
Compiler-Generated Staggered Checkpointing

Alison N. Norman
The University of Texas at Austin

ans@cs.utexas.edu

Sung-Eun Choi
Los Alamos National Laboratory�

sungeun@lanl.gov

Calvin Lin
The University of Texas at Austin

lin@cs.utexas.edu

ABSTRACT
To minimize work lost due to system failures, large parallelappli-
cations perform periodic checkpoints. These checkpoints are typi-
cally inserted manually by application programmers, resulting in
synchronous checkpoints, or checkpoints that occur at the same
program point in all processes. While this solution is tenable for
current systems, it will become problematic for future supercom-
puters that have many tens of thousands of nodes, because con-
tention for both the network and file system will grow. This pa-
per shows thatstaggered checkpoints—globally consistent check-
points in which processes perform checkpoints at differentpoints
in the code—can significantly reduce network and file system con-
tention. We describe a compiler-based approach for inserting stag-
gered checkpoints, and we show, using trace-driven simulation, that
staggered checkpointing is 23 times faster that synchronous check-
pointing.

1. INTRODUCTION
Supercomputing clusters are becoming increasingly popular plat-
forms for scientific research. Because the peak power of these clus-
ters scales easily, their sizes are growing at unprecedented rates.
For example, Lawrence Livermore National Laboratory’s Thunder,
currently the largest cluster computer on the Top 500 list, consists
of 1024 4-processor nodes—4096 processors in all—and achieves
20 Teraflop peak performance. Livermore intends to grow thisma-
chine to achieve over 40 Teraflopssustainedperformance. Un-
fortunately, as the number of processors, disks, peripherals, and
network elements grows, themean time before failure(MTBF)
shrinks. Thus, fault detection and recovery are first-classconcerns
for large supercomputing clusters.

The problem of machine failures can be addressed by periodically
checkpointing the application; upon failure, the program is restarted�Los Alamos National Laboratory is operated by the University of
California for the National Nuclear Security Administration of the
United States Department of Energy under contract W-7405-ENG-
36. LA-UR-04-5101.

using data from the last successful checkpoint. Today, these check-
points are manually placed by the application programmer who
identifies convenient spots in the code where the checkpointstate
(i.e., the volume of data to be saved) is relatively small. For simplic-
ity, all checkpoints occur at the same program location in all pro-
cesses. These synchronous checkpoints temporarily halt progress
of the program but are considered acceptable if their overhead is
small, typically 1% of total execution time.

Unfortunately, the increasing size of supercomputing clusters makes
these synchronous checkpoints infeasible. As the number ofpro-
cesses increases, checkpoint sizes grow, increasing contention for
the network and global file system and making synchronous check-
pointing less viable. Because network and file system technology
is not evolving as quickly as processor and memory technology, the
problem will only get worse over time.

Checkpointing to local disk appears to provide a scalable solution.
However, local disks are typically the most failure-prone compo-
nent of a cluster, and if a disk fails, the program cannot be restarted
without first replacing the disk. Thus, in this paper we assume that
checkpoints use a global file system.

This paper explores the notion ofstaggered checkpointing[11], a
checkpointing approach that reduces contention for the network
and file system. Staggered checkpointing allows individualpro-
cesses to perform their checkpoints at different points in the pro-
gram code, while still producing aconsistent state, that is, a state
that could have existed during the execution of the program [5].
Note that staggered checkpointing does not dictatewhat to check-
point (e.g., live data or core dump), onlywhere to checkpoint.
This paper explains how staggered checkpointing can be performed
automatically by compiler analysis andwithout message logging
at runtime. We describe a prototype compiler that we use as a
proof-of-concept. This prototype makes several simplifying as-
sumptions and does not use a scalable algorithm to identify recov-
ery lines. We then use trace-driven simulation to show the per-
formance advantages of staggered checkpointing over synchronous
checkpointing—for 64K processes, synchronous checkpointing is
23 times slower than staggered checkpointing. Finally, we use sam-
ple applications to show that there is a large number of possible
checkpoint locations, which can be combined in many different
ways to produce checkpoints on each process but staggered across
the system. With so many possibilities, it will be difficult to manu-
ally choose among them and guarantee correctness.

