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ABSTRACT
This paper shows that in the presence of data prefetchers,
cache replacement policies are faced with a large unexplored
design space. In particular, we observe that while Belady’s
MIN algorithm minimizes the total number of cache misses—
including those for prefetched lines—it does not minimize
the number of demand misses. To address this shortcoming,
we introduce Demand-MIN, a variant of Belady’s algorithm
that minimizes the number of demand misses at the cost of
increased prefetcher traffic. Together, MIN and Demand-
MIN define the boundaries of an important design space,
with many intermediate points lying between them.

To reason about this design space, we introduce a simple
conceptual tool, which we use to define a new cache replace-
ment policy called Prefetch-Aware Hawkeye. Our empirical
evaluation shows that for a mix of SPEC 2006 benchmarks
running on a 4-core system with a stride prefetcher, Prefetch-
Aware Hawkeye improves IPC by 7.7% over an LRU base-
line, compared to 6.4% for the previous state-of-the-art. On
an 8-core system, Prefetch-Aware Hawkeye improves IPC
by 9.4% compared to 5.8% for the previous state-of-the-art.

1. INTRODUCTION
Although caches and data prefetchers have been around

for decades [1, 2, 3], there has been surprisingly little re-
search on the interaction between the two. Most such re-
search focuses on identifying inaccurate prefetches so that
they can be preferentially evicted. More recent work [4]
also attempts to retain hard-to-prefetch lines, but we argue
that much more can be done.

We start by asking the question, what is the optimal cache
replacement policy if we assume the existence of a data
prefetcher? It would seem natural to look to Belady’s MIN
algorithm [5] for guidance, since it provably minimizes the
number of cache misses, which in turn minimizes memory
traffic. However, in the face of a prefetcher, Belady’s al-
gorithm is incomplete because it ignores the distinction be-
tween prefetches and demand loads. Thus, it minimizes the
total number of misses, including those for lines brought in
by prefetches, but it does not minimize the number of de-
mand misses.
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Load X	
t=2	

Figure 1: Opportunity to improve upon MIN.

As an alternative to MIN, this paper introduces Demand-
MIN, a variant of Belady’s algorithm that minimizes the
number of demand misses at the cost of increased prefetcher
traffic. Unlike MIN, which evicts the line that is reused
furthest in the future, Demand-MIN evicts the line that is
prefetched furthest in the future—and then falling back on
MIN if no such line exists. For example, consider the ac-
cesses of line x in Figure 1 (which ignores accesses to other
lines). In the time interval between t=0 and t=1, Demand-
MIN would allow line x to be evicted, leaving more space to
cache demand loads during this time interval. However, this
improvement in demand misses comes with increased traf-
fic, because the prefetch at time t=1 becomes a DRAM ac-
cess instead of a cache hit. The reduction in demand misses
can be significant: On a mix of SPEC 2006 benchmarks run-
ning on 4 cores, LRU yields an average MPKI of 29.8, MIN
an average of 21.7, and Demand-MIN an average of 16.9.

What then is the optimal policy in terms of program per-
formance? We observe that MIN and Demand-MIN define
the extreme points of a design space, with MIN minimiz-
ing memory traffic, with Demand-MIN minimizing demand
misses, and with the ideal replacement policy often lying
somewhere in between. By plotting demand hit-rate (x-axis)
against memory traffic (y-axis), Figure 2 shows that different
SPEC benchmarks will prefer different policies within this
space. Benchmarks such as astar (blue) and sphinx (orange)
have lines that are close to horizontal, so they can enjoy
the increase in demand hit rate that Demand-MIN provides
while incurring little increase in memory traffic. By contrast,
benchmarks such as tonto (light blue) and calculix (purple)
have vertical lines, so Demand-MIN increases traffic but
provides no improvement in demand hit rate. Finally, the re-
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Figure 2: With prefetching, replacement policies face a
tradeoff between demand hit rate and prefetch traffic.

maining benchmarks (bwaves and cactus) present tradeoffs
that depend on the available bandwidth.

Unfortunately, it is difficult to identify the optimal policy
for a given workload. First, for a given workload, it is diffi-
cult to know what the demand-hit-rate vs. increase-in-traffic
curve looks like (the curves in Figure 2 were produced by
simulating both the MIN and Demand-MIN solutions). Sec-
ond, even if we had the curves, for the non-extreme cases,
such as bwaves and cactus, it would be difficult to identify
the most desirable point on the curve, because unlike miss
rates, performance depends on many factors, such as the crit-
icality of loads. Finally, even if we knew the desirable point
on the curve, it would be difficult to identify lines that should
be evicted to reach that point.

To navigate the space between MIN and Demand-MIN,
this paper defines a simple new metric, Prefetches Evicted
per Demand-Hit (PED), which serves as a proxy for the
slope of the curves in Figure 2. This metric allows a policy
to dynamically select a point in the space between MIN and
Demand-MIN that is appropriate for a given workload. The
result is Flex-MIN, a variant of MIN that is parameterized to
represent different solutions within the space between MIN
and Demand-MIN.1

Of course, Demand-MIN, Flex-MIN, and MIN are im-
practical because they rely on knowledge of the future, but
the Hawkeye Cache [6] shows how Belady’s MIN algorithm
can be used in a practical setting: The idea is to train a
PC-based predictor that learns from the decisions that MIN
would have made on past memory references; Hawkeye then
makes replacement decisions based on what the predictor
has learned. In this paper, we use the architecture and ma-
chinery of the Hawkeye Cache (along with a small amount
of added hardware to measure PED values), but instead of
learning from Belady’s MIN algorithm, our policy learns
from Flex-MIN. The result is a new policy that we call
Prefetch-Aware Hawkeye (PA-Hawkeye).

This paper makes the following contributions:

• We recognize that Belady’s MIN algorithm is not
ideal in the face of prefetching, and we introduce the

1Despite its name, Flex-MIN is not optimal in any theoretical sense
since it is built on a PED, which is a heuristic.

Demand-MIN algorithm, which minimizes the number
of demand misses. Together, MIN and Demand-MIN
bracket a rich space of replacement policies.

