Compiler-Generated Staggered Checkpointing

Alison N. Norman
The University of Texas at Austin
ans@cs.utexas.edu

Sung-Eun Choi
Los Alamos National Laboratory*
sungeun@lanl.gov

Calvin Lin
The University of Texas at Austin
lin@cs.utexas.edu

ABSTRACT

To minimize work lost due to system failures, large paradigpli-
cations perform periodic checkpoints. These checkpoirgyegi-
cally inserted manually by application programmers, rasgilin
synchronous checkpoints, or checkpoints that occur at ahges
program point in all processes. While this solution is téadbr
current systems, it will become problematic for future sapm-

using data from the last successful checkpoint. Todaygetblesck-
points are manually placed by the application programmeo wh
identifies convenient spots in the code where the checkstate
(i.e., the volume of data to be saved) is relatively small. For $itnp
ity, all checkpoints occur at the same program location lipia-
cesses. These synchronous checkpoints temporarily luajtgss
of the program but are considered acceptable if their oaethie

puters that have many tens of thousands of nodes, because consmall, typically 1% of total execution time.

tention for both the network and file system will grow. This pa
per shows thastaggered checkpointsglobally consistent check-
points in which processes perform checkpoints at diffepernts
in the code—can significantly reduce network and file system c
tention. We describe a compiler-based approach for imgestiag-
gered checkpoints, and we show, using trace-driven sifoualahat
staggered checkpointing is 23 times faster that synchnback-
pointing.

1. INTRODUCTION

Supercomputing clusters are becoming increasingly popnléd-
forms for scientific research. Because the peak power oéttles-
ters scales easily, their sizes are growing at unprecedieates.
For example, Lawrence Livermore National Laboratory’s fidher,
currently the largest cluster computer on the Top 500 lmtststs
of 1024 4-processor nodes—4096 processors in all—andwashie
20 Teraflop peak performance. Livermore intends to growrttds
chine to achieve over 40 Teraflogsistainedperformance. Un-
fortunately, as the number of processors, disks, peritheaad
network elements grows, thmean time before failuréMTBF)
shrinks. Thus, fault detection and recovery are first-otasgerns
for large supercomputing clusters.

The problem of machine failures can be addressed by peaibgic
checkpointing the application; upon failure, the programestarted

*Los Alamos National Laboratory is operated by the Univgrsft
California for the National Nuclear Security Administiatiof the
United States Department of Energy under contract W-7496-E
36. LA-UR-04-5101.

Unfortunately, the increasing size of supercomputingtehsamakes
these synchronous checkpoints infeasible. As the numbprosf
cesses increases, checkpoint sizes grow, increasingntiaméor
the network and global file system and making synchronouskshe
pointing less viable. Because network and file system tdolygo
is not evolving as quickly as processor and memory techyptbg
problem will only get worse over time.

Checkpointing to local disk appears to provide a scalatigiso.
However, local disks are typically the most failure-promenpo-
nent of a cluster, and if a disk fails, the program cannot btareed
without first replacing the disk. Thus, in this paper we asstinat
checkpoints use a global file system.

This paper explores the notion sfaggered checkpointing1], a
checkpointing approach that reduces contention for thevarkt
and file system. Staggered checkpointing allows indiviguak
cesses to perform their checkpoints at different pointhéngro-
gram code, while still producing eonsistent statethat is, a state
that could have existed during the execution of the prograjn [
Note that staggered checkpointing does not diotdtatto check-
point (e.g, live data or core dump), onlwhereto checkpoint.
This paper explains how staggered checkpointing can bernpeet
automatically by compiler analysis amdthout message logging
at runtime. We describe a prototype compiler that we use as a
proof-of-concept. This prototype makes several simpiifyas-
sumptions and does not use a scalable algorithm to idemifgw
ery lines. We then use trace-driven simulation to show the pe
formance advantages of staggered checkpointing over symatis
checkpointing—for 64K processes, synchronous checkipgjris

23 times slower than staggered checkpointing. Finally, seesam-
ple applications to show that there is a large number of ptessi
checkpoint locations, which can be combined in many differe
ways to produce checkpoints on each process but staggewessac
the system. With so many possibilities, it will be difficutt tnanu-
ally choose among them and guarantee correctness.