2. BACKGROUND
This section defines terms and concepts that will be needed toun-
derstand our algorithm.

A recovery lineis a set of checkpoints, one per process. Avalid
recovery linerepresents a state that could have existed in the exe-
cution of the program [5], so it disallows a checkpoint of a message
receive on one process if the corresponding send of the message is
not also checkpointed. Recovery linea in Figure 1 is invalid be-
cause it saves a message as received on process 1, but process0
does not save the corresponding send. Thus, the state represented
by a could not exist in an actual execution of the system. Recovery
line b is valid because it could have existed in a possible execution.
If, upon failure, the system rolls back to a valid recovery line, it is
guaranteed to resume in a consistent state.

1

P
ro

ce
ss

es

X X

X

X X

b

0

2

Time
Recovery Line
CheckpointsX

X

a

Figure 1: Examples of invalid (a) and valid (b) recovery lines.

1

P
ro

ce
ss

es

[1] [2]
[3] [4]

[5]

[1] [2] [3] [4]

[1] [2] [3]

Time

2

0

Figure 2: An example of Lamport’s logical clocks.

To identify valid recovery lines, we need a method of ordering the
messages in time. For this we usevector clocks, a method of track-
ing dependences across processes1. Vector clocks were derived
from Lamport’s logical clocks [9] in which each process maintains
its own clock, incrementing it at each event (See Figure 2). Each
vector clock is maintained locally by each process as follows:V C(ei)[i℄ := V C[i℄ + 1

if ei is an internal or send eventV C(ei) := maxfV C(ei); V C(ej)gV C(ei)[i℄ := V C[i℄ + 1
if ei is receive from processj
where the send was eventej

whereei is an evente on processi, andV C(ei) is its vector clock.V C(ei)[i℄ is the element for processi in that vector clock. A pro-
cess increments its element in its vector clock for each event that
occurs. When a process receives a message, it sets its vectorclock
elements to the maximum of the element in its vector clock andthe
corresponding element in the sending process’ vector clock.
1Vector clocks were developed independently by many researchers.

For example, in Figure 3, process 0 begins by sending two mes-
sages. For each, it increments its element in its vector clock, so
after sending the message to process 2, its vector clock is[2; 0; 0℄.
When process 2 receives the message from process 0, it updates its
vector clock to reflect both that an event occurred (the receive) and
that it is now dependent on process 0 executing at least two events.
So, process 2’s clock becomes[2; 0; 1℄. When process 2 then sends
a message to process 1, it increments its vector clock to[2; 0; 2℄ to
reflect another event (the send). Immediately before process 1 re-
ceives the message, its vector clock is[1; 2; 0℄. Upon receiving the
message, process 1 increments its element in its vector clock to re-
flect the receive, and then sets its element for process 2 to 2 to show
that it depends on process 2 executing at least two events. Process
1 also sets its element for process 0 to the maximum value of its
element for process 0 and that of process 2. Since process 1 had
previously only depended on the first event of process 0 and pro-
cess 2 depends on the first two, then process 1 updates its clock to
reflect a dependence on the first two. Therefore, process 1’s vector
clock becomes[2; 3; 2℄.

1

P
ro

ce
ss

es

[1,1,0] [1,2,0] [2,5,2]
[2,3,2] [2,4,2]

[2,0,1] [2,0,2] [2,4,3]

[3,2,0] [4,5,2][2,0,0][1,0,0]
0

2

Time

Figure 3: An example of vector clocks.

