
A Portable Parallel N-body Solver

�

E Christopher Lewis

y

Calvin Lin

y

Lawrence Snyder

y

George Turkiyyah

z

Abstract

We present parallel solutions for direct and fast n-body solvers written in the ZPL

language. We describe the direct solver, compare its performance against a sequential

C program, and show performance results for two very di�erent parallel machines: the

KSR-2 and the Paragon. We also discuss the implementation of the fast solver in ZPL,

including factors pertinent to data movement.

1 Introduction

Parallelism is an important means of obtaining high performance, but parallel programs

are notoriously di�cult to write. To reduce these programming costs, many high level

languages have been proposed by the computer science community. However, the portability

and performance of these languages have typically been established only for toy programs,

and these languages have not been embraced by engineers and scientists interested in high

performance computing. This paper demonstrates the feasibility of writing portable parallel

programs in a high level language, ZPL [5], to solve a realistic problem: the N-body solution

kernel of a high Reynolds number wind engineering simulation. Using ZPL, the parallel

application has a clean and concise solution that achieves good performance on two widely

di�erent parallel architectures: the Kendall Square KSR-2 and the Intel Paragon.

The context of the problem is a wind engineering simulation for studying wind e�ects

on buildings [7]. The objective is to understand the temporal and spatial distributions

of the velocity and pressure �elds around buildings and building complexes, and to assess

the signi�cance of geometric e�ects (building shape, nearby buildings, etc.) on the wind

response so that improved design recommendations can be developed. The simulation

uses a Lagrangian particle-based numerical scheme (vortex method) appropriate for
uid

ows characterized by high Reynolds numbers and complex geometries. When coupled

with a fast solver for computing vortex interactions, vortex methods appear to have

several computational advantages over grid-based methods because they do not su�er from

numerical di�usion; they are simpler to implement, particularly for complex geometries;

and they are likely to exploit the architectures of distributed-memory computers more

e�ectively.

The simulation uses a random vortex method and is coupled with two N-body solvers

for computing the vortex interactions at each time step: One solver computes vortex

interactions in a thin region around the ground and building boundaries (a \numerical"

boundary layer), while another handles the interactions in the exterior region of the
ow.

This latter solver is by far the most computationally expensive part of the solution. Parallel

�

This research was supported in part by ONR Contract N00014-92-J-1824, NASA grant NAG 2-831, and

NSF Contracts CDA-9211095 and DDM-929622.

y

Dept. of Computer Science and Engineering, FR-35, University of Washington, Seattle, WA 98195

z

Dept. of Civil Engineering, FX-10, University of Washington, Seattle, WA 98195

1

2 Lewis et al.

solutions to this component of the simulation are particularly important because meaningful

3D problems typically require hundreds of thousands of vortices.

This paper describes our preliminary implementation of portable, parallel solutions for

this N-body solver. After a brief introduction to ZPL, we describe the implementation

of a simple direct (O(n

2

)) version and show its performance characteristics. We then

describe the development of a fast version (O(n)) that exhibits a multigrid-like structure.

We describe the data structures we use and show how the evaluation of vortex interactions

can be e�ectively expressed in ZPL. We conclude by examining adaptive techniques that

would make the fast solver applicable to problems with more irregular point distributions.

2 The ZPL Language

ZPL is an array sublanguage that provides support for data parallel computations [5].

As a sublanguage of Orca C|a lower level, more general language that supports MIMD

parallelism|ZPL is free to be extremely clean and concise, avoiding any complicating

features that do not pertain directly to data parallelism. In addition to most of the standard

control
ow constructs and data types that are found in languages such as Pascal, ZPL

has the notion of ensemble arrays, which are given special support: Ensemble arrays are

distributed across processors and can be manipulated as whole entities using new language

constructs|regions, directions, and the At operator (@)|that eliminate tedious and error-

prone array indexing and clearly expose communication to the compiler. ZPL also provides

reduction and scan operators, as well as support for the clean speci�cation of boundary

conditions. (ZPL also has standard arrays, which we refer to simply as \arrays.")

A region is an index set that is applied to an entire statement or block of statements.

The following code fragment shows the declaration of a region, R, and illustrates its use:

The elements of ensemble array B that are in the index set f1..Ng � f1..Mg are assigned

to the corresponding elements of the ensemble array A.

region R = [1..N, 1..M];

[R] A := B;

A direction is a vector that is used with the At operator to shift an ensemble array reference

by some user-de�ned distance. For example, the following code fragment shifts the elements

of A to the right by one column.

direction west = [0,-1];

[R] A := A@west;

Directions are also used to de�ne neighboring regions. For example, [west of R] refers to

the region that borders [R] to the left.

Scalar data types can be promoted to ensemble arrays. Similarly sequential functions

can be promoted, i.e., applied to ensemble array arguments, which encourages code re-use.