2. BACKGROUND

This section defines terms and concepts that will be needed-to
derstand our algorithm.

A recovery lineis a set of checkpoints, one per processvaid

For example, in Figure 3, process 0 begins by sending two mes-
sages. For each, it increments its element in its vectokkgcleo
after sending the message to process 2, its vector cldeks0].
When process 2 receives the message from process 0, it gpidate
vector clock to reflect both that an event occurred (the vegeind

recovery linerepresents a state that could have existed in the exe- that it is now dependent on process 0 executing at least temtev

cution of the program [5], so it disallows a checkpoint of sssage
receive on one process if the corresponding send of the gessa
not also checkpointed. Recovery liagn Figure 1 is invalid be-

So, process 2’s clock becom@s0, 1]. When process 2 then sends
a message to process 1, it increments its vector clogk) 2] to
reflect another event (the send). Immediately before psotas-

cause it saves a message as received on process 1, but @ocessceives the message, its vector clocklis2, 0]. Upon receiving the

does not save the corresponding send. Thus, the stateeptmés
by a could not exist in an actual execution of the system. Regover
line bis valid because it could have existed in a possible exatutio
If, upon failure, the system rolls back to a valid recovengliit is
guaranteed to resume in a consistent state.

Processes
=

Checkpoints
Recovery Lint

Figure 1. Examplesof invalid (a) and valid (b) recovery lines.
[1] [2]

; 3] 4]
\ /‘[31 4 /
\ [2/4 \ 8]

1 [

Time ——

Processes
P

Figure2: An example of Lamport’slogical clocks.

To identify valid recovery lines, we need a method of ordgtime
messages in time. For this we ugstor clocksa method of track-
ing dependences across processegector clocks were derived
from Lamport’s logical clocks [9] in which each process ntains
its own clock, incrementing it at each event (See Figure 2chE
vector clock is maintained locally by each process as fatow

VC(e)t] :=VC[i] +1
if e; is an internal or send event

VC(ei) := maz{VC(e;),VC(e;)}
VC(ei)t] :=VC[i] +1

if e; is receive from procesg
where the send was evett

wheree; is an event on process, andV C(e;) is its vector clock.
V C/(e;)[1] is the element for processn that vector clock. A pro-
cess increments its element in its vector clock for each tewer

occurs. When a process receives a message, it sets its teatior
elements to the maximum of the element in its vector clockthad
corresponding element in the sending process’ vector clock

"Vector clocks were developed independently by many rebeesc

message, process 1 increments its element in its vectdc wiae-

flect the receive, and then sets its element for process 2teliiv

that it depends on process 2 executing at least two everisesy

1 also sets its element for process 0 to the maximum values of it
element for process 0 and that of process 2. Since process 1 ha
previously only depended on the first event of process 0 and pr
cess 2 depends on the first two, then process 1 updates ikstoloc
reflect a dependence on the first two. Therefore, procesedisv
clock become$2, 3, 2].

[3,2,0]

\ éz]uz] /
1 =10 \ [12711 \[252]

[2,0,1]2,0,2] [2,4,3]

Time ——

[4,5,2]

0 [1,0,0] [2,0,0]

Processes

Figure3: An example of vector clocks.

Given vector clocks, a valid recovery line can be determumsdg
the following formula [10], which states that the recovenglis not
valid if processj requires more events on procésban processs
clock reflects.

Vij:1<i<n1<j<n:VO(e)i] 2 VO(e)ll

3. OUR SOLUTION

This section describes our compiler-based approach tdifigieg
staggered checkpoints. In this paper, we focus on the meshan
needed to find valid recovery lines andt the policy needed to
choose a good one.