• Because different workloads prefer different points in
this design space, we introduce the Flex-MIN pol-
icy, which uses the notion of Prefetches Evicted per
Demand-Hit to select an appropriate point in the space
for a given workload.

• We encapsulate these ideas in a practical replacement
policy, PA-Hawkeye, that in the presence of prefetch-
ing significantly improves upon the state-of-the-art.
Using the ChampSIM simulation infrastructure [7] and
multi-programmed SPEC 2006 benchmarks, we show
that on 4 cores, PA-Hawkeye improves IPC over LRU
by 7.7%, compared with 6.4% for an optimized version
of the PACMAN policy [4]. On 8 cores, PA-Hawkeye
sees 9.4% improvement over LRU, while optimized
PACMAN sees 5.8% improvement.

The important new ideas in this paper are concentrated in
Section 3, where we present the Demand-MIN policy and
the PED metric. Section 4 explains the largely straightfor-
ward implementation of these ideas in the Hawkeye archi-
tecture, and Section 5 evaluates our solution. Related Work
resides in its customary position in Section 2.

2. RELATED WORK
We now put our work in the context of prior work. We

start by discussing variants of Belady’s algorithm and follow
with a discussion practical replacement policies.

2.1 Variants of Belady’s MIN
In 1966, Belady proposed an algorithm to determine hits

and misses under optimal cache replacement [5]. Mattson
et al., proposed a different algorithm for optimal replace-
ment [8], along with the first proof of optimality for a cache
replacement algorithm. In 1974, Belady’s MIN and Matt-
son’s OPT were proven to be identical [9]. More recently,
Michaud proposed a new way to reason about the optimal so-
lution [10] and proved interesting mathematical facts about
the optimal policy. None of this work consider prefetches.

Variants of MIN in the presence of prefetching typically
focus on defining an optimal prefetching schedule assum-
ing future knowledge. For example, Cao et al., propose two
strategies for approaching an optimal caching and prefetch-
ing strategy [11, 12] for file systems. Temmam et al. [13]
modify Belady’s MIN to generate an optimal prefetch sched-
ule that exploits both temporal and spatial locality. Our work
differs by focusing on the cache replacement policy while
assuming that the prefetcher remains fixed.

Finally, Jeong and Dubois [14] address Belady’s assump-
tion that all misses have uniform cost, presenting an expo-
nential time cost-aware caching algorithm.

2.2 Practical Replacement Solutions
We now discuss practical cache replacement solutions,

starting with prefetch-aware replacement policies, which is
the subject of this paper. We then discuss advances in
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prefetch-agnostic cache replacement solutions and their im-
plications for cache replacement in the presence of prefetch-
ing. Finally, we discuss solutions that modify the prefetcher
to improve cache efficiency.

Prefetch-Aware Cache Replacement.
Unlike PA-Hawkeye, which focuses on accurate

prefetches, most prior work in prefetch-aware cache
management focuses on minimizing cache pollution due
to inaccurate prefetches. Several solutions [15, 16] use
prefetcher accuracy to decide the replacement priority of
prefetched blocks. Ishii et al., instead use the internal state
of the AMPM prefetcher [17] to inform the insertion priority
of prefetched blocks [18]. PACMan [4] uses set dueling [19,
20] to determine whether prefetches should be inserted with
high or low priority. The KPC [7] co-operative prefetching
and caching scheme uses accuracy feedback to decide
whether incoming prefetches are likely to be useful, and it
uses timeliness feedback to determine the level of the cache
hierarchy at which to insert the prefetch. PA-Hawkeye deals
with inaccurate prefetches by using a PC-based predictor to
learn the solution of Flex-MIN, which, like all variants of
MIN, always discards inaccurate prefetches, since they are
always reused furthest in the future.

The main goal of PA-Hawkeye is to evict lines that will
be accurately prefetched in the future. PACMan [4] depri-
oritizes prefetch-friendly lines by not updating their inser-
tion priority when they receive a hit due to a prefetch, but
there are two fundamental differences between PA-Hawkeye
and PACMan. First, PACMan does not consider the tradeoff
between hit rate and traffic as it uniformly deprioritizes all
prefetch-friendly lines, resulting in large traffic overheads
(see Section 5.3). Second, because PACMan is triggered
only on prefetches that hit in the cache, PACMan handles
one of the three classes of references that we define in Sec-
tion 3. By contrast, PA-Hawkeye learns from the past be-
havior of Flex-MIN to aggressively assign low priority to
both demands and prefetches that are likely to be prefetched
again. Section 5.3 provides a more detailed quantitative
analysis of these differences as we observe that PACMan im-
proves SHiP’s performance by only 0.3% on four cores.

Finally, Seshadri et al., claim that prefetches are often
dead after their first demand hit [16], so they propose that
prefetched blocks be demoted after their first hit. While this
strategy is likely to be effective for streaming workloads, it
does not generalize to complex workloads and sophisticated
prefetchers. Our optimized version of SHiP+PACMan in-
cludes this optimization, and we observe that it provides a
0.2% performance improvement on four cores.

Advances in Cache Replacement.
Much of the research in cache replacement policies has

been prefetcher-agnostic [21, 22, 23, 24, 25, 26, 27, 28, 29,
20, 30, 31, 32, 33, 34, 35, 36, 37, 38].

Many replacement polices observe the reuse behavior for
cache-resident lines to modulate their replacement prior-
ity [30, 28, 27, 35, 36, 39, 40, 41, 29], but by not distinguish-
ing between demand loads and prefetches, such solutions are
susceptible to cache pollution and are likely to mistake hits
due to prefetches as a sign of line reuse.

Adaptive replacement policies [42, 19, 20] dynamically
select among competing replacement policies and have the
advantage that they can be easily modified to use different
replacement schemes for prefetches to avoid cache pollu-
tion. For example, PACMan uses Set Dueling [20] to eval-
uate whether prefetches should be inserted with high or low
priority. Unfortunately, such solutions treat all prefetches the
same, assuming that they are all accurate or all inaccurate.