ZPL programs have sequential semantics, which allow them to be developed and

debugged on workstations. The portability and good performance of ZPL programs stem

from the parallel programming model|the Phase Abstractions [1, 3, 6]|upon which it is

built. This programming model encourages locality of reference and parameterized control

over granularity and communication. Previous studies have presented evidence that this

model supports portability across diverse parallel machines [4]. Finally, an important

feature of ZPL is the
exibility to specify at runtime key parameters that can a�ect

communication granularity and data mapping.

A Portable Parallel N-body Solver 3

3 Implementation of the Direct Solver

The simplest but most expensive strategy for computing vortex interactions computes all

pairwise interactions individually. Therefore, each vortex must accumulate the e�ect of

every other vortex. A general data structure for such an algorithm is a 1D ensemble array

of cells, where each cell is a list of particles. This can be expressed in ZPL as:

var vortices: [R] array [1..M] of particle;

potential: [R] array [1..M] of double;

region R = [1..P];

The size, P, of the ensemble array and the number of particles to place in each cell of

the array can be speci�ed at run-time. This scheme provides
exibility in choosing an

appropriate granularity of parallelism. One would select P to suit the target architecture,

for example to match the number of processors or the machine's ideal granularity of

communication. By default, the ZPL compiler maps 2D ensemble arrays to processors

in a 2D blocked fashion.

The algorithm consists of P iterations (shown below). Each iteration shifts the contents

of a cell to its neighbor using a torus topology. In ZPL the At operator shifts an entire cell's

contents, in this case M particles, and the cyclic shift is completed using the wrap operator,

which connects ends of an array as in a torus.

The computation portion of an iteration involves computing the pairwise interactions

of just two cells. The procedure add carrier effects() is a scalar procedure that is de�ned

on arrays. The parallelism comes implicitly from the ensemble array data structure. The

code itself is identical to what would be written for a scalar computation. It is a nested

loop to compute the e�ects of the particles in a visitor cell on the particles in the cell.

ZPL allows this function to be promoted to operate on ensemble arrays. This promotion

of scalar functions to array functions greatly simpli�es the programming process.

[R] begin

read_input("data", vortices);

potential := 0.0; -- initialize all particles of all cells

carrier := vortices

for i := 1 to P do

[left of R] wrap carrier; -- send right cell to left

carrier := carrier@left; -- shift cells left

add_carrier_effects(vortices, carrier, potential);

end;

write(phi);

end;

The ZPL compiler produces ANSI C code that can execute on any number of processors.

This output code is identical for all target machines but is linked with a small machine-

dependent library that de�nes operations such as message sends and receives. For shared

memory machines such as the KSR-2, message passing is implemented as shared queues.

The compiler currently performs no machine-speci�c optimizations.

Figure 1 shows that the direct solver achieves good speedup relative to the hand-coded

C version on the Intel Paragon. The Paragon is a mesh-connected distributed memory

computer with Intel i860 processors and 16MB of memory per node. The ZPL program

running on one processor is 7.9% slower than the C version. With 16 processors the speedup

is 13.76, and the relative speedup (based on the ZPL program running on one processor)

is 14.85.

4 Lewis et al.

The KSR-2 is a shared memory multiprocessor with a ring of rings interconnection

structure. Each processor runs at 40Mhz and has 32MB of local memory. On the KSR-

2 the ZPL program is 15% slower than C. For 16 processors the speedup relative to C is

11.47, and the relative speedup is 13.23. There are two reasons for the lower speedup on the

KSR. The processor is faster, making the cost of communication relatively more expensive,

and our current message passing implementation copies data more times than is necessary.

With larger problem sizes the speedup will naturally improve.

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

sp
ee

du
p

processors

linear
Paragon
KSR-2

Fig. 1. Speedup for the Direct Code (6000 particles)

4 Implementation of a Fast Solver

A direct method that evaluates all interactions is prohibitively expensive for realistic

simulations. Fast solvers exploit the fact that the e�ect of a neighboring particle decreases

as its distance increases. This section describes the implementation of a fast vortex method

that requires in principle a linear amount of work. Computational savings in the fast solver

are obtained by combining large numbers of particles into a small set of discrete values (a

ring) whose e�ect approximates the e�ect of the cluster of particles. There are two kinds

of cluster approximations: \outer-rings" that represent the e�ect of a cluster in the far

�eld and \inner rings" that represent the e�ect of far-away particles in the near �eld. Fast

solvers construct and evaluate these cluster approximations in a hierarchical fashion, much

like multigrid solvers. The approximations we use are based on Poisson's formula [2].

The data structure consists of a hierarchy of distributed grids that store these ring

approximations and transfer information between adjacent levels. The particles are stored

at the �nest level as an ensemble array of lists of particles, as shown below.

region R3 = [1..N/2, 1..M/2]; -- N and M can be set at runtime

R4 = [1..N, 1..M];

type part_list = record

count: integer;

list : array [1..Max] of particle;

end;

var vortices : [R4] part_list;

ring4 : [R4] ring;

ring3 : [R3] ring;

A Portable Parallel N-body Solver 5

direction sw2 = [2, -2]; north = [-1, 0];

The implementation of this solver is similar to that of one V-cycle of a multigrid method.

