
Exploiting Pointer and Lo
ation Equivalen
e toOptimize Pointer AnalysisBen Hardekopf and Calvin LinThe University of Texas at Austin, Austin TX 78712, USAfbenh,ling�
s.utexas.eduAbstra
t. Pointer information is a prerequisite for most program anal-yses, and in
lusion-based, i.e. Andersen-style, pointer analysis is widelyused to
ompute su
h information. However,
urrent in
lusion-basedanalyses
an have prohibitive
osts in time and spa
e, espe
ially forprograms with millions of lines of
ode. We present a suite of o�ineoptimizations that exploit pointer and lo
ation equivalen
e to shrink theinput to the subsequent pointer analysis without a�e
ting pre
ision, dra-mati
ally redu
ing both analysis time and memory
onsumption. Usinga suite of six open-sour
e C programs ranging in size from 169K to 2.17MLOC, we demonstrate that our te
hniques on average improve analysistime by 1.3{2.7� and redu
e memory
onsumption by 3.2{6.9� over thebest
urrent te
hniques.1 Introdu
tionMost program analyses require pointer information, from traditional
ompileroptimizations to software veri�
ation, se
urity analysis, and program under-standing. Many of these analyses are interpro
edural and require a highly s
al-able whole-program pointer analysis to
ompute pointer information. The pre
i-sion of the
omputed information
an have a profound impa
t on the usefulnessof the subsequent program analysis. In
lusion-based, i.e. Andersen-style, pointeranalysis is widely-used be
ause of its relative pre
ision and potential for s
ala-bility. In
lusion-based analysis s
ales to millions of lines of
ode, but memory
onsumption is prohibitively high [6℄. Memory
onsumption
an be greatly re-du
ed by using BDDs to represent points-to sets, but this signi�
antly in
reasesanalysis time [6℄. Our goal is to break this trade-o� by redu
ing both mem-ory
onsumption and analysis time for in
lusion-based pointer analysis, withouta�e
ting the pre
ision of the results.In
lusion-based analysis is the most pre
ise
ow- and
ontext-insensitivepointer analysis. It extra
ts in
lusion
onstraints from the program
ode to ap-proximate points-to relations between variables, representing the
onstraints us-ing a
onstraint graph, with nodes to represent ea
h program variable and edgesto represent the
onstraints between variables. Indire
t
onstraints|those thatinvolve pointer dereferen
es|
an't be dire
tly represented in the graph, sin
epoints-to information isn't available until after the analysis has
ompleted. Theanalysis satis�es the
onstraints by
omputing the dynami
 transitive
losure of

the graph; as new points-to information be
omes available, new edges are addedto the graph to represent the indire
t
onstraints. The transitive
losure of the�nal graph yields the points-to solution.In
lusion-based analysis has a
omplexity of O(n3) time and O(n2) spa
e,where n is the number of variables; the key to s
aling the analysis is to re-du
e the input size|i.e. make n smaller|while ensuring that pre
ision is nota�e
ted. This goal is a

omplished by dete
ting equivalen
es among the pro-gram variables and
ollapsing together equivalent variables. Existing algorithmsonly re
ognize a single type of equivalen
e, whi
h we
all pointer equivalen
e:program variables are pointer equivalent i� their points-to sets are identi
al.There are several existing methods for exploiting pointer equivalen
e. The pri-mary method is online
y
le dete
tion [5{7, 10, 11℄. Rountev et al. [12℄ introdu
eanother method
alled O�ine Variable Substitution (OVS). An o�ine analysisis a stati
 analysis performed prior to the a
tual pointer analysis; in this
ase,OVS identi�es and
ollapses a subset of the pointer equivalent variables beforefeeding the
onstraints to the pointer analysis.In this paper, we introdu
e a suite of new o�ine optimizations for in
lusion-based pointer analysis that go far beyond OVS in �nding pointer equivalen
es.We also introdu
e and exploit a se
ond notion of equivalen
e
alled lo
ationequivalen
e: program variables are lo
ation equivalent i� they always belong tothe same points-to sets, i.e. any points-to set
ontaining one must also
ontainthe other. Our new optimizations are the �rst to exploit lo
ation equivalen
eto redu
e the size of the variables' points-to sets without a�e
ting pre
ision.Together, these o�ine optimizations dramati
ally redu
e both the time andmemory
onsumption of subsequent in
lusion-based pointer analysis. This paperpresents the following major results:{ Using three di�erent in
lusion-based pointer analysis algorithms [7, 10, 6℄,we demonstrate that our optimizations on average redu
e analysis time by1.3{2.7� and redu
e memory
onsumption by 3.2{6.9�.{ We experiment with two di�erent data stru
tures to represent points-tosets: (1) sparse bitmaps, as
urrently used in the GCC
ompiler, and (2)a BDD-based representation. While past work has found that the bitmaprepresentation is 2� faster but uses 5.5� more memory than the BDD rep-resentation [6℄, we �nd that, due to our o�ine optimizations, the bitmaprepresentation is on average 1.3� faster and uses 1.7� less memory than theBDD representation.This paper makes the following
on
eptual
ontributions:{ We present Hash-based Value Numbering (HVN), an o�ine optimizationwhi
h adapts a
lassi

ompiler optimization [3℄ to �nd and exploit pointerequivalen
es.{ We present HRU (HVN with deReferen
e and Union), an extension of HVNthat �nds additional pointer equivalen
es by interpreting both union anddereferen
e operators in the
onstraints.

