841

Table 2: Two-sample t-test shows that test performance improves significantly after playing Cargo-Bot (p < 0.05).

and that students experience greater learning gains in their
abilities to write recursive functions after playing Cargo-
Bot, rather than from direct instruction (p < 0.05, as seen
in Table 2).

Pre−test Mid−test Post−test

A
ve

ra
ge

 T
ra

ci
ng

 G
ra

de
 (

%
)

0
20

40
60

80
10

0

●

●

●

●

●

●

Control Group

Experimental Group

Figure 9: Average grade for the tracing portion on each test.

We observe very different results on the tracing portion
of the pre-, mid-, and post-tests. As shown in Figure 9,
students in both the control and experimental groups expe-
rience a decline in tracing performance from the pre- to mid-
tests, then an increase from the mid- to post-tests. These
results show that our new method of teaching recursion pro-
duces no significant difference in improving students’ abili-
ties to trace the execution of recursive functions.
Thus, we see that playing Cargo-Bot significantly im-

proves students’ ability to write recursive functions, but it
does not improve students’ abilities to trace the execution
of recursive functions. This is unsurprising, as Cargo-Bot
does not explicitly involve code tracing; players instead use
recursion at the conceptual problem-solving level, rather
than as the procedural process described by Scholtz and
Sanders [19].
Finally, we observe that there are various peculiarities

where student grades do not monotonically increase from
pre-test to mid-test to post-test. Our test questions were
not validated, so particularly for the tracing questions, we
may be seeing the effects of poorly chosen test questions.

5.2 Survey Results
On the pre- and post-tests, we ask students a series of

survey questions to gauge their own perceptions of their
abilities to trace and write recursive functions, as well as
their attitudes toward playing Cargo-Bot. In this section,
we present, analyze, and compare the survey responses from
students in the control and experimental groups.
For both groups, over 90% of students have no prior knowl-

edge of Cargo-Bot. This fact further strengthens our test

results, because the vast majority of students experience sig-
nificant learning gains after playing a game that they have
never encountered before.

Control Group Experimental Group

R
el

at
iv

e
F

re
qu

en
cy

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) “I understand recursion.”

Control Group Experimental Group

R
el

at
iv

e
F

re
qu

en
cy

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) “I can follow the execution of a recursive function.”

Control Group Experimental Group

R
el

at
iv

e
F

re
qu

en
cy

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) “I can write a recursive function.”

Figure 10: Pre-test survey responses.

Figure 10 shows the pre-test survey student confidence
in their understanding of recursion. Clearly, it would have
been instructive to have included these same questions on
the post-test.
Figure 11 shows the post-test survey results. We see that

the vast majority of students enjoy playing Cargo-Bot, and

Control Group Experimental Group

R
el

at
iv

e
F

re
qu

en
cy

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) “I liked playing Cargo-Bot.”

Control Group Experimental Group

R
el

at
iv

e
F

re
qu

en
cy

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) “I am good at Cargo-Bot.”

Figure 11: Post-test survey responses.

Strongly agree

Agree

Neither disagree nor agree

Disagree

Strongly disagree

Strongly agree

Agree

Neither disagree nor agree

Disagree

Strongly disagree

Figure 12: Survey response legend.

most are either neutral or confident in their ability to play
Cargo-Bot. Finally, our third post-test survey question (not
shown in Figure 11) reveals that 95% of the control group
and 88% of the experimental group answered “Yes” to the
question, “I realized that I used recursion in Cargo-Bot”,
which indicates that students are making an explicit con-
nection between the game and recursion.

6. ANALYSIS
We originally posited that students find recursion difficult

to grasp because they have no contextualized understand-
ing of recursion. We then hypothesized that games such as
Cargo-Bot could improve student mastery of recursion by
providing this contextualized learning. To prevent embed-
ding any implicit instructional bias within the game, we used
an off-the-shelf game designed solely for entertainment, and
we only modified this game to improve access and to instru-
ment the results. As such, instruction for the experimental
group was grounded in an authentically engaging environ-
ment.

Our results show that by playing Cargo-Bot, students
do improve their ability to write recursive functions. The
end gains for both groups indicate that Cargo-Bot improves
learning regardless of the specific ordering of activities, and
since Cargo-Bot does not include any tutorial or instruc-
tional component in the use of recursion, the improvement
is likely due to the repeated practice in recursive thinking.
While we have not conclusively demonstrated that contex-

tualization is the cause of this improvement, the larger gains
for the experimental group suggest that grounding direct in-
struction in students’ prior experience is preferred, a result
that supports the social constructivist theories that learning
is dependent upon the root context of the learner [15] and
that instruction is best situated within the same context as
its potential applications [13].

7. CONCLUSIONS
In this paper, we have proposed a new method of teaching

recursion that combines direct instruction with Cargo-Bot,
a game in which the user creates recursive programs to ac-
complish various goals. Our empirical results with 47 high
school students in two separate classes have shown—with
statistical significance—that our new teaching method im-
proves students’ understanding of recursion. Moreover, exit
surveys show that nearly every student enjoyed the learn-
ing activity and that most were confident in their ability to
accomplish the recursive exercises.
Given these promising early results, we invite the commu-

nity to join us in expanding the scope of this initial study.
We are repeating the experiment for two college courses, one
an entry-level course for computer science majors, the other
an introductory programming course for non-majors. These
instances of the experiment will address some of the short-
comings of our previous experiment. For example, we will
repeat the pre-test survey questions in the post-test.
We are also conducting a companion experiment with a

college-level programming course, in which the control group
learns solely through direct instruction with no mention of
Cargo-Bot. Thus, we hope that this experiment will clearly
demonstrate the benefit of our method of teaching recursion
over a standard lecture-based method of teaching recursion.
As future work, we would like to modify our implementa-

tion of Cargo-Bot to illustrate the relationship between the
program’s execution and its stack-based flow of control, as
we believe that this could improve students’ abilities to trace
recursive functions. More significantly, we hope to explore
the use of other video games to teach other difficult-to-learn
concepts, such as threading.

