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Abstract

This article introduces volume leases as a mechanism for providing server-driven cache consistency
for large-scale, geographically distributed networks. Volume leases retain the good performance, fault
tolerance, and server scalability of the semantically weaker client-driven protocols that are now used on
the web. Volume leases are a variation of object leases, which were originally designed for distributed file
systems. However, whereas traditional object leases amortize overheads over long lease periods, volume
leases exploit spatial locality to amortize overheads across multiple objects in a volume. This approach
allows systems to maintain good write performance even in the presence of failures. Using trace-driven
simulation, we compare three volume lease algorithms against four existing cache consistency algorithms
and show that our new algorithms provide strong consistency while maintaining scalability and fault-
tolerance. For a trace-based workload of web accesses, we find that volumes can reduce message traffic
at servers by 40% compared to a standard lease algorithm, and that volumes can considerably reduce
the peak load at servers when popular objects are modified.
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I. INTRODUCTION

To fulfill the promise of an environment in which essentially all human knowledge is available from
a set of servers distributed across wide area networks, the data infrastructure must evolve from proto-
cols optimized for one application—browsers—to protocols that support a range of more demanding
applications. In the future, we expect data-intensive applications to extend beyond human-driven
browsers to include program-driven agents, robots, distributed databases, and data miners that will
place new demands on the data-distribution infrastructure. These new applications will require ag-
gressive caching for acceptable performance, and they will not be as tolerant of cache inconsistencies
as a browser. Unfortunately, current cache consistency protocols do not scale to large systems such as
the web because of poor performance, weak consistency guarantees, or poor fault tolerance.

Cache consistency can be achieved through either client-driven protocols, in which clients send
messages to servers to determine if cached objects are current, or server-driven protocols, in which
servers notify clients when data change. In either case, the challenge is to guarantee that a client
read always returns the result of the latest completed write. Protocols that achieve this are said to be
strongly consistent.

Client-driven protocols force caches to make a difficult choice. They must either poll the server
on each access to cached data or risk supplying incorrect data. The first option, polling on each
read, increases both the load on the server and the latency of each cache request; both effects can be
significant in large scale systems because servers support many clients and polling latencies can be
high. The other option, periodic polling, relaxes consistency semantics and allows caches to supply
incorrect data. For example, web browsers account for weak consistency through a human-based
error-correction protocol in which users manually press a “reload” button when they detect stale data.



Weak consistency semantics may be merely annoying to a human, but they can cause parallel and
distributed programs to compute incorrect results, and they complicate the use of aggressive caching
or replication hierarchies because replication is not transparent to the application.

Server-driven protocols introduce three challenges of their own. First, strong consistency is difficult
to maintain in the face of network or process failures because before modifying an object, a server
using these protocols must contact all clients that cache that object. If there are many cached copies,
it is likely that at least one client will be unreachable, in which case the server cannot complete the
write without violating its consistency guarantees. Second, a server may require a significant amount
of memory to track which clients cache which objects. Third, sending cache invalidation messages may
entail large bursts of server activity when popular objects are modified.

In distributed file systems, the problems of server driven protocols were addressed by using leases
[8], which specify a length of time during which servers notify clients of modifications to cached data.
After a lease’s timeout expires, a client must renew the lease by sending a message to the server before
the client may access the cached object. Leases maintain strong consistency while allowing servers to
make progress even if failures occur. If a server cannot contact a client, the server delays writes until
the unreachable client’s lease expires, at which time it becomes the client’s responsibility to contact
the server. Furthermore, leases free servers from notifying idle clients before modifying an object; this
reduces both the size of the server state and the load sustained by the server when reads and writes
are bursty.

Although leases provide significant benefits for file system workloads, they may be less effective in
a wide area network (WAN). To amortize the cost of renewing a lease across multiple reads, a lease
should be long enough that in the common case the cache can be accessed without a renewal request.
Unfortunately, at least for browser workloads, repeated accesses to an object are often spread over
minutes or more. When lease lengths are shorter than the time between reads, leases reduce to client
polling. On the other hand, longer lease lengths reduce the three original advantages of leases.

In this article, we show how volume leases [22] restore the benefits of leases for WAN workloads.
Volume leases combine short leases on groups of files (volumes) with long leases on individual files.
Under the volume leases algorithm, a client may access a cached object if it holds valid leases on
both the object and the object’s volume. This combination provides the fault-tolerance of short leases
because when clients become unreachable, a server may modify an object once the short volume lease
expires. At the same time, the cost of maintaining the leases is modest because volume leases amortize
the cost of lease renewal over a large number of objects.

We examine three variations of volume leases: volume leases, volume leases with delayed invalida-
tions, and best effort volume leases. In the delayed invalidations algorithm, servers defer sending object
invalidation messages to clients whose volume leases have expired. This optimization reduces peaks in
server load, and it can reduce overall load by batching invalidation messages and eliminating messages
entirely in cases when clients never renew a volume lease. The third variation is motivated by the
observation that some workloads do not require strict consistency but do prefer that clients observe
fresh data. For example, when an important event occurs, a news service would like to invalidate stale
cached copies of their front page quickly, but they may want to begin distributing the new front page
immediately rather than wait until they have notified all customers that the old page is invalid. The
best effort variation of volume leases uses relaxed consistency to satisfy such applications. We find that
this approach can improve performance by allowing servers to utilize longer volume lease timeouts.