Our algorithm has three main phases: the first identifies cemm
nicating processes, the second creates vector clocks ¢brpra-
cess, and the third identifies all valid recovery lines. Wsuase
that the number of nodes in the system is statically knownthatl
there is onlydeterministic communicatiorDeterministic commu-
nication is communication that depends only on input vabrdbe
process’s rank, or communication ID.

Communicating Processes

In order to find valid recovery lines, the analysis must fidstritify
communication events and use them to compute vector cldeks.
do this, it must first identify all pairs of communicating pesses—

or neighbors—and match sends with the corresponding receives.
Some communication calls will have different neighborselolasn
execution context—or may not be executed at all; the arsafysist
perform a control-dependence analysis to detect theseliftes.

p = sqrt(no_nodes)

cell_coord[0][0] = node % p
cell_coord[1][0] = node /p

j = cell_coord[0][0] - 1

i = cell_coord[1][0] - 1
from_process=(i-1+p)%p+p*
MPI_irecv(X, X, X, from_process, ...,

from_process = (node / (sgrt(no_nodes)) -1 -1 +
sqrt(no_nodes)) % sqrt(no_nodes) +
sqrt(no_nodes) * n % sqrt(no_nodes;

Figure 4: An code example from the NAS parallel benchmark
BT and itscorrespondingresult from symbolic expression anal-
ysis.

Our compiler computes this information by performisgmbolic
expression analysien the communication call arguments repre-
senting the neighbor. Symbolic expression analysis is @ fof
backwards constant propagation where variables are esqutén
terms of other variables. We assume that these expressiors ¢
sist of arithmetic operations on constants, the size of ylséem,
and the rank of the process where the call is occurring—etime-
municator (See Figure 4). Our compiler also performs symbolic
expressions analysis to track control dependences.

To match the sends to their respective receives and thelockiig
calls to their respective waits, our compiler instantiaash rank
in the system and evaluates the relevant symbolic expressito

do this, the compiler must know the number of processes in the

system. It matches the calls based on location in the prograin
their tag or request values (whichever is pertinent). Gomtepen-
dence is also taken into account. Previous research hasidimw
to match these calls [7, 8], but our current implementatisesua
simpler algorithm that handles fewer cases.

Vector Clocks

Once the communication has been identified, the analysisisan
vector clocks to find valid recovery lines. To create vectocks,
the analysis computes the neighbor for each process at evary
munication call. Vector clocks can then be created usingutes
described in Section 2.

From the communication information gleaned in the previghesse,
our compiler creates a vector clock for each node. For eagh co
munication call, our compiler iterates through each precteat ex-
ecutes that communication call and updates that processten
clock. We assume that each non-blocking receive occurs asit
sociated wait; all other events occur at their calls. Tosassithe
identification of valid recovery lines, with each event oampiler
associates the vector clocks for all processes as they atdhat
event. Since our compiler must instantiate each proceissath
gorithm is not ideal, but it does scale linearly with the nambf

program. Two checkpoint locations on different processepart
of a valid recovery line if their vector clocks acengruouswhere
congruous means that processloes not require more events on
processi than process'’s clock reflects. A valid recovery line is
one in which all checkpoint locations are congruous witipeesto
each other.

The number of valid recovery lines in a program can grow egpen
tially as a function of the number of processes as well as tine-n
ber of possible checkpoint locations in a program. Thus,imé |
our search to onlgependence-generatihgcations; a dependence-
generating location is one where a process is waiting forrsom
nication €.g, MPI_Recv or MPIWait). These are precisely the
events that generate dependences between processes. farhus,
each unique valid recovery line that our analysis discoviers
possible to adjust the various checkpoint locations redatib the
locations that do not generate dependences, but we do nsitleon
such fine-tuning in this paper. It is also worth noting that ttum-
ber of valid recovery lines in a program is directly relatecthe
communication. For example, a recovery line cannot crogsala
lective communication, such as a barrier, because all pseseare
synchronized at the point of the collective communicatidhus,
we definephaseshat restrict the scope of recovery lines, further
limiting the search space. A phase is the set of communitatio
events between any two synchronization points. The phat&ies
the beginning synchronization point.

