
1Volume Leases for Consistency in Large-ScaleSystemsJian Yin, Lorenzo Alvisi, Michael Dahlin, and Calvin LinComputer Sciences DepartmentUniversity of Texas at AustinAbstractThis article introduces volume leases as a mechanism for providing server-driven cache consistencyfor large-scale, geographically distributed networks. Volume leases retain the good performance, faulttolerance, and server scalability of the semantically weaker client-driven protocols that are now used onthe web. Volume leases are a variation of object leases, which were originally designed for distributed �lesystems. However, whereas traditional object leases amortize overheads over long lease periods, volumeleases exploit spatial locality to amortize overheads across multiple objects in a volume. This approachallows systems to maintain good write performance even in the presence of failures. Using trace-drivensimulation, we compare three volume lease algorithms against four existing cache consistency algorithmsand show that our new algorithms provide strong consistency while maintaining scalability and fault-tolerance. For a trace-based workload of web accesses, we �nd that volumes can reduce message tra�cat servers by 40% compared to a standard lease algorithm, and that volumes can considerably reducethe peak load at servers when popular objects are modi�ed.Keywordscache consistency, lease, volume, fault tolerance, scalable serverI. IntroductionTo ful�ll the promise of an environment in which essentially all human knowledge is available froma set of servers distributed across wide area networks, the data infrastructure must evolve from proto-cols optimized for one application|browsers|to protocols that support a range of more demandingapplications. In the future, we expect data-intensive applications to extend beyond human-drivenbrowsers to include program-driven agents, robots, distributed databases, and data miners that willplace new demands on the data-distribution infrastructure. These new applications will require ag-gressive caching for acceptable performance, and they will not be as tolerant of cache inconsistenciesas a browser. Unfortunately, current cache consistency protocols do not scale to large systems such asthe web because of poor performance, weak consistency guarantees, or poor fault tolerance.Cache consistency can be achieved through either client-driven protocols, in which clients sendmessages to servers to determine if cached objects are current, or server-driven protocols, in whichservers notify clients when data change. In either case, the challenge is to guarantee that a clientread always returns the result of the latest completed write. Protocols that achieve this are said to bestrongly consistent.Client-driven protocols force caches to make a di�cult choice. They must either poll the serveron each access to cached data or risk supplying incorrect data. The �rst option, polling on eachread, increases both the load on the server and the latency of each cache request; both e�ects can besigni�cant in large scale systems because servers support many clients and polling latencies can behigh. The other option, periodic polling, relaxes consistency semantics and allows caches to supplyincorrect data. For example, web browsers account for weak consistency through a human-basederror-correction protocol in which users manually press a \reload" button when they detect stale data.



2Weak consistency semantics may be merely annoying to a human, but they can cause parallel anddistributed programs to compute incorrect results, and they complicate the use of aggressive cachingor replication hierarchies because replication is not transparent to the application.Server-driven protocols introduce three challenges of their own. First, strong consistency is di�cultto maintain in the face of network or process failures because before modifying an object, a serverusing these protocols must contact all clients that cache that object. If there are many cached copies,it is likely that at least one client will be unreachable, in which case the server cannot complete thewrite without violating its consistency guarantees. Second, a server may require a signi�cant amountof memory to track which clients cache which objects. Third, sending cache invalidation messages mayentail large bursts of server activity when popular objects are modi�ed.In distributed �le systems, the problems of server driven protocols were addressed by using leases[8], which specify a length of time during which servers notify clients of modi�cations to cached data.After a lease's timeout expires, a client must renew the lease by sending a message to the server beforethe client may access the cached object. Leases maintain strong consistency while allowing servers tomake progress even if failures occur. If a server cannot contact a client, the server delays writes untilthe unreachable client's lease expires, at which time it becomes the client's responsibility to contactthe server. Furthermore, leases free servers from notifying idle clients before modifying an