This article evaluates the performance of volume leases using trace-based simulation. We compare
the volume algorithms with three traditional consistency algorithms: client polling, server invalidations,
and server invalidations with leases. Our simulations demonstrate the benefits of volume leases. For
example, volume leases with delayed invalidations can ensure that clients never see stale data and that
servers never wait more than 100 seconds to perform a write, all while using about the same number
of messages as a standard invalidation protocol that can stall server writes indefinitely. Compared to
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SUMMARY OF ALGORITHM PERFORMANCE.

a standard object lease algorithm that also bounds server write delays at 100 seconds, this volume
algorithm reduces message traffic by 40%.

The rest of this article is organized as follows. Section II describes traditional algorithms for provid-
ing consistency to cached data, and Section IIT describes our new volume lease algorithms. Section IV
discusses our experimental methodology, and Section V presents our experimental results. After dis-
cussing related work in Section VI, Section VII summarizes our conclusions.

II. TRADITIONAL CONSISTENCY ALGORITHMS

This section reviews four traditional cache consistency algorithms. The first two—Poll Each Read
and Poll—rely on client polling. The remaining algorithms— Callback and Lease—are based on server
invalidation. In describing each algorithm we refer to Table I, which summarizes key characteristics of
each algorithm discussed in this paper, including our three new algorithms. We also refer to Figure 1,
which defines several parameters of the algorithms.

In Table I, we summarize the cost of maintaining consistency for an object o using each of the
algorithms. Columns correspond to key figures of merit: the expected stale time indicates how long
a client expects to read stale data after o is modified, assuming random reads, random updates, and
failures. The worst stale time indicates how long o can be cached and stale assuming that (1) o
was loaded immediately before it was modified and (2) a network failure prevented the server from
contacting the client caching o. The read cost shows the expected fraction of cache reads requiring
a message to the server. The write cost indicates how many messages the server expects to send to
notify clients of a write. The acknowledgment wait delay indicates how long the server will wait to
write if it cannot invalidate a cache. The server state column indicates how many clients the server
expects to track for each object.

A. Poll each read

Poll Each Read is the simplest consistency algorithm. Before accessing a cached object, a client asks
the object’s server if the object is valid. If so, the server responds affirmatively; if not, the server sends
the current version.

This algorithm is equivalent to always having clients read data from the server with the optimization
that unchanged data is not resent. Thus, clients never see stale data, and writes by the server always
proceed immediately. If a network failure occurs, clients unable to contact a server have no guarantees
about the validity of cached objects. To cope with network failures, clients take application-dependent
actions, such as signaling an error or returning the cached data along with a warning that it may be
stale.

The primary disadvantage of this algorithm is poor read performance, as all reads are delayed by
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Fig. 1. Definition of parameters in Table I

a roundtrip message between the client and the server. In addition, these messages may impose
significant load on the servers [11].

B. Poll

Poll is based on Poll Each Read, but it assumes that cached objects remain valid for at least a
timeout period of t seconds after a client validates the data. Hence, when ¢ = 0 Poll is equivalent
to Poll Each Read. Choosing the appropriate value of ¢ presents a trade-off: On the one hand, long
timeouts improve performance by reducing the number of reads that wait for validation. In particular,
if a client accesses data at a rate of R reads per second and the timeout is long enough to span several
reads, then only % of the client’s reads will require network messages (see Table I). On the other hand,
long timeouts increase the likelihood that caches will supply stale data to applications. Gwertzman
and Seltzer [10] show that for web browser workloads, even for a timeout of ten days, server load is
significantly higher than under the Callback algorithm described below. The same study finds that an
adaptive timeout scheme works better than static timeouts, but that when the algorithm’s parameters
are set to make the adaptive timeout algorithm impose the same server load as Callback, about 4% of
client reads receive stale data.

If servers can predict with certainty when objects will be modified, then Poll is ideal. In this case,
servers can tell clients to use cached copies of objects until the time of the next modification. For this
study, we do not assume that servers have such information about the future.

C. Callback

In a Callback algorithm [11], [17], servers keep track of which clients are caching which objects.
Before modifying an object, a server notifies the clients with copies of the object and does not proceed
with the modification until it has received an acknowledgment from each client. As shown in Table I,
Callback’s read cost is low because a client is guaranteed that a cached object is valid until told
otherwise. However, the write cost is high because when an object is modified the server invalidates
the cached objects, which may require up to Cy,; messages. Furthermore, if a client has crashed or if
a network partition separates a server from a client, then a write may be delayed indefinitely.

D. Lease

To address the limitations of Callback, Gray and Cheriton proposed Lease [8]. To read an object, a
client first acquires a lease for it with an associated timeout . The client may then read the cached
copy until the lease expires. When an object is modified, the object’s server invalidates the cached
objects of all clients whose leases have not expired. To read the object after the lease expires, a client
first contacts the server to renew the lease.

Lease allows servers to make progress while maintaining strong consistency despite failures. If a
client or network failure prevents a server from invalidating a client’s cache, the server need only wait



until the lease expires before performing the write. By contrast, Callback may force the write to wait
indefinitely.

Leases also improve scalability of writes. Rather than contacting all clients that have ever read
an object, a server need only contact recently active clients that hold leases on that object. Leases
can thus reduce the amount of state that the server maintains to track clients, as well as the cost of
sending invalidation messages [14]. Servers may also choose to invalidate caches by simply waiting for
all outstanding leases to expire rather than by sending messages to a large number of clients; we do
not explore this option in this study. Lease presents a tradeoff similar to the one offered by Poll. Long
leases reduce the cost of reads by amortizing each lease renewal over R -t reads. On the other hand,
short leases reduce the delay on writes when failures occur.