To find a valid recovery line, our compiler first builds a grapht
describes the relationship of all possible checkpointtiooa to
each other. For each d? processes, a node is created for every
possible checkpoint location within that process. We vefer to
the collection of all of procesg’s possible checkpoint locations
as PCL,, beginning withPC' L, through PCLp_1. Hence, a
recovery line can be defined by picking one node from €€iL.

Next, our compiler adds edges to the graph. An edge exisisket
two nodes in the graph if and only if the two nodes can be part
of a valid recovery line as defined above. No edges exist legtwe
nodes in the samBC L since two checkpoint locations on the same
process cannot be part of a valid recovery line. Edges aredaidd
quadratic time, or in our cas®(N x P x N x P), whereN is the
maximum number of possible checkpoint locations for angess.
Note that for SPMD programa’ will most likely be the same for

all processes, and in our benchmark programs described imetkt
section, we foundV to usually be less than 50.

In this graph, a recovery ling.e., a set of nodes, one from each
PCL, is valid if and only if every node has an edge to every other
node,i.e., the nodes form a clique. All valid recovery lines are
found by finding all such possible cliques. Our algorithmffod-

ing all such cliques is exhaustive. As future work, we plaimtple-
ment heuristics for findingiood recovery lines during the search.
First, we must learn more about the characteristics of geodw

ery line.

Implementation

processes in the system and with the number of communication Tpig algorithm has been implemented using the Broadwayoiice-

calls in the program.

Finding Valid Recovery Lines

Recall that a recovery line is a set of checkpoint locationg per
process, and galid recovery line is a set of checkpoint locations
that represents a state that could have existed in the éxeafthe

to-source ANSI C compiler. Broadway performs context-gies
inter-procedural pointer analysis, which provides a pdwedrase
for our analysis.

4. RESULTS

This section includes our experimental methodology andlies
It briefly describes our trace-driven simulator and thencdbses
the results of our synthetic benchmarks. The synthetichraacks
compare the effects of staggered checkpointing to thosemef s
chronous checkpointing. This sections concludes by aimajythe
effects of applying our compiler to application benchmarks

4.1 Methodology

To simulate thousands of processes, we use a locally-pedduace-
driven simulator that models computation events, comnaiitin
events, and checkpointing events for each individual mec&he
simulator optimistically models network contention byoaling all
processes requiring the network to share it evenly. Evemvithe
network is saturated, our simulator allows the network ttivee
its maximum bandwidth. Thus, our results will underestentie
deleterious effects of contention when the network is bdysatu-
ration. The simulator models the file system similarly.

To drive our simulator, we use our compiler to generate tfées
from benchmarks. The trace generator employs static daalysl
profiling to gather accurate control flow information for bgmo-
cess in the modeled system. Using this information, we eraat
trace file containing events for each process.

All results assume the following characteristics, whichdeloan
existing cluster at Los Alamos National Laboratory: a 1GB¢s
work that can accept 70MB/s of data from each process; atlkche
point data is written to a global file system that can write 781B

4.2 Contention Effects

To demonstrate the effects of contention, we use two syiothet
benchmarks that consist of a large number of sequentialuinst
tions and two checkpoint locations per process. In the festh-
mark, dubbe®ynchr onous, every process checkpoints synchro-
nously, once exactly half way through the computation anceon
at the end of computation. Both sets of checkpoints areVieitb
immediately by a barrier, as is done in the manually-pladestk-
points used today. In the second benchm&@kagger ed, the
processes checkpoint in groups of four at intervals spreadlg
throughout the sequential instructions.