{ We present LE (Lo
ation Equivalen
e), an o�ine optimization that �ndsand exploits lo
ation equivalen
es to redu
e variables' points-to set sizeswithout a�e
ting pre
ision.2 Related WorkAndersen introdu
es in
lusion-based pointer analysis in his Ph.D. thesis [1℄,where he formulates the problem in terms of type theory. Andersen's algorithmsolves the in
lusion
onstraints in a fairly naive manner by repeatedly iteratingthrough a
onstraint ve
tor.The �rst use of pointer equivalen
e to optimize in
lusion-based analysis
omesfrom Faehndri
h et al. [5℄, who represent
onstraints using a graph and thenderive points-to information by
omputing the dynami
 transitive
losure ofthat graph. The key optimization is a method for partial online
y
le dete
tion.Later algorithms expand on Faehndri
h et al.'s work by making online
y-
le dete
tion more
omplete and eÆ
ient [6, 7, 10, 11℄. In parti
ular, Heintze andTardieu [7℄ des
ribe a �eld-based analysis, whi
h is
apable of analyzing over1 million lines of C
ode in a matter of se
onds. Field-based analysis does notalways meet the needs of the
lient analysis, parti
ularly sin
e �eld-based analy-sis is unsound for C; a �eld-insensitive version of their algorithm is signi�
antlyslower [6℄.Rountev et al. [12℄ introdu
e O�ine Variable Substitution (OVS), a linear-time stati
 analysis whose aim is to �nd and
ollapse pointer-equivalent variables.Of all the related work, OVS is the most similar to our optimizations and servesas the baseline for our experiments in this paper.Both pointer and lo
ation equivalen
e have been used in other types ofpointer analyses, although they have not been expli
itly identi�ed as su
h;Steensgaard's analysis [14℄, Das' One-Level Flow [4℄, and the Shapiro-Horwitzfamily of analyses [13℄ all sa
ri�
e pre
ision to gain extra performan
e by in-du
ing arti�
ial pointer and lo
ation equivalen
es. By
ontrast, we dete
t andexploit a
tual equivalen
es between variables without losing pre
ision.Lo
ation equivalen
e has also been used by Liang and Harrold to optimizedata
ow analyses [8℄, but only post-pointer analysis. We give the �rst methodfor soundly exploiting lo
ation equivalen
e to optimize the pointer analysis itself.3 Pointer Equivalen
eLet V be the set of all program variables; for v 2 V : pts(v) � V is v's points-toset, and pe(v) 2 N is the pointer equivalen
e label of v, where N is the set ofnatural numbers. Variables x and y are pointer equivalent i� pts(x) = pts(y).Our goal is to assign pointer equivalen
e labels su
h that pe(x) = pe(y) impliesthat x and y are pointer equivalent. Pointer equivalent variables
an safely be
ollapsed together in the
onstraint graph to redu
e both the number of nodesand edges in the graph. The bene�ts are two-fold: (1) there are fewer points-to

sets to maintain; and (2) there are fewer propagations of points-to informationalong the edges of the
onstraint graph.The analysis generates in
lusion
onstraints using a linear pass through theprogram
ode;
ontrol-
ow information is dis
arded and only variable assign-ments are
onsidered. Fun
tion
alls and returns are treated as gotos and arebroken down into sets of parameter assignments. Table 1 illustrates the types of
onstraints and de�nes their meaning.Table 1. In
lusion Constraint Types.Program Code Constraint Meaninga = &b a � fbg b 2 pts(a)a = b a � b pts(a) � pts(b)a = �b a � �b 8v 2 pts(b) : pts(a) � pts(v)�a = b �a � b 8v 2 pts(a) : pts(v) � pts(b)Our optimizations use these
onstraints to
reate an o�ine
onstraint graph,1with var nodes to represent ea
h variable, ref nodes to represent ea
h derefer-en
ed variable, and adr nodes to represent ea
h address-taken variable. A refnode �a stands for the unknown points-to set of variable a, while adr node &astands for the address of variable a. Edges represent the in
lusion relationships:a � fbg yields edge &b ! a; a � b yields b ! a; a � �b yields �b ! a; and�a � b yields b! �a.Before des
ribing the optimizations, we �rst explain the
on
epts of dire
t andindire
t nodes [12℄. Dire
t nodes have all of their points-to relations expli
itlyrepresented in the
onstraint graph: for dire
t node x and the set of nodesS = fy : y ! xg, pts(x) = Sy2Spts(y). Indire
t nodes are those that may havepoints-to relations that are not represented in the
onstraint graph. All refnodes are indire
t be
ause the unknown variables that they represent may havetheir own points-to relations. var nodes are indire
t if they (1) have had theiraddress taken, whi
h means that they
an be referen
ed indire
tly via a refnode; (2) are the formal parameter of an indire
t fun
tion
all; or (3) are assignedthe return value of an indire
t fun
tion
all. All other var nodes are dire
t.All indire
t nodes are
onservatively treated as possible sour
es of points-to information, and therefore ea
h is given a distin
t pointer equivalen
e labelat the beginning of the algorithm. adr nodes are de�nite sour
es of points-toinformation, and they are also given distin
t labels. For
onvenien
e, we willuse the term 'indire
t node' to refer to both adr nodes and true indire
t nodesbe
ause they will be treated equivalently by our optimizations.Figure 1 shows a set of
onstraints and the
orresponding o�ine
onstraintgraph. In Figure 1 all the ref and adr nodes are marked indire
t, as well asvar nodes a and d, be
ause they have their address taken. Be
ause a and d
an1 The o�ine
onstraint graph is akin to the subset graph des
ribed by Rountev etal. [12℄.