Given vector clocks, a valid recovery line can be determinedusing
the following formula [10], which states that the recovery line is not
valid if processj requires more events on processi than processi’s
clock reflects.8i; j : 1 � i � n; 1 � j � n : V C(ei)[i℄ � V C(ej)[i℄
3. OUR SOLUTION
This section describes our compiler-based approach to identifying
staggered checkpoints. In this paper, we focus on the mechanisms
needed to find valid recovery lines andnot the policy needed to
choose a good one.

Our algorithm has three main phases: the first identifies commu-
nicating processes, the second creates vector clocks for each pro-
cess, and the third identifies all valid recovery lines. We assume
that the number of nodes in the system is statically known andthat
there is onlydeterministic communication. Deterministic commu-
nication is communication that depends only on input valuesor the
process’s rank, or communication ID.

Communicating Processes
In order to find valid recovery lines, the analysis must first identify
communication events and use them to compute vector clocks.To
do this, it must first identify all pairs of communicating processes—
or neighbors—and match sends with the corresponding receives.
Some communication calls will have different neighbors based on
execution context—or may not be executed at all; the analysis must
perform a control-dependence analysis to detect these differences.

p = sqrt(no_nodes)
cell_coord[0][0] = node % p
cell_coord[1][0] = node /p
j = cell_coord[0][0] − 1
i = cell_coord[1][0] − 1
from_process = (i −1 + p) % p + p * j
MPI_irecv(x, x, x, from_process, ...)

 sqrt(no_nodes)) % sqrt(no_nodes) +
 sqrt(no_nodes) * n % sqrt(no_nodes) −1

from_process = (node / (sqrt(no_nodes)) −1 −1 +

Figure 4: An code example from the NAS parallel benchmark
BT and its corresponding result from symbolic expression anal-
ysis.

Our compiler computes this information by performingsymbolic
expression analysison the communication call arguments repre-
senting the neighbor. Symbolic expression analysis is a form of
backwards constant propagation where variables are expressed in
terms of other variables. We assume that these expressions con-
sist of arithmetic operations on constants, the size of the system,
and the rank of the process where the call is occurring—thecom-
municator(See Figure 4). Our compiler also performs symbolic
expressions analysis to track control dependences.

To match the sends to their respective receives and the non-blocking
calls to their respective waits, our compiler instantiateseach rank
in the system and evaluates the relevant symbolic expressions. To
do this, the compiler must know the number of processes in the
system. It matches the calls based on location in the programand
their tag or request values (whichever is pertinent). Control depen-
dence is also taken into account. Previous research has shown how
to match these calls [7, 8], but our current implementation uses a
simpler algorithm that handles fewer cases.

Vector Clocks
Once the communication has been identified, the analysis canuse
vector clocks to find valid recovery lines. To create vector clocks,
the analysis computes the neighbor for each process at everycom-
munication call. Vector clocks can then be created using therules
described in Section 2.

From the communication information gleaned in the previousphase,
our compiler creates a vector clock for each node. For each com-
munication call, our compiler iterates through each process that ex-
ecutes that communication call and updates that process’s vector
clock. We assume that each non-blocking receive occurs at its as-
sociated wait; all other events occur at their calls. To assist in the
identification of valid recovery lines, with each event our compiler
associates the vector clocks for all processes as they occurat that
event. Since our compiler must instantiate each process, this al-
gorithm is not ideal, but it does scale linearly with the number of
processes in the system and with the number of communication
calls in the program.

Finding Valid Recovery Lines
Recall that a recovery line is a set of checkpoint locations,one per
process, and avalid recovery line is a set of checkpoint locations
that represents a state that could have existed in the execution of the

program. Two checkpoint locations on different processes are part
of a valid recovery line if their vector clocks arecongruous, where
congruous means that processj does not require more events on
processi than processi’s clock reflects. A valid recovery line is
one in which all checkpoint locations are congruous with respect to
each other.