Staggered checkpoints improve performance—especiatheadus-
ter size, data checkpointed, and instructions executedase. Per-
formance improves because, as the cluster size and chetkjxs#
grow, there is more contention present during synchronbeslc
pointing and thus more room for improvement when checkgoint
are staggered. As the number of instructions executeddaess
there is more work with which to stagger the checkpointsthien
reducing contention and improving performance. Figure @sh
run times for theSynchr onous andSt agger ed benchmarks.
In this figure, the number of instructions executed and thewsrn
of data checkpointed increase proportionally with the nemnddf
processes. Also, notice that while the graphs show the sameé<,
the y-axes actually vary by an order of magnitude.

Whereas Figure 5 shows results for a fixed per process problem

size, we are also interested in considering the effectsanfogred
checkpointing when the problem size is fixed even as clugter s
grows. Figure 6 shows the improvement in the average timetspe
checkpointing per process 8 agger ed over Synchr onous.

In this figure, the number of instructions the system execated
the amount of data it checkpoints remain constant as systam s

increases; therefore, as the number of processes in thraTsyst
creases, the number of instructions executed and the arbdata
checkpointed per process decreases. Please note themtiffer
axes. This figure demonstrates that staggered checkppibén
comes more helpful as the number of processes and the anfount o
data being checkpointed increases, in other words, as ritmre

for the network and file system increases. In a system of 64K
processes, processes using staggered checkpointingpclirgcR3
times faster than those using synchronous checkpointing.

Table 1 displays our results for a large number of clusterssand
checkpoint sizes. The amount of data checkpointed anduimstr
tions executed is fixed across a row, meaning that the amdunt o
data checkpointed and instructions executed per procdssisas-

ing as the cluster size increases. We increase the amouataf d
checkpointed by the system until we have achieved 4 GB/psoce
for the 64K process system—the desired amount of memoryfor f
ture clusters. This table shows a large range of situatiangfiich
staggered checkpointing is beneficial. This table also rg¢ines

the results of Figure 6, showing that staggered checkpajriie-
comes more helpful as the number of processes and the anfount o
data being checkpointed increases.

Since processes Bt agger ed spend significantly less time check-
pointing than those iBynchr onous for clusters, a 1024-process
cluster checkpointing 64 TB of data using staggered chenkpg
can take 1,007 checkpoints during the run for a total chedkpo
overhead of 1%, whereas if it were using synchronous chéakpo
ing, only 43 checkpoints could be taken for the 1% checkjognt
overhead. Figures 7 (a) and (b) compare the number of chietkpo
a process may take for 1% checkpointing overhead for vagling
ter sizes and varying checkpoint sizes. For the 1% checlipgin
overhead that application programmers are willing to titkerstag-
gered checkpointing allows a greater checkpoint frequehan
synchronous checkpointing, which is important as MTBFrtgi

Another option is to use staggered checkpointing to redbee t
checkpointing overhead. Figures 7 (c) and (d) show the numbe
of checkpoints that may be taken for .5% checkpointing czadh
Reducing the checkpoint overhead will please the apptingtio-
grammers, and staggered checkpointing still allows mamgcich
pointing options.

4.3 Benchmark Results

As mentioned in the previous section, the number of validvec
ery lines is directly impacted by the program’s communimatiln
this section we use three application benchmarks to idtstthe
potential for staggered checkpointing.

Table 2 describes our three moderately sized benchmarkagmsg

I S and BT are Fortran codes from the NAS Parallel Benchmark
Suite [3] that we converted to @T is run for 2 iterations. The third
programek- si npl e, is a well-known CFD benchmark and is the
most realistic of our benchmarks. It is also simplified—coamah-
line arguments are assumed to be constants, and a funciicterpo
is replaced with a static function call.

Collective communications are more frequent BlandBT and are
also scattered through the main computation, thus creatiagy
small- or moderately-sized phases for our recovery lineréttym.
ek- si npl e has fewer collective communication calls, but more
importantly, the collective communication calls do nouies mo-
derately-sized phases—one of the phases is much largetttban

2500

2000

—e— Synchronous

1500 --a-- Staggered

1000

Program Execution Time (s)
Program Execution Time (s)

500

16 64 256 1K 4K

of Processesin the System

(a) 16 MB checkpointegher process

Figure 5: Comparison of Execution Times of St agger ed and
constant across each data point.