now be a

essed indire
tly through pointer dereferen
e, we
an no longer assumethat they only a
quire points-to information via nodes h and i, respe
tively.b � fag a � h h � �bb � fdg
 � b i � �e
 � fag d � i k � �je � fag e � fe � fdg f � eg � f &a 6 b

c

e &d 7*b 3 h

*e 2 i

1 k

a 5

d 4

f g

*j

Fig. 1. Example o�ine
onstraint graph. Indire
t nodes are grey and have already beengiven their pointer equivalen
e labels. Dire
t nodes are bla
k and have not been givenpointer equivalen
e labels.3.1 Hash-based Value Numbering (HVN)The goal of HVN is to give ea
h dire
t node a pointer equivalen
e label su
hthat two nodes share the same label only if they are pointer equivalent. HVN
an also identify non-pointers|variables that are guaranteed to never point toanything. Non-pointers
an arise in languages with weak types systems, su
has C: the
onstraint generator
an't rely on the variables' type de
larations todetermine whether a variable is a pointer or not, so it
onservatively assumes thateverything is a pointer. HVN
an eliminate many of these super
uous variables;they are identi�ed by assigning a pointer equivalen
e label of 0. The algorithmpro
eeds as follows:1. Find and
ollapse strongly-
onne
ted
omponents (SCCs) in the o�ine
on-straint graph. If any node in the SCC is indire
t, the entire SCC is indire
t.In Figure 1, e and f are
ollapsed into a single (dire
t) node.2. Pro
eeding in topologi
al order, for ea
h dire
t node x let L be the set ofpositive in
oming pointer equivalen
e labels, i.e. L = fpe(y) : y ! x ^pe(y) 6= 0g. There are three
ases:(a) L is empty. Then x is a non-pointer and pe(x) = 0.Explanation: in order for x to potentially be a pointer, there must exista path to x either from an adr node or some indire
t node. If there isno su
h path, then x must be a non-pointer.(b) L is a singleton, with p 2 L. Then pe(x) = p.Explanation: if every points-to set
oming in to x is identi
al, then x'spoints-to set, being the union of all the in
oming points-to sets, must beidenti
al to the in
oming sets.(
) L
ontains multiple labels. The algorithm looks up L in a hashtable tosee if it has en
ountered the set before. If so, it assigns pe(x) the samelabel; otherwise it
reates a new label, stores it in the hashtable, andassigns it to pe(x).

Explanation: x's points-to set is the union of all the in
oming points-tosets; x must be equivalent to any node whose points-to set results fromunioning the same in
oming points-to sets.Following these steps for Figure 1, the �nal assignment of pointer equivalen
elabels for the dire
t nodes is shown in Figure 2. On
e we have assigned pointerequivalen
e labels, we merge nodes with identi
al labels and eliminate all edgesin
ident to nodes labeled 0.
&a 6 b 8

c 9

e 8&d 7*b h 3

2 i 2

*j 1 k 1

a 5

d 4

f 8 g 8

*e

3Fig. 2. The assignment of pointer equivalen
e labels after HVN.Complexity. The
omplexity of HVN is linear in the size of the graph. UsingTarjan's algorithm for dete
ting SCCs [15℄, step 1 is linear. The algorithm thenvisits ea
h dire
t node exa
tly on
e and examines its in
oming edges. This stepis also linear.Comparison to OVS. HVN is similar to Rountev et al.'s [12℄ OVS optimization.The main di�eren
e lies in our insight that labeling the
ondensed o�ine
on-straint graph is essentially equivalent to performing value-numbering on a blo
kof straight-line
ode, and therefore we
an adapt the
lassi

ompiler optimiza-tion of hash-based value numbering for this purpose. The advantage lies in step2
: in this
ase OVS would give the dire
t node a new label without
he
kingto see if any other dire
t nodes have a similar set of in
oming labels, potentiallymissing a pointer equivalen
e. In the example, OVS would not dis
over that band e are equivalent and would give them di�erent labels.3.2 Extending HVNHVN does not �nd all pointer equivalen
es that
an be dete
ted prior to pointeranalysis be
ause it does not interpret the union and dereferen
e operators. Re
allthat the union operator is impli
it in the o�ine
onstraint graph: for dire
tnode x with in
oming edges from nodes y and z, pts(x) = pts(y) [pts(z). Byinterpreting these operators, we
an in
rease the number of pointer equivalen
esdete
ted, at the
ost of additional time and spa
e.