Recent solutions [32, 31, 6] use load instructions to learn
the past caching behavior of demand accesses. Such solu-
tions can be very effective in mitigating cache pollution if
they distinguish between demands and prefetches and if a
load instruction is provided for each prefetch request. For
example, they can learn that prefetches loaded by a certain
PC are more likely to be inaccurate than prefetches loaded
by a different PC. Our SHiP+PACMan baseline builds on
SHiP [32], and our solution (PA-Hawkeye) builds on Hawk-
eye [6], which both use PC-based predictors to provide re-
placement priorities for prefetches. One of the main con-
tributions of this paper is the use of a PC-based predictor
to determine whether a demand or a prefetch is likely to be
prefetched and hence should be inserted with a low priority.

Finally, there are replacement solutions that revise their
replacement decisions as they gather more information [37,
43, 23]. Existing solutions in this category do not distinguish
between demands and prefetches.

Prefetcher-Centric Solutions.
Finally, there are solutions that reduce cache pollution

by improving prefetcher accuracy [44, 45, 46, 47], and by
dynamically controlling the prefetcher’s aggressiveness [15,
48, 49, 50, 51, 52]. Such solutions are orthogonal to cache
replacement and are likely to benefit from replacement poli-
cies that intelligently balance prefetch-friendly and hard to
prefetch lines. Section 3.4 discusses the ways that prefetcher
accuracy and coverage affect PA-Hawkeye.

3. DEMAND-MIN AND FLEX-MIN
This section defines our new Demand-MIN policy. We

first develop intuition by showing a concrete example of how
we can improve upon the MIN policy. We then describe the
Demand-MIN policy, followed by the Flex-MIN policy.

3.1 Limitations of Belady’s MIN algorithm

t=0	 t=1	 t=2	 t=3	 t=4	

Load C	 Prefetch 
B	

Load B	 Load A	

Cache 
Contents	 (A,B)	 (C, B)	 (C, B)	 (C, B)	 (A, B)	

Evict A	 A misses	
	

Miss	 Hit	 Hit	 Miss	

Time	

Figure 3: Belady’s MIN results in 2 demand misses.
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To see that Belady’s MIN algorithm does not minimize
demand misses, consider Figure 3, which shows an access
sequence with demand accesses shown in blue and prefetch
accesses shown in green.

For a cache that can hold 2 lines and initially holds lines
A and B, we see that Belady’s MIN algorithm produces two
misses. The first miss occurs at t=1, when line C is loaded
into a full cache. The MIN algorithm would evict A which
is reused further in the future than B. The resulting cache
contains lines C and B, so the prefetch to line B at time t=2
and the demand reference to B at time t=3 both hit in the
cache. The second miss occurs at time t=4 when we load A.

Since MIN is optimal, we cannot do better than its two
misses, but we can reduce the number of demand misses.
The key observation is that B will be prefetched at time t=2,
so the demand reference to B at t=3 will hit irrespective of
our decision at time t=1, so we can decrease the number of
demand misses as shown in Figure 4, where at time t=1, we
evict B instead of A.

t=0	 t=1	 t=2	 t=3	 t=4	

Load C	 Prefetch 
B	

Load B	 Load A	

Cache 
Contents	 (A,B)	 (A, C)	 (A, B)	 (A, B)	 (A, B)	

Evict B	
	

A hits	

Miss	 Miss	 Hit	 Hit	

Time	

Figure 4: Demand-MIN results in 1 demand miss.

As a result, the prefetch to B at t=3 misses in the cache.
The subsequent demand reference to B at t=3 still hits, but
A now hits at t=4, which yields one more demand hit than
Belady’s MIN algorithm. Thus, this new caching strategy
still results in 2 misses, but it exchanges a prefetch hit2 for a
demand hit, resulting in just a single demand miss (to C).

In this simple example, our improvement in demand hits
did not increase overall memory traffic, but it is, of course,
possible to trade multiple prefetch hits for a single demand
hit, which can lead to extra prefetch traffic.

Note that even if MIN ignored prefetches, it would not
arrive at the solution shown in Figure 4; it would still evict A
at time t=1 because the load to A (t=4) is further in the future
than the load to B (t=3).

3.2 The Demand-MIN Algorithm
To minimize demand misses, we modify Belady’s MIN

algorithm as follows:

Evict the line that will be prefetched furthest in
the future, and if no such line exists, evict the
line that will see a demand request furthest in the
future.

2We define a prefetch hit to be a prefetch request that hits in the
cache and is not sent to memory.

In the example in Figure 4, we see that at time t=1, this
policy will evict B, which is prefetched furthest in the future.

Intuitively, Demand-MIN preferentially evicts lines that
do not need to be cached because they can be prefetched
in the future. In particular, Demand-MIN creates room for
demand loads by preferentially evicting the following three
classes of accesses:

• Repeated prefetches: We define a repeated prefetch to
be the second of a pair of prefetches of the same line
without an intervening demand load.

• Prefetch-friendly lines: Lines that will be accurately
prefetched in the future (Figure 5(b)) do not need to be
cached to receive the subsequent demand hit. To un-
derstand the importance of evicting these lines, see the
Venn diagram in Figure 6: For single-core SPEC 2006
benchmarks, 31.3% of lines are both cache-friendly
and prefetch-friendly, and 34.6% are neither cache-
friendly nor prefetch-friendly. Demand-MIN improves
hit rate by evicting lines in the intersection of the Venn
diagram (shown in dark gray) to make room for lines
that lie outside both circles (shown in white).

• Dead intervals: Inaccurate prefetches of dead blocks
(Figure 5(c)) create spurious demand on the cache.

The dashed lines in Figure 5 also illustrate a simple way
to identify lines that can be evicted to improve hit rate. If we
define the time period between two consecutive references
to X to be X’s usage interval [6], then there are four types
of usage intervals—P-P, D-P, D-D, and P-D—depending on
whether the endpoints are prefetches (P) or demand accesses
(D). With this terminology, we see that Demand-MIN’s ben-
efit comes from evicting intervals that end with a prefetch,
ie, the P-P intervals (Figure 5(a)) and D-P intervals (Fig-
ure 5(b) and (c)). For brevity, we collectively refer to P-P
and D-P intervals as *-P intervals.