As with polling, a client that is unable to contact a server to renew a lease knows that it holds
potentially stale data. The client may then take application-specific actions, such as signaling an error
or returning the suspect data along with a warning. However, unlike Poll, Lease never lets clients
believe that stale objects are valid.

III. VOLUME LEASES

Traditional leases provide good performance when the cost of renewing leases is amortized over many
reads. Unfortunately, for many WAN workloads, reads of an object may be spread over seconds or
minutes, requiring long leases in order to amortize the cost of renewals [10]. To make leases practical
for these workloads, our algorithms use a combination of object leases, which are associated with
individual data objects, and volume leases, which are associated with a collection of related objects
on the same server. In our scheme a client reads data from its cache only if both its object and
volume leases for that data are valid, and a server can modify data as soon as either lease has expired.
By making object leases long and volume short, we overcome the limitations of traditional leases:
long object leases have low overhead, while short volume leases allow servers to modify data without
long delays. Furthermore, if there is spatial locality within a volume, the overhead of renewing short
leases on volumes is amortized across many objects. This section first describes the Volume Leases
algorithm and then examines a variation called Volume Leases with Delayed Invalidations. At the end
of this section, we examine Best Effort Volume Leases to support applications where timely updates
are desired, but not required.

A. The basic algorithm

Figures 2, 3, and 4 show the data structures used by the Volume Leases algorithm, the server side
of the algorithm, and the client side of the algorithm, respectively. The basic algorithm is simple:

« Reading Data. Clients read cached data only if they hold valid object and volume leases on
the corresponding objects. Expired leases are renewed by contacting the appropriate servers. When
granting a lease for an object o to a client ¢, if 0 has been modified since the last time ¢ held a valid
lease on o then the server piggybacks the current data on the lease renewal.

« Writing Data. Before modifying an object, a server sends invalidation messages to all clients that
hold valid leases on the object. The server delays the write until it receives acknowledgments from all
clients, or until the volume or object leases expire. After modifying the object, the server increments
the object’s version number.

A.1 Handling unreachable clients

Client crashes or network partitions can make some clients temporarily unreachable, which may
cause problems. Consider the case of an unreachable client whose volume lease has expired but that
still holds a valid lease on an object. When the client becomes reachable and attempts to renew its
volume lease, the server must invalidate any modified objects for which the client holds a valid object



lease. Our algorithm thus maintains at each server an Unreachable set that records the clients that
have not acknowledged—within some timeout period—one of the server’s invalidation messages.

After receiving a read request or a lease renewal request from a client in its Unreachable set, a server
removes the client from its Unreachable set, renews the client’s volume lease, and notifies the client to
renew its leases on any currently cached objects belonging to that volume. The client then responds by
sending a list of objects along with their version numbers, and the server replies with a message that
contains a vector of object identifiers. This message (1) renews the leases of any objects not modified
while the client was unreachable and (2) invalidates the leases of any objects whose version number
changed while the client was unreachable.

Data Structures

Volume A volume v has the following attributes
id unique identifier

objects = set of objects in v
epoch = volume epoch number (incremented on server reboot)
expire = time by which all current leases on v will have expired
at = set of (client, expire) of valid leases on v
unreachable = set of clients whose volume leases have expired
and who may have missed object invalidation messages
Object An object o has the following attributes
id = unique identifier
data = the object’s data
version = version number
expire = time by which all current leases on o will have expired
at = set of (client, expire) of valid leases on o
volume = volume

Fig. 2. Data Structures for Volume Lease algorithm.

A .2 Handling server failures

When a server fails we assume that the state used to maintain cache consistency is lost. In LAN
systems, servers often reconstruct this state by polling their clients [17]. This approach is impractical
in a WAN;, so our protocol allows a server to incrementally construct a valid view of the object lease
state, while relying on volume lease expiration to prevent clients from using leases that were granted
by a failed server. To recover from a crash, a server first invalidates all volume leases by waiting for
them to expire. This invalidation can be done in two ways. A server can save on stable storage the
latest expiration time of any volume lease. Then, upon recovery, it reads this timestamp and delays
all writes until after this expiration time. Alternatively, the server can save on stable storage the
duration of the longest possible volume lease. Upon recovery, the server then delays any writes until
this duration has passed.

Since object lease information is lost when a server crashes, the server effectively invalidates all
object leases by treating all clients as if they were in the Unreachable set. It does this by maintaining
a volume epoch number that is incremented with each reboot. Thus, all client requests to renew a
volume must also indicate the last epoch number known to the client. If the epoch number is current,
then volume lease renewal proceeds normally. If the epoch number is old, then the server treats the
client as if the client were in the volume’s Unreachable set.

It is also possible to store the cache consistency information on stable storage [5], [9]. This approach
reduces recovery time at the cost of increased overhead on normal lease renewals. We do not investigate
this approach in this paper.