HR algorithm. By interpreting the dereferen
e operator, we
an relate a varnode v to its
orresponding ref node �v. There are two relations of interest:1. 8x; y 2 V : pe(x) = pe(y)) pe(�x) = pe(�y).2. 8x 2 V : pe(x) = 0) pe(�x) = 0.The �rst relation states that if variables x and y are pointer-equivalent,then so are �x and �y. If x and y are pointer-equivalent, then by de�nition�x and �y will be identi
al. Whereas HVN would give them unique pointerequivalen
e labels, we
an now assign them the same label. By doing so, wemay �nd additional pointer equivalen
es that had previously been hidden by thedi�erent labels.The se
ond relation states that if variable x is a non-pointer, then �x is alsoa non-pointer. It may seem odd to have a
onstraint that dereferen
es a non-pointer, but this
an happen when
ode that initializes pointer values is linkedbut never
alled, for example with library
ode. Exposing this relationship
anhelp identify additional non-pointers and pointer equivalen
es.Figure 3 provides an example. HVN assigns b and e identi
al labels; the �rstrelation above tells us we
an assign �b and �e identi
al labels, whi
h exposesthe fa
t that i and h are equivalent to ea
h other, whi
h HVN missed. Also,variable j is not mentioned in the
onstraints, and therefore the var node jisn't shown in the graph, and it is assigned a pointer equivalen
e label of 0. These
ond relation above tells us that be
ause pe(j) = 0, pe(�j) should also be 0;therefore both �j and k are non-pointers and
an be eliminated.
&a 6 b 8

c 8

e 8&d 7*b 2 h 2

*e 2 i 2

*j 0 k 0

a 5

d 4

f 8 g 8Fig. 3. The assignment of pointer equivalen
e labels after HR and HU.The simplest method for interpreting the dereferen
e operator is to itera-tively apply HVN to its own output until it
onverges to a �xed point. Ea
hiteration
ollapses equivalent variables and eliminates non-pointers, ful�lling thetwo relations we des
ribe. This method adds an additional fa
tor of O(n) to the
omplexity of the algorithm, sin
e in the worst
ase it eliminates a single variablein ea
h iteration until there is only one variable left. The
omplexity of HR istherefore O(n2), but in pra
ti
e we observe that this method generally exhibitslinear behavior.HU algorithm. By interpreting the union operator, we
an more pre
isely tra
kthe relations among points-to sets. Figure 3 gives an example in var node
. Two

di�erent pointer equivalen
e labels rea
h
, one from &a and one from b. HVNtherefore gives
 a new pointer equivalen
e label. However, pts(b) � pts(&a), sowhen they are unioned together the result is simply pts(b). By keeping tra
k ofthis fa
t, we
an assign
 the same pointer equivalen
e label as b.Let fn be a fresh number unique to n; the algorithm will use these freshvalues to represent unknown points-to information. The algorithm operates onthe
ondensed o�ine
onstraint graph as follows:1. Initialize points-to sets for ea
h node. 8v 2 V : pts(&v) = fvg; pts(�v) =ff�vg; if v is dire
t then pts(v) = ;, else pts(v) = ffvg.2. In topologi
al order: for ea
h node x, let S = fy : y ! xg [fxg. Thenpts(x) = Sy2Spts(y).3. Assign labels s.t. 8x; y 2 V : pts(x) = pts(y), pe(x) = pe(y):Sin
e this algorithm is e�e
tively
omputing the transitive
losure of the
onstraint graph, it has a
omplexity of O(n3). While this is the same
omplexityas the pointer analysis itself, HU is signi�
antly faster be
ause, unlike the pointeranalysis, we do not add additional edges to the o�ine
onstraint graph, makingthe o�ine graph mu
h smaller than the graph used by the pointer analysis.Putting It Together: HRU. The HRU algorithm
ombines the HR and HUalgorithms to interpret both the dereferen
e and union operators. HRU modi�esHR to iteratively apply the HU algorithm to its own output until it
onvergesto a �xed point. Sin
e the HU algorithm is O(n3) and HR adds a fa
tor ofO(n), HRU has a
omplexity of O(n4). As with HR this worst-
ase
omplexityis not observed in pra
ti
e; however it is advisable to �rst apply HVN to theoriginal
onstraints, then apply HRU to the resulting set of
onstraints. HVNsigni�
antly de
reases the size of the o�ine
onstraint graph, whi
h de
reasesboth the time and memory
onsumption of HRU.4 Lo
ation Equivalen
eLet V be the set of all program variables; for v 2 V : pts(v) � V is v's points-toset, and le(v) 2 N is the lo
ation equivalen
e label of v, where N is the set ofnatural numbers. Variables x and y are lo
ation equivalent i� 8z 2 V : x 2pts(z), y 2 pts(z). Our goal is to assign lo
ation equivalen
e labels su
h thatle(x) = le(y) implies that x and y are lo
ation equivalent. Lo
ation equivalentvariables
an safely be
ollapsed together in all points-to sets, providing twobene�ts: (1) the points-to sets
onsume less memory; and (2) sin
e the points-tosets are smaller, points-to information is propagated more eÆ
iently a
ross theedges of the
onstraint graph.Without any pointer information it is impossible to
ompute all lo
ationequivalen
es. However, sin
e points-to sets are never split during the pointeranalysis, any variables that are lo
ation equivalent at the beginning are guar-anteed to be lo
ation equivalent at the end. We
an therefore safely
ompute a