3.2.1 On the Optimality of Demand-MIN
The proofs of MIN’s optimality are rather lengthy [8, 53,

54, 55, 56], so rather than provide a formal proof of the op-
timality of Demand-MIN, we instead give an informal argu-
ment.

The intuition behind Belady’s MIN algorithm is simple:
When faced with a set of eviction candidates, MIN chooses
the one that is referenced furthest in the future because (1)
the benefit of caching any of these candidates is the same,
namely, the removal of one cache miss in the future, but (2)
the opportunity cost is higher for lines accessed further in
the future, since they occupy the cache for a longer period of
time. Thus, MIN evicts the line with the largest opportunity
cost, which is the line that is reused furthest in the future.

But if the goal is to minimize the number of demand
misses, then we need to distinguish between lines that are
next referenced by a demand load and lines that are next
referenced by a prefetch. The caching of the former will
reduce the number of demand misses by one, whereas the
caching of the latter will not. Thus, Demand-MIN pref-
erentially caches lines that are next referenced by demand
loads over those that are next referenced by prefetches. And
among lines referenced by prefetches, it again evicts the line
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Figure 5: Demand-MIN increases demand hit by evicting 3 classes of cache accesses.

Figure 6: Demand-MIN increases demand hit rate by us-
ing space allocated to prefetch-friendly lines (dark Gray)
to instead cache hard-to-prefetch lines (white space).

that is prefetched furthest in the future, because that line has
the largest opportunity cost.

3.3 The Flex-MIN Algorithm
To realize a better tradeoff between demand hit rate and

traffic, we introduce the notion of a protected prefetch, which
is the endpoint of a *-P usage interval that should be cached
because its eviction would generate traffic without providing
considerable benefit in terms of hit rate. We then further
modify Demand-MIN as follows:

Evict the line that is prefetched furthest in the fu-
ture and is not protected. If no such line exists,
default to MIN.

Thus, Flex-MIN explores the design space between MIN
and Demand-MIN. Flex-MIN is equivalent to MIN if all
prefetches are protected, and it is equivalent to Demand-
MIN if no prefetches are protected.

3.3.1 Protected Prefetches
Protected prefetches are difficult to identify because their

classification depends on both application characteristics
and available bandwidth, so we define a heuristic for identi-
fying protected prefetches.

Our definition of protected prefetches is based on two ob-
servations. First, it is more profitable to evict long *-P inter-
vals than short *-P intervals because both generate 1 prefetch
request (corresponding to the end of the interval), but their
benefit in terms of freed cache space is proportional to the
interval length. Thus, long *-P intervals free up more cache
space per unit of extra traffic. Second, it is profitable to evict
*-P intervals only if there are demand requests that can use
the extra cache space. Even if there are many demand

misses, they may require significant amounts of cache space
to be freed before they become cache-friendly.

Thus, we define a protected prefetch to be a prefetch that
lies at the end of a *-P usage interval whose length is below a
given threshold. To determine the threshold, we compute the
ratio of the average length of demand miss intervals to the
average length of cache-friendly *-P intervals. We call this
ratio Prefetches Evicted per Demand-Hit (PED). Intuitively,
the ratio is a proxy for the slope of the line shown in Figure 2.
A smaller ratio represents greater opportunity per unit traffic,
and a large ratio indicates less opportunity per unit traffic.

As we will explain in Section 4, these ratios can be com-
puted using a simple extension to Hawkeye.

3.4 Impact of the Prefetcher
Before moving on to a practical solution, we first discuss

the impact that different prefetchers will have on Flex-MIN.

Prefetcher Coverage.
The design space introduced by Demand-MIN—and thus

the utility of PA-Hawkeye—improves as prefetcher coverage
increases, because higher coverage introduces more oppor-
tunities for Flex-MIN to evict prefetch-friendly lines and to
create space for cache-averse demands.

Prefetcher Accuracy.
Inaccurate prefetches have a marginal effect on Flex-MIN,

since the main idea behind Flex-MIN is to evict lines that can
be accurately prefetched. A more accurate prefetcher will re-
duce the opportunity for PA-Hawkeye to evict dead intervals,
but we find that these form only a small portion of all *-P in-
tervals. Of course, lower accuracy requires the replacement
policy to evict lines that it expects to be inaccurate, but mod-
ern replacement strategies, including both Hawkeye [6] and
SHiP [32], already do this.

Multiple Levels of Prefetching.
Prefetchers can bring data into any of multiple levels of

the cache. These decisions do not impact the design space
defined by Demand-MIN, but from an implementation per-
spective, they have a huge impact on how this design space
is explored. For example, if prefetches are being inserted
into both the L1 cache and the last-level cache (LLC), then
the LLC might not observe the intermediate demand access
that are filtered by the L1 cache. Thus, replacement poli-
cies that rely on observing intermediate demand accesses
between consecutive prefetches [16] will be unable to adapt
to such scenarios. PA-Hawkeye is insensitive to this issue,
as it focuses on *-P intervals and therefore does not need to
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observe intermediate demand accesses.

4. PREFETCH-AWARE HAWKEYE
Like MIN, Flex-MIN is impractical because it requires

knowledge of the future, but the recently proposed Hawkeye
replacement policy [6] shows how MIN can be used as part
of a practical replacement policy. In this section, we explain
how Hawkeye can be modified to use Flex-MIN instead of
MIN. Because Flex-MIN derives from MIN, straightforward
changes to Hawkeye’s basic implementation are sufficient to
navigate the complex design space introduced by prefetches.

For those unfamiliar with Hawkeye, we first provide some
necessary background.

4.1 Background: Hawkeye
Hawkeye reconstructs Belady’s optimal solution for past

accesses and learns this optimal solution to predict the
caching behavior of future accesses. To compute the optimal
solution for past accesses, Hawkeye uses the OPTgen algo-
rithm [6], and to learn OPTgen’s solution, Hawkeye uses a
PC-based predictor that learns whether load instructions tend
to load cache-friendly or cache-averse lines. Lines that are
predicted to be cache-friendly are inserted with high priority
into the cache, while lines that are predicted to be cache-
averse are inserted with low priority.