The number of valid recovery lines in a program can grow exponen-
tially as a function of the number of processes as well as the num-
ber of possible checkpoint locations in a program. Thus, we limit
our search to onlydependence-generatinglocations; a dependence-
generating location is one where a process is waiting for commu-
nication (e.g., MPI Recv or MPIWait). These are precisely the
events that generate dependences between processes. Thus,for
each unique valid recovery line that our analysis discovers, it is
possible to adjust the various checkpoint locations relative to the
locations that do not generate dependences, but we do not consider
such fine-tuning in this paper. It is also worth noting that the num-
ber of valid recovery lines in a program is directly related to the
communication. For example, a recovery line cannot cross any col-
lective communication, such as a barrier, because all processes are
synchronized at the point of the collective communication.Thus,
we definephasesthat restrict the scope of recovery lines, further
limiting the search space. A phase is the set of communication
events between any two synchronization points. The phase includes
the beginning synchronization point.

To find a valid recovery line, our compiler first builds a graphthat
describes the relationship of all possible checkpoint locations to
each other. For each ofP processes, a node is created for every
possible checkpoint location within that process. We will refer to
the collection of all of processp’s possible checkpoint locations
asPCLp, beginning withPCL0 throughPCLP�1. Hence, a
recovery line can be defined by picking one node from eachPCL.

Next, our compiler adds edges to the graph. An edge exists between
two nodes in the graph if and only if the two nodes can be part
of a valid recovery line as defined above. No edges exist between
nodes in the samePCL since two checkpoint locations on the same
process cannot be part of a valid recovery line. Edges are added in
quadratic time, or in our caseO(N �P �N �P), whereN is the
maximum number of possible checkpoint locations for any process.
Note that for SPMD programsN will most likely be the same for
all processes, and in our benchmark programs described in the next
section, we foundN to usually be less than 50.

In this graph, a recovery line,i.e., a set of nodes, one from eachPCL, is valid if and only if every node has an edge to every other
node, i.e., the nodes form a clique. All valid recovery lines are
found by finding all such possible cliques. Our algorithm forfind-
ing all such cliques is exhaustive. As future work, we plan toimple-
ment heuristics for findinggood recovery lines during the search.
First, we must learn more about the characteristics of good recov-
ery line.

Implementation
This algorithm has been implemented using the Broadway [6] source-
to-source ANSI C compiler. Broadway performs context-sensitive
inter-procedural pointer analysis, which provides a powerful base
for our analysis.

4. RESULTS
This section includes our experimental methodology and results.
It briefly describes our trace-driven simulator and then describes
the results of our synthetic benchmarks. The synthetic benchmarks
compare the effects of staggered checkpointing to those of syn-
chronous checkpointing. This sections concludes by analyzing the
effects of applying our compiler to application benchmarks.

4.1 Methodology
To simulate thousands of processes, we use a locally-produced trace-
driven simulator that models computation events, communication
events, and checkpointing events for each individual process. The
simulator optimistically models network contention by allowing all
processes requiring the network to share it evenly. Even when the
network is saturated, our simulator allows the network to deliver
its maximum bandwidth. Thus, our results will underestimate the
deleterious effects of contention when the network is beyond satu-
ration. The simulator models the file system similarly.

To drive our simulator, we use our compiler to generate tracefiles
from benchmarks. The trace generator employs static analysis and
profiling to gather accurate control flow information for each pro-
cess in the modeled system. Using this information, we create a
trace file containing events for each process.

All results assume the following characteristics, which model an
existing cluster at Los Alamos National Laboratory: a 1GB/snet-
work that can accept 70MB/s of data from each process; all check-
point data is written to a global file system that can write 7MB/s.

4.2 Contention Effects
To demonstrate the effects of contention, we use two synthetic
benchmarks that consist of a large number of sequential instruc-
tions and two checkpoint locations per process. In the first bench-
mark, dubbedSynchronous, every process checkpoints synchro-
nously, once exactly half way through the computation and once
at the end of computation. Both sets of checkpoints are followed
immediately by a barrier, as is done in the manually-placed check-
points used today. In the second benchmark,Staggered, the
processes checkpoint in groups of four at intervals spread evenly
throughout the sequential instructions.