subset of the equivalen
es prior to the pointer analysis. We use the same o�ine
onstraint graph as we use to �nd pointer equivalen
e, but we will be labelingadr nodes instead of dire
t nodes. The algorithm assigns ea
h adr node a labelbased on its outgoing edges su
h that two adr nodes have the same label i�they have the same set of outgoing edges. In other words, adr nodes &a and &bare assigned the same label i�, in the
onstraints, 8z 2 V : z � fag , z � fbg.In Figure 1, the adr nodes &a and &d would be assigned the same lo
ationequivalen
e label.While lo
ation and pointer equivalen
es
an be
omputed independently, itis more pre
ise to
ompute lo
ation equivalen
e after we have
omputed pointerequivalen
e. We modify the
riterion to require that adr nodes &a and &b areassigned the same label i� 8y; z 2 V; (y � fag ^ z � fbg)) pe(y) = pe(z).In other words, we don't require that the two adr nodes have the same set ofoutgoing edges, but rather that the nodes in
ident to the adr nodes have thesame set of pointer equivalen
e labels.On
e the algorithm has assigned lo
ation equivalen
e labels, it merges alladr nodes that have identi
al labels. These merged adr nodes are ea
h givena fresh name. Points-to set elements will
ome from this new set of fresh namesrather than from the original names of the merged adr nodes, thereby savingspa
e, sin
e a single fresh name
orresponds to multiple adr nodes. However, wemust make a simple
hange to the subsequent pointer analysis to a

ommodatethis new naming s
heme. When adding new edges from indire
t
onstraints, thepointer analysis must translate from the fresh names in the points-to sets tothe original names
orresponding to the var nodes in the
onstraint graph. Tofa
ilitate this translation we
reate a one-to-many mapping between the freshnames and the original adr nodes that were merged together. In Figure 1, sin
eadr nodes &a and &d are given the same lo
ation equivalen
e label, they willbe merged together and assigned a fresh name su
h as &l. Any points-to setsthat formerly would have
ontained a and d will instead
ontain l; when addingadditional edges from an indire
t
onstraint that referen
es l, the pointer analysiswill translate l ba
k to a and d to
orre
tly pla
e the edges in the online
onstraintgraph.Complexity. LE is linear in the size of the
onstraint graph. The algorithms
ans through the
onstraints, and for ea
h
onstraint a � fbg it inserts pe(a)into adr node &b's set of pointer equivalen
e labels. This step is linear in thenumber of
onstraints (i.e. graph edges). It then visits ea
h adr node, and ituses a hash table to map from that node's set of pointer equivalen
e labels to asingle lo
ation equivalen
e label. This step is also linear.5 Evaluation5.1 MethodologyUsing a suite of six open-sour
e C programs, whi
h range in size from 169K to2.17M LOC, we
ompare the analysis times and memory
onsumption of OVS,

HVN, HRU, and HRU+LE (HRU
oupled with LE). We then use three di�er-ent state-of-the-art in
lusion-based pointer analyses|Pear
e et al. [10℄ (PKH),Heintze and Tardieu [7℄ (HT), and Hardekopf and Lin [6℄ (HL)|to
omparethe optimizations' e�e
ts on the pointer analyses' analysis time and memory
onsumption. These pointer analyses are all �eld-insensitive and implementedin a
ommon framework, re-using as mu
h
ode as possible to provide a fair
omparison. The sour
e
ode is available from the authors upon request.The o�ine optimizations and the pointer analyses are written in C++ andhandle all aspe
ts of the C language ex
ept for varargs. We use sparse bitmapstaken from GCC 4.1.1 to represent the
onstraint graph and points-to sets.The
onstraint generator is separate from the
onstraint solvers; we generate
onstraints from the ben
hmarks using the CIL C front-end [9℄, ignoring anyassignments involving types too small to hold a pointer. External library
allsare summarized using hand-
rafted fun
tion stubs.The ben
hmarks for our experiments are des
ribed in Table 2. We run theexperiments on an Intel Core Duo 1.83 GHz pro
essor with 2 GB of memory,using the Ubuntu 6.10 Linux distribution. Though the pro
essor is dual-
ore, theexe
utables themselves are single-threaded. All exe
utables are
ompiled withGCC 4.1.1 and the '{O3' optimization
ag. We repeat ea
h experiment threetimes and report the smallest time; all the experiments have very low varian
ein performan
e. Times in
lude everything from reading the
onstraint �le fromdisk to
omputing the �nal solution.Table 2. Ben
hmarks: For ea
h ben
hmark we show the number of lines of
ode (
om-puted as the number of non-blank, non-
omment lines in the sour
e �les), a des
riptionof the ben
hmark, and the number of
onstraints generated by the CIL front-end.Name Des
ription LOC ConstraintsEma
s-21.4a text editor 169K 83,213Ghosts
ript-8.15 posts
ript viewer 242K 169,312Gimp-2.2.8 image manipulation 554K 411,783Insight-6.5 graphi
al debugger 603K 243,404Wine-0.9.21 windows emulator 1,338K 713,065Linux-2.4.26 linux kernel 2,172K 574,7885.2 Cost of OptimizationsTables 3 and 4 show the analysis time and memory
onsumption, respe
tively, ofthe o�ine optimizations on the six ben
hmarks. OVS and HVN have roughly thesame times, with HVN using 1.17� more memory than OVS. On average, HRUand HRU+LE are 3.1� slower and 3.4� slower than OVS, respe
tively. BothHRU and HRU+LE have the same memory
onsumption as HVN. As statedearlier, these algorithms are run on the output of HVN in order to improveanalysis time and
onserve memory; their times are the sum of their running time