OPTgen	 Hawkeye 
Predictor	

Last Level 
Cache	

Computes OPT’s 
decisions for the past	

Remembers past OPT 
decisions	

Cache 
Access 
Stream	

 	 OPT	
 hit/miss	

 	

Insertion 
Priority	

 	

PC	

Figure 7: Overview of the Hawkeye Cache.

Figure 7 shows the overall structure of Hawkeye. Its main
components are the Hawkeye Predictor, which makes inser-
tion decisions, and OPTgen, which simulates OPT’s behav-
ior to produce inputs that train the Hawkeye Predictor.

OPTgen.
OPTgen determines what would have been cached if the

OPT policy (MIN) had been used. The key insight behind
OPTgen is that for a given cache access to line x, the op-
timal decision can be made when x is next reused, because
any later reference will be further in the future and would
be a better eviction candidate for Belady’s algorithm. Thus,
OPTgen computes the optimal solution by assigning cache
capacity to lines in the order in which they are reused.

To define OPTgen, Jain and Lin define a usage interval to
be the time period that starts with a reference to some line
x and proceeds up to (but not including) its next reference,
x′. If there is space in the cache to hold x throughout the
duration of this usage interval, then OPTgen determines that
the reference to x′ would be a hit under Belady’s policy.

For example, consider the sequence of accesses in Fig-
ure 8, which shows x’s usage interval. Here, assume that
the cache capacity is two and that OPTgen has already de-
termined the a, b, and c can be cached. Since these intervals

never overlap, the maximum number of overlapping liveness
intervals in x’s usage interval never reaches the cache capac-
ity, so there is space for line x throughout the interval, and
OPTgen infers that the load of x′ would be a hit.

OPTgen can be implemented efficiently in hardware using
set sampling [39] and a simple vector representation of the
usage intervals [6].

X! A! A! B! B! C! C! X’	

Cache Contents with OPT policy !
(Cache Capacity is 2 lines)!

Hit!

A! A! B! B! C! C!

!
Access Sequence!

!
!

Cache Line 1 !
Cache Line 2!

Time!

Figure 8: Intuition behind OPTgen.

The Hawkeye Predictor.
The Hawkeye Predictor learns the behavior of the OPT

policy on past memory references: If OPTgen determines
that a line would be a cache hit under the OPT policy, then
the PC that last accessed the line is trained positively; other-
wise, the PC that last accessed the line is trained negatively.
The Hawkeye Predictor has 2K entries per core, it uses 5-bit
counters for training, and it is indexed by a hash of the PC.

Cache Replacement.
On every cache access, the Hawkeye Predictor generates a

prediction to indicate whether the line is likely to be cache-
friendly or cache-averse. Cache-friendly lines are inserted
with high priority, i.e., an RRIP value [29] of 0, and cache-
averse lines are inserted with an RRIP value of 7. When a
cache-friendly line is inserted in the cache, the RRIP coun-
ters of all other cache-friendly lines are aged.

On a cache replacement, any line with an RRIP value of
7 (cache-averse line) is chosen as an eviction candidate. If
no line has an RRIP value of 7, then Hawkeye evicts the line
with the highest RRIP value (oldest cache-friendly line) and
detrains its corresponding load instruction if the evicted line
is present in the sampler.

4.2 Prefetch-Aware Hawkeye
PA-Hawkeye modifies Hawkeye by learning from Flex-

MIN instead of MIN. We first describe how we modify OPT-
gen to simulate Flex-MIN for past accesses, and we then
describe changes to the Hawkeye predictor that allow it to
better learn Flex-MIN’s solution. Hawkeye’s insertion and
promotion policies remain unchanged.

FlexMINgen.
FlexMINgen determines what would have been cached

if the Flex-MIN policy had been used. To simulate Flex-
MIN, we modify OPTgen to distinguish between demands
and prefetches, specifically, between *-P intervals (D-P and
P-P) and *-D intervals (D-D and P-D).

FlexMINgen considers caching *-P intervals only if they
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are shorter than some given threshold. As explained in Sec-
tion 3.3, it is beneficial to cache short *-P intervals to avoid
significant increase in prefetch traffic. FlexMINgen does not
cache *-P intervals that are longer than the threshold so that
the cache space can be used to cache a *-D interval. For *-D
intervals, FlexMINgen follows the same policy as OPTgen.

The threshold for *-P intervals is computed dynamically.
In particular, the threshold increases linearly with the PED
metric, which we define to be the ratio of the average length
of demand miss intervals to the average length of cache-
friendly *-P intervals. We empirically find that the threshold
should be set to 2.5 times the PED value.

To compute PED, we calculate the average length of de-
mand miss intervals and the average length of cache-friendly
*-P intervals using the following four counters.

• DemandMisstotal : This counter tracks the total length
of all demand miss intervals. For every *-D interval
that is determined to be a miss by FlexMINgen, this
counter is incremented by the length of the interval.

• DemandMisscount : This counter tracks the number of
demand miss intervals and is incremented by 1 for ev-
ery *-D interval that is determined to be a miss by
FlexMINgen.

• Supplytotal : This counter tracks the total length of all
cache-friendly *-P intervals. For every *-P interval,
FlexMINgen is probed to see if the *-P interval would
have hit in the cache; if the answer is yes, this counter
is incremented by the length of the *-P interval. This
counter is incremented for all cache-friendly *-P inter-
vals irrespective of their length.

• Supplycount : This counter tracks the number of cache-
friendly *-P intervals and is incremented by 1 for every
cache-friendly *-P interval.

In a multi-core environment, we compute the PED for
each core and set each core’s threshold individually. Since
the length of usage intervals increases as the cache observes
interleaved accesses from multiple cores, the threshold is
scaled with the core count.