A .3 The cost of volume leases

To analyze Volume Leases, we assume that servers grant leases of length ¢, on volumes and of length
t on objects. Typically, the volume lease is much shorter than the object leases, but when a client
accesses multiple objects from the same volume in a short amount of time, the volume lease is likely



Server writes object o

for all (client, expire) € o.at

if expire > currentT'ime A client ¢ o.volume.unreachable
To_contact < To_contact U client

send(INVALIDATE,o.id) to all clients in T'o_contact

Ty < min(o.volume.expire, o.expire)

if Ty < msgTimeout
Ty < msgTimeout

while (Ty > currentTime) and (To_contact # () do
receive(ACK_INVALIDATE, o.id) from ¢ € To_contact
To_contact < To_contact — { ¢ }

o.volume.unreachable < o.volume.unreachable U {To_contact}

o.at + 0

o.version < o.version + 1

write o

Server renews client lease
receive(RENEW _LEASE_REQ,volld,vol Epoch,objld, clientVersion) from c
let v be the volume such that v.id = volld
let o be the object such that o.id = objId
if (c € v.unreachable) or (v.epoch > vol Epoch) then
v.unreachable < v.unreachable U ¢
recoverUnreachableClient(c, v) // see below
if ¢ € v.unreachable
v.expire < currentlime + volumeLeaseTimeout
v.at < v.at — {(client, X)} // delete old leases for client
v.at + v.at U {(client,v.expire)}
o.expire < currentTime + objLeaseTimeout
o.at + o.at — {{c, X)} // delete old leases for client
o.at < o.at U {(c, 0.expire)}
if (o.version > clientVersion) then
send(RENEW _LEASE_RESP,v.id,v.expire,v.epoch,o.id, o.version, o.expire,o.data)
else if(o.version = clientVersion) then
send(RENEW _LEASE_RESP,v.id, v.expire,v.epoch,o.id, o.version, o.expire)

recoverUnreachableClient(client ¢, volume v)
send(MUST_RENEW _ALL,v.id) to ¢
Ty < msgT'imeout
renewRecvd < FALSE
while (Ty > currentTime) and (—renewRecvd) do
receive(RENEW _OBJ_LEASES,volld,leaseSet) from ¢
rewnewRecvd <+— TRUE
if (-renewRecvd) then
return // client still unreachable
for all (objId,objVersion) € leaseSet do
let o be the object such that o.id = objId
if (o.version > objVersion) then
tnvalList < invalList U {objId}
o.at + o.at — {{c, X)} // delete old leases for client
else
o.expire < currentTime + objLeaseTimeout
renewList < renewList U (0.id, o.version, o.expire)
o.at + o.at — {{c, X)} // delete old leases for client
o.at < o.at U {(c, 0.expire)}
send(INVALIDATE,invalList, REN EW, renewList)
Ty = currentTime + msgTimeout
while (Ty > currentTime) and (c € v.unreachable)
receive (ACK_INVALIDATE) from ¢
v.unreachable < v.unreachable — {c}

Fig. 3. The Volume Leases Protocol (Server Side).

to be valid for all of these accesses. As the read cost column of Table I indicates, the cost of a typical

read, measured in messages per read, is W + %. The first term reflects the fact that the
ogv o

volume lease must be renewed every ¢, seconds but that the renewal is amortized over all objects in
the volume, assuming that object o is read R, times per second. The second term is the standard
cost of renewing an object lease. As the ack wait delay column indicates, if a client or network failure
prevents a server from contacting a client, a write to an object must be delayed for min(t,t,), i.e.,
until either lease expires. As the write cost and server state columns indicate, servers track all clients
that hold valid object leases and notify them all when objects are modified. Finally, as the stale time
columns indicate, Volume Leases never supplies stale data to clients.



Client reads object o
if —wvalidLease(o.volume) V —walidLease(o.id) then
renew Lease(o.volume, o)
read local copy of o

renewLease(volume v, object o)
epoch <+ max(v.epoch, —1)
vnum < max(o.version,—1)
send(RENEW _LEASE_REQ,v.id, epoch,0.id, vnum)
// Note: if any recieve times out, abort the read.
if receive(MUST_RENEW _ALL,v.id) from server then
renewAll(v)
// Note: if any recieve times out, abort the read.
receive(RENEW _LEASE_RESP,v.id,v.expire,v.epoch,o.version, o.expire[,o.data]) from server

renewAll(volume v)
leaseSet < 0
for all objects o for which ((o.volume = v) A (validLease(0))
leaseSet < leaseSet U (o.id, o.version)
send(RENEW _OBJ_LEASES,v.id,leaseSet) to server
// Note: if any recieve times out, abort the read.
receive (INVALIDATE,invalList, REN EW,renewList) from server
for all objId € invalList
let o be the object for which o.id = objId
o.expire = —1; delete o.data; o.data < NULL
for all (objId,version, expire) € renewList
let o be the object for which o.id = objId
assert(o.version = version)
o.expire <— exrpire
send(ACK_INVALIDATE,v.id) to server

validLease(lease )
if l.expire > currentTime
return TRUE
else
return FALSE

Client receives object invalidation message for object o
receive(INVALIDATE,objId) from server
let o be the object for which o.id = objId
o.expire = —1; delete o.data; o.data <+ NULL
send(ACK_INVALIDATE,o.id) to server

Fig. 4. The Volume Leases Protocol (Client Side).

A .4 Protocol verification

To verify the correctness of the consistency algorithm, we implemented a variation of the volume
leases algorithm described in Figures 3 and 4 using the Teapot system [4]. The Teapot version of the
algorithm differs from the one described in the figures in two ways. First, the Teapot version uses a
simplified reconnection protocol for Unreachable clients. Rather than restore a client’s set of object
leases, the Teapot version clears all of the client’s object leases when an Unreachable client reconnects.
The second difference is that in the Teapot version every network request includes a sequence number
that is repeated in the corresponding reply. These sequence numbers allow the protocol to match
replies to requests.