and the HVN running time, while their memory
onsumption is the maximum oftheir memory usage and the HVN memory usage. In all
ases, the HVN memoryusage is greater. Table 3. O�ine analysis times (se
).Ema
s Ghosts
ript Gimp Insight Wine LinuxOVS 0.29 0.60 1.74 0.96 3.57 2.34HVN 0.29 0.61 1.66 0.95 3.39 2.36HRU 0.49 2.29 4.31 4.28 9.46 7.70HRU+LE 0.53 2.54 4.75 4.64 10.41 8.47Table 4. O�ine analysis memory (MB).Ema
s Ghosts
ript Gimp Insight Wine LinuxOVS 13.1 28.1 61.1 39.1 110.4 96.2HVN 14.8 32.5 71.5 44.7 134.8 114.8HRU 14.8 32.5 71.5 44.7 134.8 114.8HRU+LE 14.8 32.5 71.5 44.7 134.8 114.8Figure 4 shows the e�e
t of ea
h optimization on the number of
onstraints forea
h ben
hmark. On average OVS redu
es the number of
onstraints by 63.4%,HVN by 69.4%, HRU by 77.4%, and HRU+LE by 79.9%. HRU+LE, our mostaggressive optimization, takes 3.4� longer than OVS, while it only redu
es thenumber of
onstraints by an additional 16.5%. However, in
lusion-based analysisis O(n3) time and O(n2) spa
e, so even a relatively small redu
tion in the inputsize
an have a signi�
ant e�e
t, as we'll see in the next se
tion.5.3 Bene�t of OptimizationsTables 5{10 give the analysis times and memory
onsumption for three pointeranalyses|PKH, HT, and HL|as run on the results of ea
h o�ine optimization;OOM indi
ates the analysis ran out of memory. The data is summarized inFigure 5, whi
h gives the average performan
e and memory improvement forthe three pointer analyses for ea
h o�ine algorithm as
ompared to OVS. Theo�ine analysis times are added to the pointer analysis times to make the overallanalysis time
omparison.Analysis Time. For all three pointer analyses, HVN only moderately improvesanalysis time over OVS, by 1.03{1.18�. HRU has a greater e�e
t despite itsmu
h higher o�ine analysis times; it improves analysis time by 1.28{1.88�.HRU+LE has the greatest e�e
t; it improves analysis time by 1.28{2.68�. An

Emac
s

Gho
sts

cri
pt

Gim
p

In
sig

ht
W

ine
Linu

x

Ave
rag

e
0

10

20

30

40

50

%
 C

on
st

ra
in

ts

OVS

HVN

HRU

HRU+LE

Fig. 4. Per
ent of the original number of
onstraints that is generated by ea
h opti-mization. Table 5. Online analysis times for the PKH algorithm (se
).Ema
s Ghosts
ript Gimp Insight Wine LinuxOVS 1.99 19.15 99.22 121.53 1,980.04 1,202.78HVN 1.60 17.08 87.03 111.81 1,793.17 1,126.90HRU 0.74 13.31 38.54 57.94 1,072.18 598.01HRU+LE 0.74 9.50 21.03 33.72 731.49 410.23Table 6. Online analysis memory for the PKH algorithm (MB).Ema
s Ghosts
ript Gimp Insight Wine LinuxOVS 23.1 102.7 418.1 251.4 1,779.7 1,016.5HVN 17.7 83.9 269.5 194.8 1,448.5 840.8HRU 12.8 68.0 171.6 165.4 1,193.7 590.4HRU+LE 6.9 23.8 56.1 58.6 295.9 212.4Table 7. Online analysis times for the HT algorithm (se
).Ema
s Ghosts
ript Gimp Insight Wine LinuxOVS 1.63 13.58 64.45 46.32 OOM 410.52HVN 1.84 12.84 59.68 42.70 OOM 393.00HRU 0.70 9.95 37.27 37.03 1,087.84 464.51HRU+LE 0.54 8.82 18.71 23.35 656.65 332.36