PA-Hawkeye Predictor.
The PA-Hawkeye predictor learns FlexMINgen’s solution

for past accesses. It differs from the Hawkeye predictor in
two ways. First, we use separate predictors to learn Flex-
MIN’s behavior for demands and prefetches. Second, to al-
low the predictor to learn that long *-P intervals should not
be cached, the predictors are trained negatively when *-P in-
tervals of length greater than the threshold are encountered.
In particular, when we encounter a D-P interval that is longer
than the threshold, we negatively train the demand predictor
for the PC that loaded the left endpoint of the interval. Sim-
ilarly, when we encounter a P-P interval that is longer than
the threshold, we negatively train the prefetch predictor for
the PC that loaded the left endpoint of the P-P interval.

Hardware Overhead.
PA-Hawkeye adds 32 bytes of hardware to Hawkeye. In

particular, it needs four counters to compute the PED (see

L1 I-Cache 32 KB 8-way, 4-cycle latency
L1 D-Cache 32 KB 8-way, 4-cycle latency
L2 Cache 256KB 8-way, 8-cycle latency
LLC per core 2MB, 16-way, 20-cycle latency
DRAM 13.5ns for row hits

40.5ns for row misses
800MHz, 12.8 GB/s

Single-core 2MB shared LLC
Four-core 8MB shared LLC
Eight-core 16MB shared LLC

Table 1: Baseline configuration.

Section 4.2). While the counters can be updated using ad-
dition operations, While updating the counters requires sim-
ple addition operations, computing the PED involves an ex-
pensive division operation to compute the ratio between the
length of demand intervals and the length of cache-friendly
*-P intervals. We find that the division operation does not
need to be precise and can be approximated using shift oper-
ators without any any effect on PA-Hawkeye’s performance.

5. EVALUATION
This section describes our empirical evaluation of Flex-

MIN and PA-Hawkeye, starting with our methodology.

5.1 Methodology

Simulator.
We evaluate our new policy using ChampSim [7], a trace-

based simulator that includes an out-of-order core model
with a detailed memory system. ChampSim models a 6-
wide out-of-order processor with a 256-entry reorder buffer
and a 3-level cache hierarchy. It models the memory effects
of mispredicted branches and includes a perceptron-based
branch predictor [57]. The simulator generates cache statis-
tics as well as overall performance metrics, such as IPC.

The parameters for our simulated memory hierarchy are
shown in Table 1. Caches include FIFO read and prefetch
queues, with demand requests having priority over prefetch
requests. MSHRs track outstanding cache misses, and if
MSHRs are not available, further misses are stalled.

The L1 cache includes a next-line prefetcher, and the
L2 cache includes a PC-based stride prefetcher. The L2
prefetcher can insert into either the L2 or the LLC. The
prefetcher is invoked on demand accesses only. For our
workloads, the L1 achieves 49% accuracy, while the L2
prefetcher achieves 51.9% accuracy. Together the prefetch-
ers achieve 53% coverage.

The main memory is modeled in detail as it simulates
data bus contention, bank contention, row buffer locality,
and bus turnaround delays. The main memory read queue is
processed out of order and uses a modified Open Row FR-
FCFS policy. The DRAM core access latency for row hits is
approximately 13.5ns and for row misses is approximately
40.5ns. Other timing constraints, such as tFAW and DRAM
refresh, are not modeled.
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Figure 9: Belady’s MIN minimizes traffic, not Demand-MPKI (results for multi-programmed SPEC 2006)

Workloads.
To stress the last-level cache, we use multi-programmed

SPEC2006 benchmarks with 1, 4 and 8 cores. For 4-
core results, we simulate 4 uniformly random benchmarks
from the 20 most replacement-sensitive SPEC2006 bench-
marks, and for 8-core results, we choose 8 uniformly random
SPEC2006 benchmarks. For each individual benchmark, we
use the reference input and trace the highest weighted Sim-
Point [58, 59]. Overall, we simulate 100 4-core mixes and
50 8-core mixes.

For each mix, we simulate the simultaneous execution of
SimPoints of the constituent benchmarks until each bench-
mark has executed at least 1 billion instructions. To ensure
that slow-running applications always observe contention,
we restart benchmarks that finish early so that all bench-
marks in the mix run simultaneously throughout the exe-
cution. Our multi-core simulation methodology is similar
to the methodology used by recent work [29, 32, 31]. We
warm the cache for 200 million instructions and measure the
behavior of the next billion instructions.

Metrics.
To evaluate performance, we report the weighted speedup

normalized to LRU for each benchmark combination. This
metric is commonly used to evaluate shared caches [31, 60,
61, 22, 62] because it measures the overall progress of the
combination and avoids being dominated by benchmarks
with high IPC. The metric is computed as follows. For
each program sharing the cache, we compute its IPC in a
shared environment (IPCshared) and its IPC when executing
in isolation on the same cache (IPCsingle). We then com-
pute the weighted IPC of the combination as the sum of
IPCshared/IPCsingle for all benchmarks in the combination,
and we normalize this weighted IPC with the weighted IPC
using the LRU replacement policy.

It is difficult to measure IPC for MIN and its variants,
since they rely on knowledge of the future. We could apply
the optimal decisions computed from a previous simulation
to a re-run of the same simulation, but in a multi-core set-
ting, this approach does not work because replacement de-
cisions can alter the scheduling of each application, which
will likely result in a different optimal caching solution.

Therefore, for MIN and its variants, we compute the aver-
age Demand MPKI of all applications in the mix; Demand
MPKI is the total number of demand misses observed for ev-
ery thousand instructions. To measure traffic overhead, we
compute the overall traffic, including demand and prefetch

misses, and we normalize it to every thousand instructions,
yielding Traffic Per Kilo Instruction (TPKI).

Baseline Replacement Policies.
We compare PA-Hawkeye with two state-of-the-art re-

placement policies, namely, PACMan+SHiP [32, 4] and
MultiPerspective Reuse Prediction (MPPPB) [62].