Staggered checkpoints improve performance—especially asthe clus-
ter size, data checkpointed, and instructions executed increase. Per-
formance improves because, as the cluster size and checkpoint size
grow, there is more contention present during synchronous check-
pointing and thus more room for improvement when checkpoints
are staggered. As the number of instructions executed increases,
there is more work with which to stagger the checkpoints, further
reducing contention and improving performance. Figure 5 shows
run times for theSynchronous andStaggered benchmarks.
In this figure, the number of instructions executed and the amount
of data checkpointed increase proportionally with the number of
processes. Also, notice that while the graphs show the same trends,
the y-axes actually vary by an order of magnitude.

Whereas Figure 5 shows results for a fixed per process problem
size, we are also interested in considering the effects of staggered
checkpointing when the problem size is fixed even as cluster size
grows. Figure 6 shows the improvement in the average time spent
checkpointing per process ofStaggered overSynchronous.
In this figure, the number of instructions the system executes and
the amount of data it checkpoints remain constant as system size

increases; therefore, as the number of processes in the system in-
creases, the number of instructions executed and the amountof data
checkpointed per process decreases. Please note the different y-
axes. This figure demonstrates that staggered checkpointing be-
comes more helpful as the number of processes and the amount of
data being checkpointed increases, in other words, as contention
for the network and file system increases. In a system of 64K
processes, processes using staggered checkpointing checkpoint 23
times faster than those using synchronous checkpointing.

Table 1 displays our results for a large number of cluster sizes and
checkpoint sizes. The amount of data checkpointed and instruc-
tions executed is fixed across a row, meaning that the amount of
data checkpointed and instructions executed per process isdecreas-
ing as the cluster size increases. We increase the amount of data
checkpointed by the system until we have achieved 4 GB/process
for the 64K process system—the desired amount of memory for fu-
ture clusters. This table shows a large range of situations for which
staggered checkpointing is beneficial. This table also generalizes
the results of Figure 6, showing that staggered checkpointing be-
comes more helpful as the number of processes and the amount of
data being checkpointed increases.

Since processes inStaggered spend significantly less time check-
pointing than those inSynchronous for clusters, a 1024-process
cluster checkpointing 64 TB of data using staggered checkpointing
can take 1,007 checkpoints during the run for a total checkpoint
overhead of 1%, whereas if it were using synchronous checkpoint-
ing, only 43 checkpoints could be taken for the 1% checkpointing
overhead. Figures 7 (a) and (b) compare the number of checkpoints
a process may take for 1% checkpointing overhead for varyingclus-
ter sizes and varying checkpoint sizes. For the 1% checkpointing
overhead that application programmers are willing to tolerate, stag-
gered checkpointing allows a greater checkpoint frequencythan
synchronous checkpointing, which is important as MTBF shrinks.

Another option is to use staggered checkpointing to reduce the
checkpointing overhead. Figures 7 (c) and (d) show the number
of checkpoints that may be taken for .5% checkpointing overhead.
Reducing the checkpoint overhead will please the application pro-
grammers, and staggered checkpointing still allows many check-
pointing options.

4.3 Benchmark Results
As mentioned in the previous section, the number of valid recov-
ery lines is directly impacted by the program’s communication. In
this section we use three application benchmarks to illustrate the
potential for staggered checkpointing.

Table 2 describes our three moderately sized benchmark programs.
IS andBT are Fortran codes from the NAS Parallel Benchmark
Suite [3] that we converted to C.BT is run for 2 iterations. The third
program,ek-simple, is a well-known CFD benchmark and is the
most realistic of our benchmarks. It is also simplified—command-
line arguments are assumed to be constants, and a function pointer
is replaced with a static function call.