As shown below, a �rst sweep starts from the �nest level and builds outer approximations

of the velocity vector at all levels. A second sweep builds inner approximations from the

coarsest level down to the �nest. These sweeps require inter-level communication. In

the descent phase, intra-level communication is needed to compute ring-ring interactions

between a cell and its well-separated neighbors whose parents are not well-separated from

the cell's parent. Such neighbors are at most three cells away. The e�ects of particles in

neighboring cells are computed directly at the �nest level.

procedure fast();

[R4] begin

initialize();

ORAfinest(vortices, ring4);

go_up_43(ring3, ring4); -- inter-level communication

[R3] go_up_32(ring2, ring3);

[Expand2(R2)] visit_2_neighbors(ring2); -- intra-level communication

[Expand3(R3)] visit_3_neighbors(ring2); -- intra-level communication

[R3] go_down_23(ring2, ring3);

. . .

neighbor_contributions(vortices); -- nearest neighbor communication

end;

Fig. 2. Intra-level Communication with 2-Neighbors.

Figure 2 shows the intra-level communication with 2-neighbors. The corresponding

ZPL code is shown below. First, for each cell, the southwest neighboring cell is copied to

the local cell. Then, a sweep is made around the box, accumulating the e�ects of ring-ring

interactions. To specify the data motion corresponding to the thick arrow in Figure 2, the

visit 2 neighbors() function is logically invoked in the shaded region shown in Figure 2

(this is expressed above using a macro called Expand2 that expands to a list of regions).

Note that the same code applies to all cells, regardless of boundary conditions. The compiler

does not generate communication for \neighbors" that lie outside the data space (i.e., when

the thick arrow enters the shaded region). The 3-neighbor communication is analogous,

although not all 3-neighbors are needed.

procedure visit_2_neighbors(var ring: [2] Box); -- ring is a 2D ensemble array

var tmp : [R] Box;

i : integer;

begin

6 Lewis et al.

tmp := ring;

-- add the contributions of the 2-neighbors

tmp := tmp@sw2; -- translate to southwest

for i := 1 to 4 do

tmp := tmp@north;

add_contributions_OR_lm(ring, tmp);

end;

. . . -- repeat for north, east, south and west

end;

5 Conclusions

ZPL allows the elegant expression|even when compared against sequential programs|of

both the direct and fast N-body solvers. The direct solver achieved good performance on

two radically di�erent architectures. We also expect good speedup for the fast solver.

In a complete wind simulation the fast solver must be invoked at each time step.

Each time step introduces new particles to the simulation to satisfy appropriate boundary

conditions. Furthermore, as particles already present in the simulation domain move, they

may cross cell boundaries of the �nest grid level or may leave the domain altogether.

Particles must therefore be redistributed for the next time step of the N-body solver. Our

ZPL implementation speci�es the movement of these particles across the simulation domain,

but leaves the details of inter-processor communication to the compiler. These will be shown

in an upcoming report.

A general issue with all multi-level computations is the mapping of the di�erent levels

of the hierarchy to processors. For example, grids can be aligned eccentrically to minimize

communication (as shown above in our region de�nitions) or aligned concentrically to

maximize parallelism. The best choice will likely depend on the architecture. ZPL allows

these mappings to be speci�ed at runtime, and we intend to explore these issues on various

machines.

References

[1] Gail Alverson, William Griswold, David Notkin, and Lawrence Snyder. A
exible communica-

tion abstraction for nonshared memory parallel computing. In Proceedings of Supercomputing

'90, November 1990.

[2] Christopher R. Anderson. An implementation of the fast multipole method without multipoles.

SIAM Journal of Sci. Stat. Computing, 13(4):923{947, July 1992.

[3] William Griswold, Gail Harrison, David Notkin, and Lawrence Snyder. Scalable abstractions

for parallel programming. In Proceedings of the Fifth Distributed Memory Computing

Conference, 1990. Charleston, South Carolina.

[4] Calvin Lin and Lawrence Snyder. A portable implementation of SIMPLE. International

Journal of Parallel Programming, 20(5):363{401, 1991.

[5] Calvin Lin and Lawrence Snyder. ZPL: An array sublanguage. In Uptal Banerjee, David

Gelernter, Alexandru Nicolau, and David Padua, editors, Languages and Compilers for Parallel

Computing, pages 96{114. Springer-Verlag, 1993.

[6] Lawrence Snyder. Foundations of practical parallel programming languages. In Proceedings

of the Second International Conference of the Austrian Center for Parallel Computation.

Springer-Verlag, 1993.

[7] George Turkiyyah, Dorothy Reed, and Jiyao Yang. Fast vortex methods for predicting wind-

induced pressures on building systems. submitted for publication, 1993.