Teapot allows us to describe the consistency state machines in a convenient syntax and then to
generate Murphi [7] code for mechanical verification. The Murphi system searches the protocol’s state
space for deadlocks or cases where the system’s correcness invariants are violated. Although Murphi’s
exhaustive search of the state space is an exponential algorithm that only allows us to verify small
models of the system, in practice this approach finds many bugs that are difficult to locate by hand
and gives us confidence in the correctness of our algorithm [3].

Murphi verifies that the following two invariants hold: (1) when the server writes an object, no client
has both a valid object lease and a valid volume lease for that object and (2) when a client reads an
object, it has the current version of the object. The system we verified contains one volume with two
objects in it, and it includes one client and one server that communicate over a network. Clients and



servers can crash at any time, and the network layer can lose messages at any time but cannot deliver
messages out of order; the network layer can also report messages lost when they are, in fact, delivered.
We have tested portions of the state space for some larger models, but larger models exhaust our test
machine’s 1 GB of memory before the entire state space is examined.

B. Volume leases with delayed invalidations

The performance of Volume Leases can be improved by recognizing that once a volume lease expires,
a client cannot use object leases from that volume without first contacting the server. Thus, rather
than invalidating object leases immediately for clients whose volume leases have expired, the server can
send invalidation messages when (and if) the client renews the volume lease. In particular, the Volume
Leases with Delayed Invalidations algorithm modifies Volume Leases as follows. If the server modifies
an object for which a client holds a valid object lease but an expired volume lease, the server moves the
client to a per-volume Inactive set, and the server appends any object invalidations for inactive clients
to a per-inactive-client Pending Message list. When an inactive client renews a volume, the server
sends all pending messages to that client and waits for the client’s acknowledgment before renewing
the volume. After a client has been inactive for d seconds, the server moves the client from the Inactive
set to the Unreachable set and discards the client’s Pending Message list. Thus, d limits the amount of
state stored at the server. Small values for d reduce server state but increase the cost of re-establishing
volume leases when unreachable clients become reconnected.

As Table I indicates, when a write occurs, the server must contact the C, clients that hold valid
volume leases rather than the C, clients that hold valid object leases. Delayed invalidations provide
three advantages over Volume Leases. First, server writes can proceed faster because many invalidation
messages are delayed or omitted. Second, the server can batch several object invalidation messages
to a client into a single network message when the client renews its volume lease, thereby reducing
network overhead. Third, if a client does not renew a volume for a long period of time, the server can
avoid sending the object invalidation messages by moving the client to the Unreachable set and using
the reconnection protocol if the client ever returns.

C. Best-effort volume leases

Some applications do not require strong consistency but do want to deliver timely updates to clients.
For example, when an important event occurs, a news service would like to invalidate stale copies of
their front page quickly rather than wait until all customers know that the old page is invalid. Thus,
it is interesting to consider best-effort algorithms. A best effort algorithm should always allow writes
to proceed immediately, and it should notify clients of writes when doing so does not delay writes.

Any of the volume algorithms may be converted to best effort algorithms by sending invalidations
wn parallel with writes. Table I summarizes the characteristics of the best effort version of the Delayed
Invalidations algorithm. By sending invalidations in parallel with writes, the algorithm limits the
expected stale read time to notify(C,)—the time it takes for the server to send the messages—without
delaying writes.

Note that in the best effort algorithms, volume leases serve a different purpose than in the original
volume algorithms: they limit the time during which clients can see stale data. Whereas strong
consistency algorithms generally set the volume lease time (¢,) to be the longest period they are
willing to delay a write, this is no longer a factor for best effort algorithms. Instead, these algorithms
set t, to the longest time they will allow disconnected clients to unknowingly see stale data. Since
only the disconnected clients are affected by long ¢, values, this may allow larger values for t, than
before. For example, a news service using strong consistency might not want to block dissemination of
a news update for more than a few seconds, but it may be willing to allow a few disconnected clients
to see the old news for several minutes. Thus, such a system might use ¢, = 10 seconds under strong
consistency, but it might use t, = 10 minutes under a best effort algorithm. As with the original



10

volume algorithms, combining short volume leases with long object leases allows leases to be short
while amortizing renewal costs over many objects.

IV. METHODOLOGY

To examine the algorithms’ performance, we simulated each algorithm discussed in Table I under a
workload based on web trace data.

A. Simulator

We simulate a set of servers that modify files and provide files to clients, and a set of clients that
read files. The simulator accepts timestamped read and modify events from input files and updates
the cache state. The simulator records the size and number of messages sent by each server and each
client, as well as the size of the cache consistency state maintained at each server.

We validated the simulator in two ways. First, we obtained Gwertzman and Seltzer’s simulator [10]
and one of their traces, and compared our simulator’s results to theirs for the algorithms that are
common between the two studies. Second, we used our simulator to examine our algorithms under
simple synthetic workloads for which we could analytically compute the expected results. In both
cases, our simulator’s results match the expected results.

Limitations of the simulator. Our simulator makes several simplifying assumptions. First, it
does not simulate concurrency—it completely processes each trace event before processing the next
one. This simplification allows us to ignore details such as mutual exclusion on internal data structures,
race conditions, and deadlocks. Although this could change the messages that are sent (if, for instance,
a file is read at about the same time it is written), we do not believe that simulating these details
would significantly affect our performance results.