object; thisreduces both the size of the server state and the load sustained by the server when reads and writesare bursty.Although leases provide signi�cant bene�ts for �le system workloads, they may be less e�ective ina wide area network (WAN). To amortize the cost of renewing a lease across multiple reads, a leaseshould be long enough that in the common case the cache can be accessed without a renewal request.Unfortunately, at least for browser workloads, repeated accesses to an object are often spread overminutes or more. When lease lengths are shorter than the time between reads, leases reduce to clientpolling. On the other hand, longer lease lengths reduce the three original advantages of leases.In this article, we show how volume leases [22] restore the bene�ts of leases for WAN workloads.Volume leases combine short leases on groups of �les (volumes) with long leases on individual �les.Under the volume leases algorithm, a client may access a cached object if it holds valid leases onboth the object and the object's volume. This combination provides the fault-tolerance of short leasesbecause when clients become unreachable, a server may modify an object once the short volume leaseexpires. At the same time, the cost of maintaining the leases is modest because volume leases amortizethe cost of lease renewal over a large number of objects.We examine three variations of volume leases: volume leases, volume leases with delayed invalida-tions, and best e�ort volume leases. In the delayed invalidations algorithm, servers defer sending objectinvalidation messages to clients whose volume leases have expired. This optimization reduces peaks inserver load, and it can reduce overall load by batching invalidation messages and eliminating messagesentirely in cases when clients never renew a volume lease. The third variation is motivated by theobservation that some workloads do not require strict consistency but do prefer that clients observefresh data. For example, when an important event occurs, a news service would like to invalidate stalecached copies of their front page quickly, but they may want to begin distributing the new front pageimmediately rather than wait until they have noti�ed all customers that the old page is invalid. Thebest e�ort variation of volume leases uses relaxed consistency to satisfy such applications. We �nd thatthis approach can improve performance by allowing servers to utilize longer volume lease timeouts.This article evaluates the performance of volume leases using trace-based simulation. We comparethe volume algorithms with three traditional consistency algorithms: client polling, server invalidations,and server invalidations with leases. Our simulations demonstrate the bene�ts of volume leases. Forexample, volume leases with delayed invalidations can ensure that clients never see stale data and thatservers never wait more than 100 seconds to perform a write, all while using about the same numberof messages as a standard invalidation protocol that can stall server writes inde�nitely. Compared to



3Reads Writes StateExpected Worst Read Write Acknowledge Serverstale time stale time cost cost wait delay state(seconds) (seconds) (messages) (messages) (seconds) (bytes)Poll Each Read 0 0 1 0 0 0Poll(t) t2 t min( 1R�t ; 1) 0 0 0Callback(t) 0 0 0 Ctot 1 size(Ctot)Lease(t) 0 0 1R�t Co t size(Co)Volume Leases(t, tv) 0 0 1Po2V (Rotv) + 1R�t Co min(t; tv) size(Co)Vol. Delay Inval(t, tv , d) 0 0 1Po2V (Rotv) + 1R�t Cv min(t; tv) size(Cd)Best E�ort VolumeDelay Inval(t, tv , d) min( t2 ; tv2 ;notify(Cv)) min(t; tv) 1Po2V (Rotv) + 1R�t Cv 0 size(Cd)TABLE ISummary of algorithm performance.a standard object lease algorithm that also bounds server write delays at 100 seconds, this volumealgorithm reduces message tra�c by 40%.The rest of this article is organized as follows. Section II describes traditional algorithms for provid-ing consistency to cached data, and Section III describes our new volume lease algorithms. Section IVdiscusses our experimental methodology, and Section V presents our experimental results. After dis-cussing related work in Section VI, Section VII summarizes our conclusions.II. Traditional consistency algorithmsThis section reviews four traditional cache consistency algorithms. The �rst two|Poll Each Readand Poll|rely on client polling. The remaining algorithms|Callback and Lease|are based on serverinvalidation. In describing each algorithm we refer to Table I, which summarizes key characteristics ofeach algorithm discussed in this paper, including our three new algorithms. We also refer to Figure 1,which de�nes several parameters of the algorithms.In Table I, we summarize the cost of maintaining consistency for an object o using each of thealgorithms. Columns correspond to key �gures of merit: the expected stale time indicates how longa client expects to read stale data after o is modi�ed, assuming random reads, random updates, andfailures. The worst stale time indicates how long o can be cached and stale assuming that (1) owas loaded immediately before it was modi�ed and (2) a network failure prevented the server fromcontacting the client caching o. The read cost shows the expected fraction of cache reads requiringa message to the server. The write cost indicates how many messages the server expects to send tonotify clients of a write. The acknowledgment wait delay indicates how long the server will wait towrite if it cannot invalidate a cache. The server state column indicates how many clients the serverexpects to track for each object.A. Poll each readPoll Each Read is the simplest consistency algorithm. Before accessing a cached object, a client asksthe object's server if the object is valid. If so, the server responds a�rmatively; if not, the server sendsthe current version.This algorithm is equivalent to always having clients read data from the server with the optimizationthat unchanged data is not resent. Thus, clients never see stale data, and writes by the server alwaysproceed immediately. If a network failure occurs, clients unable to contact a server have no guaranteesabout the validity of cached objects. To cope with network failures, clients take application-dependentactions, such as signaling an error or returning the cached data along with a warning that it may bestale.The primary disadvantage of this algorithm is poor read performance, as all reads are delayed by



4 Variable Meaningt timeout for an objecttv timeout for a volumed time servers store state for inactive clientsR frequency object o is readV Number of active objects per volumeCtot Number of clients with a copy of object oCo Number of clients with lease on object oCv Number of clients with lease on volume vCd Number of clients whose volume leases expiredless than d seconds ago.size(x) bytes of server state to support x clientsFig. 1. De�nition of parameters in Table Ia roundtrip message between the client and the server. In addition, these messages may imposesigni�cant load on the servers [11].B. PollPoll is based on Poll Each Read, but it assumes that cached objects remain valid for at least atimeout period of t seconds after a client validates the data. Hence, when t = 0 Poll is equivalentto Poll Each Read. Choosing the appropriate value of t presents a trade-o�: On the one hand, longtimeouts improve performance by reducing the number of reads that wait for validation. In particular,if a client accesses data at a rate of R reads per second and the timeout is long enough to span severalreads, then only 1R�t of the client's reads will require network messages (see Table I). On the other hand,long timeouts increase the likelihood that caches will supply stale data to applications. Gwertzmanand Seltzer [10] show that for web browser workloads, even for a timeout of ten days, server load issigni�cantly higher than under the Callback algorithm described below. The same study �nds that anadaptive timeout scheme works better than static timeouts, but that when the algorithm's parametersare set to make the adaptive timeout algorithm impose the same server load as Callback, about 4% ofclient reads receive stale data.If servers can predict with certainty when objects will be modi�ed, then Poll is ideal. In this case,servers can tell clients to use cached copies of objects until the time of the next modi�cation. For thisstudy, we do not assume that servers have such information about the future.C. CallbackIn a Callback algorithm [11], [17], servers keep track of which clients are caching which objects.Before modifying an object, a server noti�es the clients with copies of the object and does not proceedwith the modi�cation until it has received an acknowledgment from each client. As shown in Table I,Callback's read cost is low because a client is guaranteed that a cached object is valid until toldotherwise. However, the write cost is high because when an object is modi�ed the server invalidatesthe cached objects, which may require up to Ctot messages. Furthermore, if a client has crashed or ifa network partition separates a server from a client, then a write may be delayed inde�nitely.D. LeaseTo address the limitations of Callback, Gray and Cheriton proposed Lease [8]. To read an object, aclient �rst acquires a lease for it with an associated timeout t. The client may then read the cachedcopy until the lease expires. When an object is modi�ed, the object's server invalidates the cachedobjects of all clients whose leases have not expired. To read the object after the lease expires, a client�rst contacts the server to renew the lease.Lease allows servers to make progress while maintaining strong consistency despite failures. If aclient or network failure prevents a server from invalidating a client's cache, the server need only wait