50

N
o
1

3 2
[}
E g
= £
= 30 =
h=l S
E —e— Synchronous &
§ - a- Staggered §
X
w204 w
5 5
8 g
o [x
RN &
S

g ---BR---®---um

64 256 1K 4K

of Processesin the System

16K 64K

(a) 16 GB checkpointely the system

—e— Synchronous
---m-- Staggered

16K

16 64 256 1K 4K

of Processesin the System

64K

(b) 256 MB checkpointeger process

Synchronous. Here the amount of work per process remains

800

[}

o

o
1

—e— Synchronous

4004 - a- Staggered

N

o

o
1

16 64 256 1K 4K

of Processesin the System

16K 64K

(b) 256 GB checkpointetly the system

Figure 6: Comparison of Execution Timesof St agger ed and Synchr onous. Theamount of work remains constant for all system

Sizes.

others. This large phase leads to very large numbers of rediol/-
ery lines, as we discuss below.

Table 3 shows the number of statically unique valid recoViels
for each of the benchmark programs for 4, 9, and 16 procesgses.
statically unique recovery line occurs only once in the eapion
code—it does not account for calling contextS, which has al-
most all collective communication, has a small, constanitver of
valid recovery lines for all three caseBT, which has more point-
to-point communication and few collective communicatiails
sees a doubling in the number of recovery lines with eachlenob
size. ek- si npl e, which we believe is much more representa-
tive of real applications, illustrates the real potent@ $taggered
checkpoints. The number of valid recovery lines blows upyver

quickly, by three orders of magnitude from 4 to 9 procesdes; t
16 process case has 641,568,404 unique recovery line® (@hes
not statically unique recovery lines—calling context issidered).
Increases in collective communication diminish the bes@fitour
compiler; checkpointing can still be staggered among legahts.
The more point-to-point communication a program has, theemo
opportunity there is for staggering checkpoints betweenmmani-
cation events and, thus, the more useful our compiler.

This large number of valid recovery lines reflects the paadthat
applications have for using staggered checkpointing. Tmeber
of valid recovery lines is a function of phase size, in otherds,
how “staggered” or “spread out” the checkpoint locations be.
As we showed in the previous section, a larger spread redhees

1000+ 1000+

800 800
12 0
c 1=
5 £
o [=8
3 600 ?ﬁ" 600
6 == Synchronous 5 == Synchronous
5 == Staggered 5 == Staggered
T 400 T 400
Qo Qo
£ S
p=} >
z z
200 200
0- 0-
256 1K 4K 16K 64K 256 1K 4K 16K 64K
of Processesin the System # of Processesin the System
(a) 16 GB checkpointed by the system, 1% allowed check- (b) 64 TB checkpointed by the system, 1% allowed check-
point overhead point overhead
1000+ 1000+
800 800
12 0
c <
5 £
o Q.
3 600 é 600
6 == Synchronous 5 == Synchronous
5 == Staggered 5 == Staggered
& 400 T 400
Qo Qo
£ £
p=} >
z z
200 200
0- == 0-
256 1K 4K 16K 64K 256 1K 4K 16K 64K
of Processesin the System # of Processesin the System

(c) 16 GB checkpointed by the system, .5% allowed (d) 64 TB checkpointed by the system, .5% allowed
checkpoint overhead checkpoint overhead

Figure 7: Staggered checkpointing has lower overhead than synchronous checkpointing. Figures (a) and (b) show, for the synthetic
benchmark, the number of checkpointsthat can be performed while allowing the checkpoint overhead to be 1%. Figures(c) and (d)
show, for the synthetic benchmark, the number of checkpointsthat can be performed while allowing the checkpoint overhead to be
.5%.