Second, we assume infinitely large caches and we do not simulate server disk accesses. Both of these
effects reduce potentially significant sources of work that are the same across algorithms. Thus, our
results will magnify the differences among the algorithms.

Finally, we assume that the system maintains cache consistency on entire files rather than on some
finer granularity. We chose to examine whole-file consistency because this is currently the most common
approach for WAN workloads [1]. Fine-grained consistency may reduce the amount of data traffic, but
it also increases the number of control messages required by the consistency algorithm. Thus, fine-
grained cache consistency would likely increase the relative differences among the algorithms.

B. Workload

We use a workload based on traces of HTTP accesses at Boston University [6]. These traces span four
months during January 1995 through May 1995 and include all HT'TP accesses by Mosaic browsers—
including local cache hits—for 33 SPARCstations.

Although these traces contain detailed information about client reads, they do not indicate when
files are modified. We therefore synthesize writes to the objects using a simple model based on two
studies of write patterns for web pages. Bestavros [2] examined traces of the Boston University web
server, and Gwertzman and Seltzer [10] examined the write patterns of three university web servers.
Both studies concluded that few files change rapidly, and that globally popular files are less likely to
change than other files. For example, Gwertzman and Seltzer’s study found that 2%-23% of all files
were mutable (each file had a greater than 5% chance of changing on any given day) and 0%-5% of
the files were very mutable (had greater than 20% chance of changing during a 24-hour period).

Based on these studies, our synthetic write workload divides the files in the trace into four groups.
We give the 10% most referenced files a low average number of random writes per day (we use a
Poisson distribution with an expected number of writes per day of 0.005). We then randomly place
the remaining 90% of the files into three sets. The first set, which includes 3% of all files in the trace,
are very mutable and have an expected number of writes per day of 0.2. The second set, 10% of all
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Fig. 5. Number of messages vs. timeout length.

files in the trace, are mutable and have an expected number of writes per day of 0.05. The remaining
77% of the files have an expected number of writes per day of 0.02. In section V-D, we examine the
sensitivity of our results to these parameters.

We simulate the 1000 most frequently accessed servers; this subset of the servers accounts for more
than 90% of all accesses in the trace. Our workload consists of 977,899 reads of 68,665 different files
plus 209,461 artificially generated writes to those files. The files in the workload are grouped into 1000
volumes corresponding to the 1000 servers. We leave more sophisticated grouping as future work.

V. SIMULATION RESULTS

This section presents simulation results that compare the volume algorithms with other consistency
schemes. In interpreting these results, remember that the trace workload tracks the activities of a
relatively small number of clients. In reality, servers would be accessed by many other clients, so the
absolute values we report for server and network load are lower than what the servers would actually
experience. Instead of focusing on the absolute numbers in these experiments, we focus on the relative
performance of the algorithms under this workload.

A. Server/network load

Figure 5 shows the performance of the algorithms. The x-axis, which uses a logarithmic scale, gives
the object timeout length in seconds (¢) used by each algorithm, while the y-axis gives the number of
messages sent between the client and servers. For Volume Lease, t refers to the object lease timeout
and not the volume lease timeout; we use different curves to show different volume lease timeouts and
indicate the volume lease time (t,) in the second parameter of the label. For the Delay Volume lines,
we assume an infinite acknowledgement wait delay (d) as signified by the third parameter; this means
that a server never moves idle clients to the unreachable list. The line for Callback is flat because
Callback invalidates all cached copies regardless of t. The Lease and basic Volume Lease lines decline
until ¢ reaches about 100,000 seconds and then rise slightly. This shape comes from two competing
influences. As t rises, the number of lease renewals by clients declines, but the number of invalidations
sent to clients holding valid leases increases. For this workload, once a client has held an object for
100,000 seconds, it is more likely that the server will modify the object than that the client will read
it, so leases shorter than this reduce system load. As t increases, Client Poll and Delayed Invalidation
send strictly fewer messages. Client Poll never sends invalidation messages, and Delayed Invalidation
avoids sending invalidations to clients that are no longer accessing a volume, even if the clients hold
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valid object leases. Note that for timeouts of 100,000 seconds, Client Poll results in clients accessing
stale data on about 1% of all reads, and for timeout values of 1,000,000 seconds, the algorithm results
in clients accessing stale copies on about 5% of all reads.

The separation of the Lease(t), Volume(t,t, = 10), and Volume(t, t, = 100) lines shows the additional
overhead of maintaining volume leases. Shorter volume timeouts increase this overhead. Lease can be
thought of as the limiting case of infinite-length volume leases.

Although Volume Leases imposes a significant overhead compared to Lease for a given value of ¢,
applications that care about fault tolerance can achieve better performance with Volume Leases than
without. For example, the triangles in the figure highlight the best performance achievable by a system
that does not allow writes to be delayed for more than 10 seconds for Lease(t), Volume(t,t, = 10),
and Delayed Invalidations(t,t, = 10,d = 0o). Volume(t = 100000, t, = 10) sends 32% fewer messages
than Lease(t = 10), and Delayed Invalidations(t = 107,t, = 10,d = o) sends 39% fewer messages
than Lease(t = 10). Similarly, as indicated by the squares in the figure, for applications that can
delay writes at most 100 seconds, Volume Lease outperforms Lease by 30% and Delayed Invalidations
outperforms the lease algorithm by 40%.