Collective communications are more frequent inIS andBT and are
also scattered through the main computation, thus creatingmany
small- or moderately-sized phases for our recovery line algorithm.
ek-simple has fewer collective communication calls, but more
importantly, the collective communication calls do not result in mo-
derately-sized phases—one of the phases is much larger thanthe

16 64 256 1K 4K 16K 64K

of Processes in the System

0

500

1000

1500

2000

2500
P

ro
gr

am
 E

xe
cu

ti
on

 T
im

e
(s

)

Synchronous
Staggered

(a) 16 MB checkpointedper process

16 64 256 1K 4K 16K 64K

of Processes in the System

0

10000

20000

30000

40000

P
ro

gr
am

 E
xe

cu
ti

on
 T

im
e

(s
)

Synchronous
Staggered

(b) 256 MB checkpointedper process

Figure 5: Comparison of Execution Times of Staggered and Synchronous. Here the amount of work per process remains
constant across each data point.

16 64 256 1K 4K 16K 64K

of Processes in the System

0

10

20

30

40

50

P
ro

gr
am

 E
xe

cu
ti

on
 T

im
e

(s
)

Synchronous
Staggered

(a) 16 GB checkpointedby the system

16 64 256 1K 4K 16K 64K

of Processes in the System

0

200

400

600

800

P
ro

gr
am

 E
xe

cu
ti

on
 T

im
e

(s
)

Synchronous
Staggered

(b) 256 GB checkpointedby the system

Figure 6: Comparison of Execution Times of Staggered and Synchronous. The amount of work remains constant for all system
sizes.

others. This large phase leads to very large numbers of validrecov-
ery lines, as we discuss below.

Table 3 shows the number of statically unique valid recoverylines
for each of the benchmark programs for 4, 9, and 16 processes.A
statically unique recovery line occurs only once in the application
code—it does not account for calling context.IS, which has al-
most all collective communication, has a small, constant number of
valid recovery lines for all three cases.BT, which has more point-
to-point communication and few collective communication calls,
sees a doubling in the number of recovery lines with each problem
size. ek-simple, which we believe is much more representa-
tive of real applications, illustrates the real potential for staggered
checkpoints. The number of valid recovery lines blows up very

quickly, by three orders of magnitude from 4 to 9 processes; the
16 process case has 641,568,404 unique recovery lines (these are
not statically unique recovery lines—calling context is considered).
Increases in collective communication diminish the benefits of our
compiler; checkpointing can still be staggered among localevents.
The more point-to-point communication a program has, the more
opportunity there is for staggering checkpoints between communi-
cation events and, thus, the more useful our compiler.

This large number of valid recovery lines reflects the potential that
applications have for using staggered checkpointing. The number
of valid recovery lines is a function of phase size, in other words,
how “staggered” or “spread out” the checkpoint locations can be.
As we showed in the previous section, a larger spread reducesthe

of Processes in the System

0

200

400

600

800

1000

N
um

be
r

of
 C

he
ck

po
in

ts

Synchronous
Staggered

256 1K 4K 16K 64K

(a) 16 GB checkpointed by the system, 1% allowed check-
point overhead

of Processes in the System

0

200

400

600

800

1000

N
um

be
r

of
 C

he
ck

po
in

ts

Synchronous
Staggered

256 1K 4K 16K 64K

(b) 64 TB checkpointed by the system, 1% allowed check-
point overhead

of Processes in the System

0

200

400

600

800

1000

N
um

be
r

of
 C

he
ck

po
in

ts

Synchronous
Staggered

256 1K 4K 16K 64K

(c) 16 GB checkpointed by the system, .5% allowed
checkpoint overhead

of Processes in the System

0

200

400

600

800

1000

N
um

be
r

of
 C

he
ck

po
in

ts

Synchronous
Staggered

256 1K 4K 16K 64K

(d) 64 TB checkpointed by the system, .5% allowed
checkpoint overhead

Figure 7: Staggered checkpointing has lower overhead than synchronous checkpointing. Figures (a) and (b) show, for the synthetic
benchmark, the number of checkpoints that can be performed while allowing the checkpoint overhead to be 1%. Figures (c) and (d)
show, for the synthetic benchmark, the number of checkpoints that can be performed while allowing the checkpoint overhead to be
.5%.