Table 8. Online analysis memory for the HT algorithm (MB).Ema
s Ghosts
ript Gimp Insight Wine LinuxOVS 22.5 97.2 359.7 266.9 OOM 1,006.8HVN 17.7 85.0 279.0 231.5 OOM 901.3HRU 10.8 70.3 205.3 156.7 1,533.0 700.7HRU+LE 6.4 34.9 86.0 69.4 820.9 372.2Table 9. Online analysis times for the HL algorithm (se
).Ema
s Ghosts
ript Gimp Insight Wine LinuxOVS 1.07 9.15 17.55 20.45 534.81 103.37HVN 0.68 8.14 13.69 17.23 525.31 91.76HRU 0.32 7.25 10.04 12.70 457.49 75.21HRU+LE 0.51 6.67 8.39 13.71 345.56 79.99Table 10. Online analysis memory for the HL algorithm (MB).Ema
s Ghosts
ript Gimp Insight Wine LinuxOVS 21.0 93.9 415.4 239.7 1,746.3 987.8HVN 13.9 73.5 263.9 183.7 1,463.5 807.9HRU 9.2 63.3 170.7 121.9 1,185.3 566.6HRU+LE 4.5 22.2 33.4 27.6 333.1 162.6

HVN
HRU

HRU+LE
0

1

2

3

P
er

fo
rm

an
ce

 I
m

pr
ov

em
en

t

PKH

HT

HL

(a) HVN
HRU

HRU+LE
0

2

4

6

M
em

or
y

Im
pr

ov
em

en
t

PKH
HT
HL

(b)Fig. 5. (a) Average performan
e improvement over OVS; (b) Average memory im-provement over OVS. For ea
h graph, and for ea
h o�ine optimization X 2 fHVN,HRU, HRU+LEg, we
ompute OV Stime=memoryXtime=memory .

important fa
tor in the analysis time of these algorithms is the number of timesthey propagate points-to information a
ross
onstraint edges. PKH is the leasteÆ
ient of the algorithms in this respe
t, propagating mu
h more informationthan the other two; hen
e it bene�ts more from the o�ine optimizations. HLpropagates the least amount of information and therefore bene�ts the least.Memory. For all three pointer analyses HVN only moderately improves memory
onsumption over OVS, by 1.2{1.35�. All the algorithms bene�t signi�
antlyfromHRU, using 1.65{1.90� less memory than for OVS. HRU's greater redu
tionin
onstraints makes for a smaller
onstraint graph and fewer points-to sets.HRU+LE has an even greater e�e
t: HT uses 3.2� less memory, PKH uses 5�less memory, and HL uses almost 7� less memory. HRU+LE doesn't furtherredu
e the
onstraint graph or the number of points-to sets, but on average it
uts the average points-to set size in half.Room for Improvement. Despite aggressive o�ine optimization in the form ofHRU plus the e�orts of online
y
le dete
tion, there are still a signi�
ant numberof pointer equivalen
es that we do not dete
t in the �nal
onstraint graph. Thenumber of a
tual pointer equivalen
e
lasses is mu
h smaller than the numberof dete
ted equivalen
e
lasses, by almost 4� on average. In other words, we
ould
on
eivably shrink the online
onstraint graph by almost 4� if we
oulddo a better job of �nding pointer equivalen
es. This is an interesting area forfuture work. On the other hand, we do dete
t a signi�
ant fra
tion of the a
tuallo
ation equivalen
es|we dete
t 90% of the a
tual lo
ation equivalen
es in the�ve largest ben
hmarks, though for the smallest (Ema
s) we only dete
t 41%.Thus there is not mu
h room to improve on the LE optimization.Bitmaps vs. BDDs. The data stru
ture used to represent points-to sets forthe pointer analysis
an have a great e�e
t on the analysis time and mem-ory
onsumption of the analysis. Hardekopf and Lin [6℄
ompare the use ofsparse bitmaps versus BDDs to represent points-to sets and �nd that on av-erage the BDD implementation is 2� slower but uses 5.5� less memory thanthe bitmap implementation. To make a similar
omparison testing the e�e
tsof our optimizations, we implement two versions of ea
h pointer analysis: oneusing sparse bitmaps to represent points-to sets, the other using BDDs for thesame purpose. Unlike BDD-based pointer analyses [2, 16℄ whi
h store the en-tire points-to solution in a single BDD, we give ea
h variable its own BDD tostore its individual points-to set. For example, if v ! fw; xg and y ! fx; zg,the BDD-based analyses would have a single BDD that represents the set oftuples f(v; w); (v; x); (y; x); (y; z)g. Instead, we give v a BDD that representsthe set fw; xg and we give y a BDD that represents the set fw; zg. The twoBDD representations take equivalent memory, but our representation is a simplemodi�
ation that requires minimal
hanges to the existing
ode.The results of our
omparison are shown in Figure 6. We �nd that for HVNand HRU, the bitmap implementations on average are 1.4{1.5� faster than the