Although providing strong consistency is more expensive than the Poll algorithm, the cost appears
tolerable for many applications. For example, Poll(t = 100000) uses about 15% fewer messages than
Delayed Invalidations(t = 107, t, = 100,d = oo), but it supplies stale data to clients on about 1% of
all reads. Even in the extreme case of Poll(t = 107) (in which clients see stale data on over 35% of
reads), Delayed Invalidations uses less than twice as many messages as the polling algorithm.

We also examined the network bytes sent by these algorithms and the server CPU load imposed
by these algorithms. By both of these metrics, the difference in cost of providing strong consistency
compared to Poll was smaller than the difference by the metric of network messages. The relative
differences among the lease algorithms was also smaller for these metrics than for the network messages
metric for the same reasons.

A key advantage of Best Effort Volume Leases for applications that permit relaxed consistency is
the algorithm may enable longer volume lease timeouts and thus may reduce consistency overhead.
Strict consistency algorithms set the volume timeout, ¢,, to be the longest tolerable write delay, but
the best effort algorithms can set ¢, to be the longest time disconnected clients should be allowed to
unknowingly access stale data; this may allow larger values of t,, for some services that use Best Effort.
Figure 6 shows the effect of varying the volume lease timeout on the number of messages sent.
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B. Server state

Figures 7 and 8 show the amount of server memory required to implement the algorithms. The first
shows the requirements at the trace’s most heavily loaded server, and the second shows the demand
at the trace’s tenth most heavily loaded server. The x-axis shows the timeout in seconds using a log
scale. The y-axis is given in bytes and represents the average number of bytes of memory used by the
server to maintain consistency state. We charge the servers 16 bytes to store an object or volume lease
or callback record. For messages queued by the Delay algorithm, we also charge 16 bytes.

For short timeouts, the lease algorithms use less memory than the callback algorithm because the
lease algorithms discard callbacks for inactive clients. Compared to standard leases, Volume Leases
increase the amount of state needed at servers, but this increase is small because volume leases are
short, so servers generally maintain few active volume leases. If the Delay algorithm never moves
clients to the Unreachable set it may store messages destined for inactive clients for a long time and
use more memory than the other algorithms. Conversely, if Delay uses a short d parameter so that
it can move clients from the Inactive set to the Unreachable set and discard their pending messages
and callbacks, Delay can use less state than the other lease or callback algorithms. Note that running
Delay with short discard times will increase server load and the number of consistency messages. We



14

le+07

1e+06

100000

Client Poll(10)
! Object L eass(10)
10000 |

‘ Delay Volume(1x1077,10,00) ‘

\
1000 [ w

Periods with at Least that Load

100

10

Messages per 1 Second
Fig. 9. Periods of heavy server load under default workload for the most heavily loaded server.

1e+07

le+06

100000

E
o
—
® )
£ 10000 |
‘g Delay Volume(1x107,10,1)
- "
= W
Callback
% 1000 [ Volume(1x10"7,10)
172}
8 —
g 100 e
Client Poll(10) T
Object L ease(10) N
10 T
1 Il Il
0 20 0 60 80 100

Messages per 1 Second

Fig. 10. Periods of heavy server load under “bursty write” workload for the most heavily loaded server.

have not yet quantified this effect because it will depend on implementation details of the reconnection
protocol.

C. Bursts of load

Figure 9 shows a cumulative histogram in which the y value, shown in log scale, counts the number
of 1-second periods in which the load at the server was at least x messages sent or received per second.
There are three groups of lines. Client Poll and Object Lease both use short timeouts, so when clients
read groups of objects from a server, these algorithms send groups of object renewal messages to
the server. Clallback and Volume use long object lease periods, so read traffic puts less load on the
server, but writes result in bursts of load when popular objects are modified. For this workload, peak
loads correspond to bursts of about one message per client. Finally, Delay uses long object leases to
reduce bursts of read traffic from clients accessing groups of objects, and it delays sending invalidation
messages to reduce bursts of traffic when writes occur. This combination reduces the peak load on the
server for this workload.

For the experiment described in the previous paragraph, Client Poll and Object Lease have periods
of higher load than Callback and Volume for two reasons. First, the system shows performance for a
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modest number of clients. Larger numbers of clients would increase the peak invalidate load for Callback
and Volume. For Client Poll and Object Lease, increasing the number of clients would increase peak
server load less dramatically because read requests from additional clients would be more spread out
in time. The second reason for Callback and Volume's advantage in this experiment is that in the
trace clients read data from servers in bursts, but writes to volumes are not bursty in that a write to
one object in a volume does not make it more likely that another object from the same volume will
soon be modified. Conversely, Figure 10 shows a “bursty write” workload in which when one object
is modified, we select k& other objects from the same volume to modify at the same time. For this
graph, we compute k£ as a random exponential variable with a mean of 10. This workload significantly
increases the bursts of invalidation traffic for Volume and Callback.

D. Sensitivity

Our workload utilizes a trace of read events, but it generates write events synthetically. In this
subsection, we examine how different assumptions about write frequency affect our results.