checkpoint overhead by relieving contention on the networkand
file system. A good recovery line is a trade-off between this spread
and the volume of data checkpointed by each process. This large
number represents both an opportunity and a burden. It is important
to have flexibility in choosing a good recovery line, but because
the number of options grows exponentially, we must find efficient
techniques for identifying the good ones. We leave this effort as
future work.

In summary, a more globally synchronized application with collec-
tive communications throughout will benefit less from staggered
checkpointing than one that performs more localized synchroniza-
tion via point-to-point communication calls. When an application
does perform mostly point-to-point communication the potential

for staggered checkpointing is enormous. Our future work includes
an investigation into identifying characteristics of goodrecovery
lines as well as heuristics for finding them.

5. RELATED WORK
With very few exceptions, the growing body of work on compiler-
inserted checkpointing has so far ignored the effects of contention
in the network and the global file system. Some approaches usein-
put from the programmer [1] to identify locations that allowsmall
checkpoint sizes. Other solutions use static analysis to restrict check-
points to communication-free ranges within which checkpointing
will lead to a consistent state [4]. Most recently, Bronevetsky et al.
proposed an application-level checkpointing protocol [2]that uses
message logging with early and late message processing. This pro-

16 64 256 1024 4096 16384 65536
64 MB 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

256 MB 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1 GB 33.33% 33.33% 33.33% 33.33% 33.33% 33.33% 33.33%
4 GB 50.00% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67%
16 GB 73.91% 86.96% 88.32% 89.54% 88.79% 89.26% 89.26%
64 GB 75.00% 93.48% 94.63% 94.77% 95.02% 95.13% 95.13%

256 GB 74.86% 93.72% 95.42% 95.57% 95.61% 95.65% 95.65%
1 TB 74.98% 93.71% 95.58% 95.68% 95.68% 95.75% 95.75%
4 TB 75.00% 93.75% 95.60% 95.70% 95.71% 95.78% 95.77%

16 TB 75.00% 93.75% 95.61% 95.71% 95.72% 95.79% 95.78%
64 TB 75.00% 93.75% 95.61% 95.71% 95.72% 95.79% 95.78%

Table 1: Average checkpoint improvement per process: Staggered over Synchronous The y-axis is the amount of data check-
pointed by the system; the x-axis is the number of processes in the system.

Benchmark Problem Size Lines of Collective Point-to-Point
Code Communication Communication

IS 20 1083 14 2
BT 64 4147 8 24

ek-simple 32 3873 6 52

Table 2: Application Benchmark Characteristics. BT and IS are from the NAS Parallel Benchmarks and ek-simple is a well known
CFD benchmark.

4 9 16
IS 5 5 5
BT 30 73 191

ek-simple 98 57,206 > 224
Table 3: Number of Unique Valid Recovery Lines. IS and BT
have smaller phases which limit the number of recovery lines.
Ek-simple does not perform collective operations in the main
loop and thus sees an enormous blow-up in the number of re-
covery lines as the number of processes increases.

tocol suffers high overhead due to, for example, message logging,
even when no failures occur. Their work assumes checkpointing
to local disk; which we believe is not a viable solution. Our work
assumes the use of a global file system.

Two protocols have considered contention [11, 12]. Both allow
processes to stagger their checkpoints. However, neither use a
compiler analysis to place checkpoints and guarantee consistency,
instead both must use either message logging or some form of ad-
ditional synchronous checkpoints to guarantee a consistent state.