checkpoint overhead by relieving contention on the netvan# for staggered checkpointing is enormous. Our future wotkuites
file system. A good recovery line is a trade-off between thiead an investigation into identifying characteristics of gotovery
and the volume of data checkpointed by each process. Tigs lar lines as well as heuristics for finding them.

number represents both an opportunity and a burden. It isritzipt

to have flexibility in choosing a good recovery line, but hesm

the number of options grows exponentially, we must find effici 9. RELATED WORK

techniques for identifying the good ones. We leave thisretis With very few exceptions, the growing body of work on compile
future work. inserted checkpointing has so far ignored the effects ofertdion

in the network and the global file system. Some approachemuse
In summary, a more globally synchronized application wiihez- put from the programmer [1] to identify locations that allemall
tive communications throughout will benefit less from seggl checkpoint sizes. Other solutions use static analysistacecheck-
checkpointing than one that performs more localized symiba- points to communication-free ranges within which chechfing
tion via point-to-point communication calls. When an apation will lead to a consistent state [4]. Most recently, Bronelgtet al.
does perform mostly point-to-point communication the ptisd proposed an application-level checkpointing protocoltf#it uses

message logging with early and late message processing piidii

16 64 256

1024 4096 16384 | 65536

64 MB 0.00% | 0.00% | 0.00%

0.00% | 0.00%| 0.00% | 0.00%

256 MB | 0.00% | 0.00% | 0.00%

0.00% | 0.00% | 0.00% | 0.00%

1GB 33.33%| 33.33% | 33.33%

33.33%| 33.33%| 33.33% | 33.33%

4GB | 50.00% | 66.67%| 66.67%

66.67% | 66.67% | 66.67% | 66.67%

16GB | 73.91%| 86.96% | 88.32%

89.54% | 88.79% | 89.26% | 89.26%

64GB | 75.00% | 93.48% | 94.63%

94.77% | 95.02% | 95.13% | 95.13%

256 GB | 74.86% | 93.72% | 95.42%

95.57% | 95.61% | 95.65% | 95.65%

1TB 74.98%| 93.71% | 95.58%

95.68% | 95.68% | 95.75% | 95.75%

4TB 75.00% | 93.75% | 95.60%

95.70% | 95.71% | 95.78% | 95.77%

16 TB | 75.00%| 93.75% | 95.61%

95.71% | 95.72% | 95.79% | 95.78%

64TB | 75.00% | 93.75%| 95.61%

95.71% | 95.72% | 95.79% | 95.78%

Table 1: Average checkpoint improvement per process. St agger ed over Synchr onous They-axis is the amount of data check-
pointed by the system; the x-axisisthe number of processesin the system.

Benchmark || Problem Size | Linesof Collective Point-to-Point
Code Communication | Communication
IS 20 1083 14 2
BT 64 4147 8 24
ek-simple 32 3873 6 52

Table 2: Application Benchmark Characteristics. BT and IS are from the NAS Parallel Benchmarks and ek-simpleisa well known

CFD benchmark.

4 9 16

IS 5 5 5
BT 30 73 191
ek-simple | 98 | 57,206 | > 2**

Table 3: Number of Unique Valid Recovery Lines. ISand BT
have smaller phases which limit the number of recovery lines.
Ek-simple does not perform collective operations in the main
loop and thus sees an enormous blow-up in the number of re-
covery linesasthe number of processesincreases.

tocol suffers high overhead due to, for example, messaggrigg
even when no failures occur. Their work assumes checkpajinti
to local disk; which we believe is not a viable solution. Owrlv
assumes the use of a global file system.

Two protocols have considered contention [11, 12]. Botbvall
processes to stagger their checkpoints. However, neitberau
compiler analysis to place checkpoints and guarantee stensiy,

instead both must use either message logging or some forih of a

ditional synchronous checkpoints to guarantee a consistate.