HVN
HRU

HRU+LE
0

1

2

P
er

fo
rm

an
ce

 I
m

pr
ov

em
en

t

PKH

HT

HL

(a) HVN
HRU

HRU+LE
0.0

0.5

1.0

1.5

2.0

M
em

or
y

Im
pr

ov
em

en
t

PKH

HT

HL

(b)Fig. 6. (a) Average performan
e improvement over BDDs;(b) Average memory im-provement over BDDs. Let BDD be the BDD implementation and BIT be the bitmapimplementation; for ea
h graph we
ompute BDDtime=memoryBITtime=memory .BDD implementations but use 3.5{4.4� more memory. However, for HRU+LEthe bitmap implementations are on average 1.3� faster and use 1.7� less mem-ory than the BDD implementations, be
ause the LE optimization signi�
antlyshrinks the points-to sets of the variables.6 Con
lusionIn this paper we have shown that it is possible to redu
e both the memory
on-sumption and analysis time of in
lusion-based pointer analysis without a�e
tingpre
ision. We have empiri
ally shown that for three well-known in
lusion-basedanalyses with highly tuned implementations, our o�ine optimizations improveaverage analysis time by 1.3{2.7� and redu
e average memory
onsumption by3.2{6.9�. For the fastest known in
lusion-based analysis [6℄, the optimizationsimprove analysis time by 1.3� and redu
e memory
onsumption by 6.9�. Wehave also found the somewhat surprising result that with our optimizations asparse bitmap representation of points-to sets is both faster and requires lessmemory than a BDD representation.In addition, we have provided a roadmap for further investigations into theoptimization of in
lusion-based analysis. Our optimization that exploits lo
ationequivalen
e
omes
lose to the limit of what
an be a

omplished, but our otheroptimizations identify only a small fra
tion of the pointer equivalen
es. Thus,the exploration of new methods for �nding and exploiting pointer equivalen
esshould be a fruitful area for future work.A
knowledgments. We thank Brandon Strei� and Luke Robison for their help in
ondu
ting experiments and Dan Berlin for his help with the GCC
ompiler inter-nals. Kathryn M
Kinley, Ben Wiedermann, and Adam Brown provided valuable
omments on earlier drafts. This work was supported by NSF grant ACI-0313263and a grant from the Intel Resear
h Coun
il.

Referen
es1. Lars Ole Andersen. Program Analysis and Spe
ialization for the C ProgrammingLanguage. PhD thesis, DIKU, University of Copenhagen, May 1994.2. Mar
 Berndl, Ondrej Lhotak, Feng Qian, Laurie Hendren, and Navindra Umanee.Points-to analysis using BDDs. In Programming Language Design and Implemen-tation (PLDI), pages 103{114, 2003.3. Preston Briggs, Keith D. Cooper, and L. Taylor Simpson. Value numbering. Soft-ware Pra
ti
e and Experien
e, 27(6):701{724, 1997.4. Manuvir Das. Uni�
ation-based pointer analysis with dire
tional assignments. InProgramming Language Design and Implementation (PLDI), pages 35{46, 2000.5. Manuel Faehndri
h, Je�rey S. Foster, Zhendong Su, and Alexander Aiken. Partialonline
y
le elimination in in
lusion
onstraint graphs. In Programming LanguageDesign and Implementation (PLDI), pages 85{96, 1998.6. Ben Hardekopf and Calvin Lin. The Ant and the Grasshopper: Fast and a

uratepointer analysis for millions of lines of
ode. In Programming Language Design andImplementation (PLDI), 2007.7. Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using CLA: Amillion lines of C
ode in a se
ond. In Programming Language Design and Imple-mentation (PLDI), pages 24{34, 2001.8. Donglin Liang and Mary Jean Harrold. Equivalen
e analysis and its appli
ation inimproving the eÆ
ien
y of program sli
ing. ACM Trans. Softw. Eng. Methodol.,11(3):347{383, 2002.9. George C. Ne
ula, S
ott M
Peak, Shree Prakash Rahul, and Westley Weimer. CIL:Intermediate language and tools for analysis and transformation of C programs.In Computational Complexity, pages 213{228, 2002.10. David Pear
e, Paul Kelly, and Chris Hankin. EÆ
ient �eld-sensitive pointer anal-ysis for C. In ACM workshop on Program Analysis for Software Tools and Engi-neering (PASTE), pages 37{42, 2004.11. David J. Pear
e, Paul H. J. Kelly, and Chris Hankin. Online
y
le dete
tion anddi�eren
e propagation for pointer analysis. In 3rd International IEEE Workshopon Sour
e Code Analysis and Manipulation (SCAM), pages 3{12, 2003.12. Atanas Rountev and Satish Chandra. O�-line variable substitution for s
alingpoints-to analysis. In Programming Language Design and Implementation (PLDI),pages 47{56, 2000.13. Mar
 Shapiro and Susan Horwitz. Fast and a

urate
ow-insensitive points-toanalysis. In ACM Symposium on Prin
iples of Programming Languages (POPL),pages 1{14, 1997.14. Bjarne Steensgaard. Points-to analysis in almost linear time. In ACM Symposiumon Prin
iples of Programming Languages (POPL), pages 32{41, 1996.15. Robert Tarjan. Depth-�rst sear
h and linear graph algorithms. SIAM J. Comput.,1(2):146{160, June 1972.16. John Whaley and Moni
a S. Lam. Cloning-based
ontext-sensitive pointer aliasanalysis. In Programming Language Design and Implementation (PLDI), pages131{144, 2004.