5until the lease expires before performing the write. By contrast, Callback may force the write to waitinde�nitely.Leases also improve scalability of writes. Rather than contacting all clients that have ever readan object, a server need only contact recently active clients that hold leases on that object. Leasescan thus reduce the amount of state that the server maintains to track clients, as well as the cost ofsending invalidation messages [14]. Servers may also choose to invalidate caches by simply waiting forall outstanding leases to expire rather than by sending messages to a large number of clients; we donot explore this option in this study. Lease presents a tradeo� similar to the one o�ered by Poll. Longleases reduce the cost of reads by amortizing each lease renewal over R � t reads. On the other hand,short leases reduce the delay on writes when failures occur.As with polling, a client that is unable to contact a server to renew a lease knows that it holdspotentially stale data. The client may then take application-speci�c actions, such as signaling an erroror returning the suspect data along with a warning. However, unlike Poll, Lease never lets clientsbelieve that stale objects are valid. III. Volume leasesTraditional leases provide good performance when the cost of renewing leases is amortized over manyreads. Unfortunately, for many WAN workloads, reads of an object may be spread over seconds orminutes, requiring long leases in order to amortize the cost of renewals [10]. To make leases practicalfor these workloads, our algorithms use a combination of object leases, which are associated withindividual data objects, and volume leases, which are associated with a collection of related objectson the same server. In our scheme a client reads data from its cache only if both its object andvolume leases for that data are valid, and a server can modify data as soon as either lease has expired.By making object leases long and volume short, we overcome the limitations of traditional leases:long object leases have low overhead, while short volume leases allow servers to modify data withoutlong delays. Furthermore, if there is spatial locality within a volume, the overhead of renewing shortleases on volumes is amortized across many objects. This section �rst describes the Volume Leasesalgorithm and then examines a variation called Volume Leases with Delayed Invalidations. At the endof this section, we examine Best E�ort Volume Leases to support applications where timely updatesare desired, but not required.A. The basic algorithmFigures 2, 3, and 4 show the data structures used by the Volume Leases algorithm, the server sideof the algorithm, and the client side of the algorithm, respectively. The basic algorithm is simple:� Reading Data. Clients read cached data only if they hold valid object and volume leases onthe corresponding objects. Expired leases are renewed by contacting the appropriate servers. Whengranting a lease for an object o to a client c, if o has been modi�ed since the last time c held a validlease on o then the server piggybacks the current data on the lease renewal.� Writing Data. Before modifying an object, a server sends invalidation messages to all clients thathold valid leases on the object. The server delays the write until it receives acknowledgments from allclients, or until the volume or object leases expire. After modifying the object, the server incrementsthe object's version number.A.1 Handling unreachable clientsClient crashes or network partitions can make some clients temporarily unreachable, which maycause problems. Consider the case of an unreachable client whose volume lease has expired but thatstill holds a valid lease on an object. When the client becomes reachable and attempts to renew itsvolume lease, the server must invalidate any modi�ed objects for which the client holds a valid object



6lease. Our algorithm thus maintains at each server an Unreachable set that records the clients thathave not acknowledged|within some timeout period|one of the server's invalidation messages.After receiving a read request or a lease renewal request from a client in its Unreachable set, a serverremoves the client from its Unreachable set, renews the client's volume lease, and noti�es the client torenew its leases on any currently cached objects belonging to that volume. The client then responds bysending a list of objects along with their version numbers, and the server replies with a message thatcontains a vector of object identi�ers. This message (1) renews the leases of any objects not modi�edwhile the client was unreachable and (2) invalidates the leases of any objects whose version numberchanged while the client was unreachable.Data StructuresVolume A volume v has the following attributesid = unique identi�erobjects = set of objects in vepoch = volume epoch number (incremented on server reboot)expire = time by which all current leases on v will have expiredat = set of hclient; expirei of valid leases on vunreachable = set of clients whose volume leases have expiredand who may have missed object invalidation messagesObject An object o has the following attributesid = unique identi�erdata = the object's dataversion = version numberexpire = time by which all current leases on o will have expiredat = set of hclient; expirei of valid leases on ovolume = volumeFig. 