Many proposed protocols rely entirely on the runtime envinent
to determine checkpoint placement. Each of these has weli-d
mented shortcomings, but for the purposes of our studyffices
to realize that none considers contention. These soluiimhsde:

e coordinated checkpointingvhere each process checkpoints
simultaneously with every other process [5],

e communication-induced checkpointinghere the commu-

e uncoordinated checkpointingrhere each process checkpoints
independently, but the end result may be an inconsistehaglo
state [5].

6. CONCLUSIONS

We have shown that, for large supercomputing clusters téat h
thousands of nodes, contention will become significantimFiius
we conclude the current technique of manually-insertedlsymous
checkpoints will not be effective in the future. We have aéntr
duced the notion of compiler-generated staggered cheatipgias
an approach to reducing this contention. Our trace-drivenils-
tor has shown that, for 64K processes, staggered checkypiret-
duces checkpointing latency by a factor of 23 versus symziue
checkpointing. This reduction in latency will allow the chke
pointing frequency to increase with no corresponding iaseein
overhead—an important conclusion as MTBF shrinks.

We conclude that staggered checkpointing has many benéfits.
compiler can identify many valid recovery lines for progsarthe

next step is to choose good ones and place them in the code. We
have outlined a promising solution, but there is still muabrkto

be done. We plan to relax our simplifying assumptions aneldgv
scalable analyses and heuristics to identify good recdireey.

7. ACKNOWLEDGMENTS

We thank Los Alamos National Laboratory and Sandia National
Laboratory for their support in this work. This work was atag-
ported by NSF grant ACI-0313263, the Texas Advanced Relsearc
Program, and the DOE Office of Science. We also thank Adam
Brown, Jeff Napper, and Lorenzo Alvisi for many enlightemin
technical conversations, and we thank Samuel Z. Guyer ackl Te
Bok Tok for infrastructure help.

nication history is piggybacked on each message, and each
process checkpoints independently based on that informa-

tion [5], and

8.
[1]

(2]

(3]

[4]

[5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

REFERENCES

Micah Beck, James S. Plank, and Gerry Kingsley.
Compiler-assisted checkpointing. Technical Report
UT-CS-94-269, 1994.

Greg Bronevetsky, Daniel Marques, Keshav Pingali, and
Paul Stodghill. Automated application-level checkpaigti
of MPI programs. IrPrinciples and Practice of Parallel
Programming June 2003.

NASA Ames Research Center. NAS parallel benchmarks.
http://www.nas.nasa.gov/Software/NPB.

Sung-Eun Choi and Steven J. Deitz. Compiler support for
automatic checkpointing. Ifhe 16th Annual International
Symposium on High Performance Computing Systems and
Applications June 2002.

E. Elnozahy, D. Johnson, and Y. Wang. A survey of
rollback-recovery protocols in message-passing systems.
Technical Report CMU-CS-96-181, Carnegie Mellon
University, October 1996.

Samuel Z. Guyer and Calvin Lin. Broadway: A software
architecture for scientific computing. In R.F. Boisvert and
P.T. P. Tang, editorg;he Architecture of Scientific Software
Kluwer Academic Press, 2000.

P.B. Ladkin and B.B. Simons. Compile-time analysis of
communicating processes. pages 248—-259. ACM Press,
1992.

Peter B. Ladkin and Stefan Leue. Interpreting message flo
graphsFormal Aspects of Computing(5):473-509, 1995.

Leslie Lamport. Time, clocks, and the ordering of eventa
distributed systenCommunications of the ACM
21(7):558-565, July 1978.

Ozalp Babaoglu and Keith Marzullo. Consistent globalestat
of distributed systems: Fundamental concepts and
mechanisms. Technical Report UBLCS-93-1, Laboratory for
Computer Science, University of Bologna, Italy, January
1993.

James S. Plankfficient Checkpointing on MIMD
ArchitecturesPhD thesis, Princeton University, June 1993.

Nitin H. Vaidya. On staggered checkpointing.3gmposium
on Parallel and Distributed Processing996.