Acknowledgments.
We thank Alicia Beth, Mike Walfish, and George Velet-

sianos for their helpful comments on this research. We
are grateful to Two Lives Left for their permission to re-
implement Cargo-Bot in Javascript, and we thank Vicki
Shan and Elynn Lee for their help in re-implementing Cargo-
Bot.

References
[1] A. C. Benander and B. A. Benander. Student monks—

teaching recursion in an IS or CS programming course
using the Towers of Hanoi. Journal of Information Sys-
tems Education, 19(4):455–467, 2008.

[2] A. Chaffin, K. Doran, D. Hicks, and T. Barnes. Experi-
mental evaluation of teaching recursion in a video game.
In Proceedings of the 2009 ACM SIGGRAPH Sympo-
sium on Video Games, Sandbox ’09, pages 79–86, New
York, NY, USA, 2009. ACM.

[3] D. I. Cordova and M. R. Lepper. Intrinsic motivation
and the process of learning: Beneficial effects of con-
textualization, personalization, and choice. Journal of
Educational Psychology, 88(4):715–730, 1996.

[4] J. Davis-Dorsey. The Role of Context Personalization
and Problem Rewording in the Solving of Math Word
Problems. Memphis State University, 1989.

[5] J. Edgington. Teaching and viewing recursion as dele-
gation. Journal of Computing Sciences in Colleges, 23
(1):241–246, Oct. 2007.

[6] G. Ford. A framework for teaching recursion. SIGCSE
Bulletin, 14(2):32–39, June 1982.

[7] C. E. George. EROSI—visualising recursion and dis-
covering new errors. SIGCSE Bulletin, 32(1):305–309,
Mar. 2000.

[8] D. Ginat and E. Shifroni. Teaching recursion in a pro-
cedural environment—how much should we emphasize
the computing model? SIGCSE Bulletin, 31(1):127–
131, Mar. 1999.

[9] J. E. Greer. An empirical comparison of techniques for
teaching recursion in introductory computer sciences.
Ph.D. dissertation, The University of Texas at Austin,
May 1987.

[10] K. Gunion, T. Milford, and U. Stege. Curing recursion
aversion. SIGCSE Bulletin, 41(3):124–128, July 2009.

[11] W. Hsin. Teaching recursion using recursion graphs.
Journal of Computing Sciences in Colleges, 23(4):217–
222, Apr. 2008.

[12] R. L. Kruse. On teaching recursion. SIGCSE Bulletin,
14(1):92–96, Feb. 1982.

[13] J. Lave and E. Wenger. Situated learning: Legitimate
peripheral participation. Cambridge University Press,
1991.

[14] D. Levy and T. Lapidot. Recursively speaking: an-
alyzing students’ discourse of recursive phenomena.
SIGCSE Bulletin, 32(1):315–319, Mar. 2000.

[15] M. McMahon. Social constructivism and the world wide
web—a paradigm for learning. In ASCILITE confer-
ence. Perth, Australia, 1997.

[16] P. L. Pirolli and J. R. Anderson. The role of learning
from examples in the acquisition of recursive program-
ming skills. Canadian Journal of Psychology, 39(2):
240–272, June 1985.

[17] I. Polycarpou, A. Pasztor, and M. Adjouadi. A con-
ceptual approach to teaching induction for computer
science. SIGCSE Bulletin, 40(1):9–13, Mar. 2008.

[18] M. Rubio-Sánchez and I. Hernán-Losada. Exploring
recursion with Fibonacci numbers. SIGCSE Bulletin,
39(3):359–359, June 2007.

[19] T. L. Scholtz and I. Sanders. Mental models of re-
cursion: investigating students’ understanding of recur-
sion. In Proceedings of the Fifteenth Annual Conference
on Innovation and Technology in Computer Science Ed-
ucation, ITiCSE ’10, pages 103–107, New York, NY,
USA, 2010. ACM.

[20] R. Sooriamurthi. Problems in comprehending recursion
and suggested solutions. SIGCSE Bulletin, 33(3):25–28,
June 2001.

[21] J. Stasko, A. Badre, and C. Lewis. Do algorithm anima-
tions assist learning?: an empirical study and analysis.
In Proceedings of the INTERACT ’93 and CHI ’93 Con-
ference on Human Factors in Computing Systems, CHI
’93, pages 61–66, New York, NY, USA, 1993. ACM.

[22] M. A. Weiss. Data Structure & Problem Solving Us-
ing Java. Pearson Education, Inc., Boston, MA, third
edition, 2006.

[23] S. Wiedenbeck. Learning recursion as a concept and
as a programming technique. SIGCSE Bulletin, 20(1):
275–278, Feb. 1988.

[24] D. Wilcocks and I. Sanders. Animating recursion as an
aid to instruction. Computers & Education, 23(3):221
– 226, 1994.

[25] D. L. Williams. The what, why, and how of contex-
tual teaching in a mathematics classroom. Mathematics
Teacher, 100(8):572–575, Apr. 2007.

[26] M. Wirth. Introducing recursion by parking cars.
SIGCSE Bulletin, 40(4):52–55, Nov. 2008.

	Introduction
	Background
	Related Work
	Experimental Design
	The Video Game
	Recursive Thinking in Cargo-Bot

	Direct Instruction
	The Pre-, Mid-, and Post-Tests
	The Students

	Results and Analysis
	Test Results
	Survey Results

	Analysis
	Conclusions