2. Data Structures for Volume Lease algorithm.A.2 Handling server failuresWhen a server fails we assume that the state used to maintain cache consistency is lost. In LANsystems, servers often reconstruct this state by polling their clients [17]. This approach is impracticalin a WAN, so our protocol allows a server to incrementally construct a valid view of the object leasestate, while relying on volume lease expiration to prevent clients from using leases that were grantedby a failed server. To recover from a crash, a server �rst invalidates all volume leases by waiting forthem to expire. This invalidation can be done in two ways. A server can save on stable storage thelatest expiration time of any volume lease. Then, upon recovery, it reads this timestamp and delaysall writes until after this expiration time. Alternatively, the server can save on stable storage theduration of the longest possible volume lease. Upon recovery, the server then delays any writes untilthis duration has passed.Since object lease information is lost when a server crashes, the server e�ectively invalidates allobject leases by treating all clients as if they were in the Unreachable set. It does this by maintaininga volume epoch number that is incremented with each reboot. Thus, all client requests to renew avolume must also indicate the last epoch number known to the client. If the epoch number is current,then volume lease renewal proceeds normally. If the epoch number is old, then the server treats theclient as if the client were in the volume's Unreachable set.It is also possible to store the cache consistency information on stable storage [5], [9]. This approachreduces recovery time at the cost of increased overhead on normal lease renewals. We do not investigatethis approach in this paper.A.3 The cost of volume leasesTo analyze Volume Leases, we assume that servers grant leases of length tv on volumes and of lengtht on objects. Typically, the volume lease is much shorter than the object leases, but when a clientaccesses multiple objects from the same volume in a short amount of time, the volume lease is likely



7Server writes object ofor all hclient; expirei 2 o:atif expire > currentT ime ^ client 62 o:volume:unreachableTo contact To contact [ clientsend(INV ALIDATE;o:id) to all clients in To contactTf  min(o:volume:expire, o:expire)if Tf < msgT imeoutTf  msgT imeoutwhile (Tf � currentT ime) and (To contact 6= ;) doreceive(ACK INV ALIDATE, o:id) from c 2 To contactTo contact  To contact � f c go:volume:unreachable o:volume:unreachable [ fTo contactgo:at ;o:version o:version+ 1write oServer renews client leasereceive(RENEW LEASE REQ; volId; volEpoch; objId; clientV ersion) from clet v be the volume such that v:id = volIdlet o be the object such that o:id = objIdif (c 2 v:unreachable) or (v:epoch > volEpoch) thenv:unreachable v:unreachable [ crecoverUnreachableClient(c, v) // see belowif c 62 v:unreachablev:expire currentT ime+ volumeLeaseT imeoutv:at v:at � fhclient;Xig // delete old leases for clientv:at v:at [ fhclient; v:expireigo:expire currentT ime+ objLeaseT imeouto:at o:at� fhc;Xig // delete old leases for cliento:at o:at [ fhc; o:expireigif (o:version > clientV ersion) thensend(RENEW LEASE RESP; v:id; v:expire; v:epoch; o:id; o:version; o:expire; o:data)else if(o:version = clientV ersion) thensend(RENEW LEASE RESP; v:id; v:expire; v:epoch; o:id; o:version; o:expire)recoverUnreachableClient(client c, volume v)send(MUST RENEW ALL; v:id) to cTf  msgT imeoutrenewRecvd FALSEwhile (Tf � currentT ime) and (:renewRecvd) doreceive(RENEW OBJ LEASES;volId; leaseSet) from crewnewRecvd TRUEif (:renewRecvd) thenreturn // client still unreachablefor all hobjId; objV ersioni 2 leaseSet dolet o be the object such that o:id = objIdif (o:version > objV ersion) theninvalList invalList [ fobjIdgo:at o:at � fhc;Xig // delete old leases for clientelseo:expire currentT ime+ objLeaseT imeoutrenewList renewList [ ho:id; o:version; o:expireio:at o:at � fhc;Xig // delete old leases for cliento:at o:at [ fhc; o:expireigsend(INV ALIDATE; invalList; RENEW; renewList)Tf = currentT ime+msgT imeoutwhile (Tf � currentT ime) and (c 2 v:unreachable)receive (ACK INV ALIDATE) from cv:unreachable v:unreachable� fcgFig. 3. The Volume Leases Protocol (Server Side).to be valid for all of these accesses. As the read cost column of Table I indicates, the cost of a typicalread, measured in messages per read, is 1Po2V (Rotv) + 1R�t . The �rst term re
ects the fact that thevolume lease must be renewed every tv seconds but that the renewal is amortized over all objects inthe volume, assuming that object o is read Ro times per second. The second term is the standardcost of renewing an object lease. As the ack wait delay column indicates, if a client or network failureprevents a server from contacting a client, a write to an object must be delayed for min(t; tv), i.e.,until either lease expires. As the write cost and server state columns indicate, servers track all clientsthat hold valid object leases and notify them all when objects are modi�ed. Finally, as the stale timecolumns indicate, Volume Leases never supplies stale data to clients.