Many proposed protocols rely entirely on the runtime environment
to determine checkpoint placement. Each of these has well-docu-
mented shortcomings, but for the purposes of our study, it suffices
to realize that none considers contention. These solutionsinclude:� coordinated checkpointing, where each process checkpoints

simultaneously with every other process [5],� communication-induced checkpointing, where the commu-
nication history is piggybacked on each message, and each
process checkpoints independently based on that informa-
tion [5], and

� uncoordinated checkpointing, where each process checkpoints
independently, but the end result may be an inconsistent global
state [5].

6. CONCLUSIONS
We have shown that, for large supercomputing clusters that have
thousands of nodes, contention will become significant. From this
we conclude the current technique of manually-inserted synchronous
checkpoints will not be effective in the future. We have intro-
duced the notion of compiler-generated staggered checkpointing as
an approach to reducing this contention. Our trace-driven simula-
tor has shown that, for 64K processes, staggered checkpointing re-
duces checkpointing latency by a factor of 23 versus synchronous
checkpointing. This reduction in latency will allow the check-
pointing frequency to increase with no corresponding increase in
overhead—an important conclusion as MTBF shrinks.

We conclude that staggered checkpointing has many benefits.A
compiler can identify many valid recovery lines for programs—the
next step is to choose good ones and place them in the code. We
have outlined a promising solution, but there is still much work to
be done. We plan to relax our simplifying assumptions and develop
scalable analyses and heuristics to identify good recoverylines.

7. ACKNOWLEDGMENTS
We thank Los Alamos National Laboratory and Sandia National
Laboratory for their support in this work. This work was alsosup-
ported by NSF grant ACI-0313263, the Texas Advanced Research
Program, and the DOE Office of Science. We also thank Adam
Brown, Jeff Napper, and Lorenzo Alvisi for many enlightening
technical conversations, and we thank Samuel Z. Guyer and Teck
Bok Tok for infrastructure help.

8. REFERENCES
[1] Micah Beck, James S. Plank, and Gerry Kingsley.

Compiler-assisted checkpointing. Technical Report
UT-CS-94-269, 1994.

[2] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and
Paul Stodghill. Automated application-level checkpointing
of MPI programs. InPrinciples and Practice of Parallel
Programming, June 2003.

[3] NASA Ames Research Center. NAS parallel benchmarks.
http://www.nas.nasa.gov/Software/NPB.

[4] Sung-Eun Choi and Steven J. Deitz. Compiler support for
automatic checkpointing. InThe 16th Annual International
Symposium on High Performance Computing Systems and
Applications, June 2002.

[5] E. Elnozahy, D. Johnson, and Y. Wang. A survey of
rollback-recovery protocols in message-passing systems.
Technical Report CMU-CS-96-181, Carnegie Mellon
University, October 1996.

[6] Samuel Z. Guyer and Calvin Lin. Broadway: A software
architecture for scientific computing. In R.F. Boisvert and
P.T. P. Tang, editors,The Architecture of Scientific Software.
Kluwer Academic Press, 2000.

[7] P.B. Ladkin and B.B. Simons. Compile-time analysis of
communicating processes. pages 248–259. ACM Press,
1992.

[8] Peter B. Ladkin and Stefan Leue. Interpreting message flow
graphs.Formal Aspects of Computing, 7(5):473–509, 1995.

[9] Leslie Lamport. Time, clocks, and the ordering of eventsin a
distributed system.Communications of the ACM,
21(7):558–565, July 1978.

[10] Özalp Babaoğlu and Keith Marzullo. Consistent global states
of distributed systems: Fundamental concepts and
mechanisms. Technical Report UBLCS-93-1, Laboratory for
Computer Science, University of Bologna, Italy, January
1993.

[11] James S. Plank.Efficient Checkpointing on MIMD
Architectures. PhD thesis, Princeton University, June 1993.

[12] Nitin H. Vaidya. On staggered checkpointing. InSymposium
on Parallel and Distributed Processing, 1996.