The PACMan insertion policy enhances existing replace-
ment policies to account for prefetching by (1) avoiding
cache pollution and (2) retaining cache lines that cannot be
easily prefetched. We use as a baseline PACMan + SHiP, an
optimized version of PACMan that uses SHiP [32] instead
of PACMan’s original DRRIP [29] policy. With respect to
prefetches, PACMan + SHiP, which we obtained from its au-
thors [63], includes several optimizations. (1) It uses a sep-
arate predictor to predict the insertion priority for prefetches
on a miss. (2) It uses PACMan’s policy of not updating
the RRIP value on prefetch hits to allow prefetch-friendly
lines to be evicted faster. (3) In the spirit of PACMan, when
prefetches receive a subsequent demand hit, they are given a
lower priority under the assumption that they are likely to be
prefetched again [16].

MultiPerspective Reuse Prediction [62] uses sophisticated
learning techniques to combine multiple features to predict
whether a block is dead. The resulting replacement pol-
icy, called MultiPerspective Placement, Promotion and By-
pass (MPPPB), outperforms Hawkeye in the presence of
prefetching [62]. Its holistic approach to cache management
makes it difficult to combine with PACMan.

For all replacement policies, we normalize the results to a
baseline that uses LRU.

5.2 Demand-MIN and Flex-MIN
We first evaluate Demand-MIN and Flex-MIN. While

these are unrealizable algorithms, we can evaluate them in
a post-mortem fashion to measure demand miss rate and
prefetcher traffic.

Demand-MIN.
The benefits of Demand-MIN are shown in the left graph

of Figure 9, which compares the MPKI of LRU, MIN, and
Demand-MIN for 100 4-core mixes of the SPEC2006 bench-
marks. While Belady’s MIN provides significantly lower
MPKI than LRU, Demand-MIN can achieve even lower
MPKI. In particular, the average MPKI is 29.8 for LRU, 21.7
for the MIN algorithm, and 16.9 for Demand-MIN.

The cost of Demand-MIN is shown in the right graph of
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Figure 9, which compares prefetch traffic for these same
policies. We see that MIN achieves the lowest traffic of
45.4 requests per kilo instructions, while the average traf-
fic for Demand-MIN is as high as 79.4 requests per kilo in-
structions. In fact, we see that the traffic-overheads of MIN-
Demand typically exceeds that of LRU.
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Figure 10: Flex-MIN achieves a good tradeoff between
MIN and Demand-MIN.

Flex-MIN.
Figure 10 plots both average MPKI (on the left axis) and

average Traffic Per Kilo Instruction (on the right axis), show-
ing that Flex-MIN achieves an excellent tradeoff, as it ap-
proaches the benefits of Demand-MIN, and it approaches the
traffic overhead of MIN. In particular, Flex-MIN’s MPKI of
18.3 is closer to Demand-MIN’s 16.9 than to MIN’s 21.7
(and is much better than LRU’s 29.8). Flex-MIN’s TPKI of
58.1 is closer to MIN’s 45.5 than to Demand-MIN’s 79.4
(and is significantly better than LRU’s 69.8).
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Figure 11: Tradeoff between Belady’s MIN and
Demand-MIN is workload dependent.

Figure 11 shows that the tradeoff between hit rate and
prefetch traffic varies from one mix to another. For ex-
ample, Figures 11(a) and (b) show mixes where Demand-
MIN produces large traffic overheads without significant im-
provements in hit rate, so in these cases, a solution close

to Belady’s MIN is most desirable. We see that Flex-MIN
picks attractive points for these mixes. In particular, for Fig-
ure 11(a), Flex-MIN picks a point midway between MIN
and Demand-MIN, and for Figure 11(b), where the tradeoff
is much more skewed, Flex-MIN picks a point very close to
MIN. By contrast, Figures 11(c) and (d) show mixes where
Demand-MIN achieves considerably better hit rates, and for
these mixes, a solution closer to Demand-MIN is likely to
be more desirable with respect to performance. We see that
Flex-MIN makes good choices for these mixes as it picks
a point close to Demand-MIN for Figure 11(c) and a point
midway between MIN and Demand-MIN for Figure 11(d).

In general, we conclude that Flex-MIN is a good foun-
dation upon which to build a practical cache replacement
solution, which we now evaluate in the next section.

5.3 Prefetch-Aware Hawkeye
On a single-core system, PA-Hawkeye, PACMan+SHiP

and MPPPB all improve performance by 2.5% over LRU.
On 4-cores, PA-Hawkeye outperforms both PAC-

Man+SHiP and MPPPB, as shown in Figure 12(left). In par-
ticular, PA-Hawkeye improves performance by 7.7% over
LRU, while PACMan+SHiP and MPPPB improve perfor-
mance by 6.4% and 4.2%, respectively. The average MPKI
for MPPPB, SHiP and PA-Hawkeye are 23.6, 22.6, and 21.9
respectively, and the average TPKI for the three policies are
76.2, 65.6, and 64.9 respectively.

On 8-cores (Figure 12(right)) PA-Hawkeye sees much
larger performance improvements3: PA-Hawkeye improves
performance by 9.4% over LRU, while PACMan+SHiP im-
proves performance by 5.8%. PA-Hawkeye performs better
because it reduces both average MPKI (18.8% vs. 22.6% for
SHiP) and average TPKI (5.3% vs. −4.0% for SHiP).

Figure 13 shows that the performance gap between PA-
Hawkeye and SHiP+PACMan grows with higher core count.
There are two sources of PA-Hawkeye’s advantage. First,
in a multi-core system, cache management decisions taken
by one core can significantly impact the cache performance
of other cores. PA-Hawkeye considers the global impact of
its decisions by solving Flex-MIN collectively for all appli-
cations instead of solving it for each core in isolation, so it
successfully leverages the cache space freed by one applica-
tion to improve hit rates for other applications. Second, as
bandwidth becomes more constrained, it becomes more im-
portant to reason about the tradeoff between hit rate and traf-
fic. Thus, the eviction of short *-P intervals has a larger per-
formance impact in bandwidth-constrained environments.