Figure 11 shows the performance of the algorithms for representative parameters as we vary the write
frequency. Our default workload gives the 10% most referenced files a per-day change probability of
0.5%, 3% of the files a per-day change probability of 20%, 10% of the files a probability of 5%, and
77% of the files a per-day change probability of 2%. For each point on the graph, we multiply those
per-day probabilities by the value indicated by the x-axis. Note that our workload generator converts
per-day change probabilities to per-second change probabilities, so per-day probabilities greater than
100% are possible

We examine the lease algorithms as they might be parameterized in a system that never wishes to
delay writes more than 100 seconds and compare to a poll algorithm with a 100-second timeout and
a callback algorithm with infinite timeout. These results indicate that the Client Poli(t = 100) and
Lease(t = 100) are little affected by changing write rates. This is because the object timeouts are
so short that writes are unlikely to cause many invalidations even when their frequency is increased
100-fold. The volume lease algorithms and Callback all cost more as write frequency increases. The
cost of Volume(t = 1000000,t, = 100) and Callback increase more quickly than the cost of Delayed
Volume(t = 10000000,¢, = 100,d = oo) because the first two algorithms have long object callback
periods and thus send invalidation messages to all clients that have done reads between a pair of writes.
Delayed Volume rises more slowly because it does not send object invalidations once a volume lease
expires.



16

VI. RELATED WORK

Our study builds on efforts to assess the cost of strong consistency in wide area networks. Gwertzman
and Seltzer [10] compare cache consistency approaches through simulation and conclude that protocols
that provide weak consistency are the most suitable to a Web-like environment. In particular, they
find that an adaptive version of Poll(t) exerts a lower server load than an invalidation protocol if the
polling algorithm is allowed to return stale data 4% of the time. We arrive at different conclusions. In
particular, we observe that much of the apparent advantage of weak consistency over strong consistency
in terms of network traffic comes from clients reading stale data [14]. Also, we use volume leases to
address many of the challenges to strong consistency.

We also build on the work of Liu and Cao [14], who use a prototype server invalidation system to
evaluate the overhead of maintaining consistency at the servers compared to client polling. They also
study ways to reduce server state via per-object leases. As with our study, their workload is based on
a trace of read requests and synthetically-generated write requests. Our work differs primarily in our
treatment of fault tolerance issues. In particular, after a server recovers our algorithm uses volume
timeouts to “notify” clients that they must contact the server to renew leases; Liu and Cao’s algorithm
requires the server to send messages to all clients that might be caching objects from the server. Also,
our volume leases provide a graceful way to handle network partitions; when a network failure occurs,
Liu and Cao’s algorithm must periodically retransmit invalidation messages, and it does not guarantee
strong consistency in that case.

Cache consistency protocols have long been studied for distributed file systems [11], [17], [19]. Several
aspects of Coda’s [13] consistency protocol are reflected in our algorithms. In particular, our notion
of a volume is similar to that used in Coda [16]. However, ours differ in two key respects. First,
Coda does not associate volumes with leases, and relies instead on other methods to determine when
servers and clients become disconnected. The combination of short volume leases and long object
leases is one of our main contributions. Second, because Coda was designed for different workloads, its
design trade-offs are different. For example, because Coda expects clients to communicate with a small
number of servers and it regards disconnection as a common occurrence, Coda aggressively attempts
to set up volume callbacks to all servers on each hoard walk (every 10 minutes). In our environment,
clients are associated with a larger universe of servers, so we only renew volume leases when a client
is actively accessing the server. Also, in our algorithm when an object is modified, the server does
not send volume invalidation messages to clients that hold volume leases but not object leases on the
object in question. We thus avoid the false sharing problem of which Mummert warns [16].

Our best effort leases algorithm provides similar semantics to and was inspired by Coda’s optimistic
concurrency protocol [13]. Bayou [20] and Rover [12] also implement optimistic concurrency, but they
can detect and react to more general types of conflicts than can Coda.

Worrell [21] studied invalidation-based protocols in a hierarchical caching system and concluded that
server-driven consistency was practical for the web. We plan to explore ways to add hierarchy to our
algorithms in the future.

Cache consistency protocols have long been studied for distributed file systems [18], [17], [19].
Howard et. al [11] reached the somewhat counter-intuitive conclusion that server-driven consistency
generally imposed less load on the server than client polling even though server-driven algorithms pro-
vide stronger guarantees for clients. This is because servers have enough information to know exactly
when messages need to be sent.

Mogul’s draft proposal for HT'TP 1.1 [15] includes a notion of grouping files into volumes to reduce
the overhead of HTTP’s polling-based consistency protocol. We are not aware of any implementations
of this idea.

Finally, we note that volume leases on the set of all objects provided by a server can be thought of
as providing a framework for the “heartbeat” messages used in many distributed state systems.
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VII. CONCLUSIONS

We have taken three cache consistency algorithms that have been previously applied to file systems
and quantitatively evaluated them in the context of Web workloads. In particular, we compared the
timeout-based Client Poll algorithm with the Callback algorithm, in which a server invalidates before
each write, and Gray and Cheriton’s Lease algorithm. The Lease algorithm presents a tradeoff similar
to the one offered by Client Poll. On the one hand, long leases reduce the cost of reads by amortizing
each lease renewal over many reads. On the other hand, short leases reduce the delay on writes when
a failure occurs. To solve this problem, we have introduced the Volume Lease, Volume Lease with
Delayed Invalidation, and Best Effort Volume Lease algorithms that allow servers to perform writes
with minimal delay, while minimizing the number of messages necessary to maintain consistency. Our
simulations confirm the benefits of these algorithm.
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