5.4 Understanding PA-Hawkeye’s Benefits
To understand PA-Hawkeye’s performance advantage

over PACMan+SHiP, Figure 14 compares PACMan+SHiP
against vanilla SHiP and PA-Hawkeye against Hawkeye.
These results show the performance gain that comes only
from evicting prefetch-friendly lines. We see that PAC-
Man only increases SHiP’s performance from 6.1% to 6.4%,
while the prefetch-aware aspects of PA-Hawkeye improve
Hawkeye’s performance from 6.3% to 7.7%. (PACMan does
not combine well with Hawkeye, as it reduces Hawkeye’s
performance from 6.3% to 3.8%.)
3The MPPPB simulations for 8 cores did not finish in time.
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Figure 12: PA-Hawkeye outperforms PACMan+SHiP and MPPPB on both 4 cores (left) and 8 cores (right).
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Figure 13: PA-Hawkeye’s advantage increases with more
cores.

Figure 15 sheds insight into PA-Hawkeye’s advantage.
The left graph plots PACMan+SHiP’s MPKI reduction over
vanilla SHiP on the x-axis and its traffic reduction over SHiP
on the y-axis (each dot represents a workload mix). Simi-
larly, the right graph plots PA-Hawkeye’s MPKI reduction
and traffic reduction over vanilla Hawkeye. Two observa-
tions are noteworthy. First, many blue dots in the left graph
increase hit rate at the expense of significant traffic (bottom
right quadrant). By contrast, only 1 of 100 red dots in the
right graph resides in that quadrant. Second, if we focus
on the positive cases in each graph, PA-Hawkeye explores a
much larger part of the design space than PACMan+SHiP, as
it can reduce absolute MPKI by up to 8 points and reduce
traffic by up to 13 points. By contrast, PACMan + SHiP
spans a smaller portion of the design with a maximum MPKI
reduction of 5.6 and a maximum traffic reduction of 2.7.

The smaller expanse of the blue points in the left graph
is not surprising, because of the three classes of references
shown in Figure 5, PACMan only optimizes the first class.
In particular, PACMan is triggered only when a prefetch hits
in the cache, which means that its benefit is restricted to in-
tervals that start with a prefetch.

The undesirable blue points in the left graph of Figure 15
can be explained by realizing that (1) PACMan does not
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Figure 14: PA-Hawkeye is more effective at retaining
hard-to-prefetch lines than PACMan.

consider the tradeoff between hit rate and traffic in evicting
prefetch-friendly lines, so it is can increase prefetch traffic
significantly for small improvements in demand hit rate, and
(2) PACMan uniformly deprioritizes all prefetches that re-
ceive hits, so it can inadvertently evict useful P-D intervals.

5.5 Flex-MIN’s Impact on Performance
Because MIN requires knowledge of the future, we cannot

measure the IPC of it or its variants, but we can use Hawkeye
as a tool to measure their impact indirectly by creating two
new versions of PA-Hawkeye, one that learns from MIN and
another that learns from Demand-MIN. We call these ver-
sions PA-Hawkeye-MIN and PA-Hawkeye-Demand-MIN.
Figure 16 shows that on 4 cores, PA-Hawkeye outper-
forms both PA-Hawkeye-MIN and PA-Hawkeye-Demand-
MIN, achieving a performance improvement of 7.7% over
LRU, while PA-Hawkeye-MIN and PA-Hawkeye-Demand-
MIN improve performance by 6.3% and 4.5%, respectively.
Not surprisingly, PA-Hawkeye achieves the best tradeoff be-
tween hit rate and traffic, reducing MPKI by 26.6% and re-
ducing traffic by 9%. By contrast, PA-Hawkeye-Demand-
MIN achieves the highest MPKI reduction of 26.6%, but it
increases traffic by 4.4%, while PA-Hawkeye-MIN reduces
traffic by 6.4%, but it reduces MPKI by only 19.9%.
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Figure 15: Our scheme (right) explores a larger and more attractive part of the design space than PACMan (left).
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Figure 16: Three Versions of PA-Hawkeye.
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Figure 17: A better predictor will shrink the gap between
PA-Hawkeye and Flex-MIN.

While PA-Hawkeye outperforms SHiP+PACMan, as
shown in Figure 17, it does not match the miss reduction
and traffic of Flex-MIN. In particular, Flex-MIN’s average
MPKI is 18.3, while PA-Hawkeye’s average MPKI is 21.9.
At the same time, Flex-MIN’s traffic overhead in TPKI is
58.1, while PA-Hawkeye’s TPKI is 64.9. Thus, not only
does Flex-MIN have lower MPKI and TPKI, it achieves an
overall better tradeoff between hit rate and traffic.

Since PA-Hawkeye learns from Flex-MIN, we conclude

that the performance gap stems from inaccuracy in PA-
Hawkeye’s predictor, which ranges from 80-90%, with an
average across all workloads of 87%. Thus, we conclude
that to match Flex-MIN, improvements in PA-Hawkeye pre-
dictor’s accuracy are critical. Since an inaccuracy of 13%
results in a significant gap between PA-Hawkeye and Flex-
MIN, we expect even small accuracy improvements to have
a big impact on performance.

6. CONCLUSIONS
Data caches and data prefetchers have been mainstays of

modern processors for decades, and while there has been
considerable work in modulating memory traffic from the
perspective of a prefetcher, we have shown in this paper that
the cache replacement policy can also play a role in modulat-
ing memory traffic. In particular, we have introduced a new
cache replacement policy that selectively increases memory
traffic—in the form of extra prefetch traffic—to reduce the
number of demand misses in the cache.

In particular, we have identified a new design space
that resides between Belady’s MIN algorithm and our new
Demand-MIN algorithm. We have then shown that the best
solution often resides somewhere between the two extreme
points, depending on the workload. Finally, we have intro-
duced the Flex-MIN policy, which uses the notion of *-P
intervals to find desirable points within this design space.

Finally, we have shown how the Hawkeye Cache can be
modified to use Flex-MIN instead of MIN, yielding PA-
Hawkeye. Our results show that PA-Hawkeye explores a
larger design space than PACMan+SHiP and that our so-
lution scales well with the number of cores: For a mix of
SPEC2006 benchmarks running on 8 cores, PA-Hawkeye
achieves an average speedup over LRU of 9.4%, compared
to 5.8% for PACMan+SHiP.
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