8Client reads object oif :validLease(o:volume) _ :validLease(o:id) thenrenewLease(o:volume; o)read local copy of orenewLease(volume v, object o)epoch max(v:epoch;�1)vnum max(o:version;�1)send(RENEW LEASE REQ; v:id; epoch; o:id; vnum)// Note: if any recieve times out, abort the read.if receive(MUST RENEW ALL; v:id) from server thenrenewAll(v)// Note: if any recieve times out, abort the read.receive(RENEW LEASE RESP; v:id; v:expire; v:epoch; o:version; o:expire[; o:data]) from serverrenewAll(volume v)leaseSet ;for all objects o for which ((o:volume = v) ^ (validLease(o))leaseSet leaseSet [ ho:id; o:versionisend(RENEW OBJ LEASES;v:id; leaseSet) to server// Note: if any recieve times out, abort the read.receive (INV ALIDATE; invalList; RENEW; renewList) from serverfor all objId 2 invalListlet o be the object for which o:id = objIdo:expire = �1; delete o:data; o:data NULLfor all hobjId; version; expirei 2 renewListlet o be the object for which o:id = objIdassert(o:version = version)o:expire expiresend(ACK INV ALIDATE;v:id) to servervalidLease(lease l)if l:expire > currentT imereturn TRUEelsereturn FALSEClient receives object invalidation message for object oreceive(INV ALIDATE;objId) from serverlet o be the object for which o:id = objIdo:expire = �1; delete o:data; o:data NULLsend(ACK INV ALIDATE;o:id) to serverFig. 4. The Volume Leases Protocol (Client Side).A.4 Protocol veri�cationTo verify the correctness of the consistency algorithm, we implemented a variation of the volumeleases algorithm described in Figures 3 and 4 using the Teapot system [4]. The Teapot version of thealgorithm di�ers from the one described in the �gures in two ways. First, the Teapot version uses asimpli�ed reconnection protocol for Unreachable clients. Rather than restore a client's set of objectleases, the Teapot version clears all of the client's object leases when an Unreachable client reconnects.The second di�erence is that in the Teapot version every network request includes a sequence numberthat is repeated in the corresponding reply. These sequence numbers allow the protocol to matchreplies to requests.Teapot allows us to describe the consistency state machines in a convenient syntax and then togenerate Murphi [7] code for mechanical veri�cation. The Murphi system searches the protocol's statespace for deadlocks or cases where the system's correcness invariants are violated. Although Murphi'sexhaustive search of the state space is an exponential algorithm that only allows us to verify smallmodels of the system, in practice this approach �nds many bugs that are di�cult to locate by handand gives us con�dence in the correctness of our algorithm [3].Murphi veri�es that the following two invariants hold: (1) when the server writes an object, no clienthas both a valid object lease and a valid volume lease for that object and (2) when a client reads anobject, it has the current version of the object. The system we veri�ed contains one volume with twoobjects in it, and it includes one client and one server that communicate over a network. Clients and



9servers can crash at any time, and the network layer can lose messages at any time but cannot delivermessages out of order; the network layer can also report messages lost when they are, in fact, delivered.We have tested portions of the state space for some larger models, but larger models exhaust our testmachine's 1 GB of memory before the entire state space is examined.B. Volume leases with delayed invalidationsThe performance of Volume Leases can be improved by recognizing that once a volume lease expires,a client cannot use object leases from that volume without �rst contacting the server. Thus, ratherthan invalidating object leases immediately for clients whose volume leases have expired, the server cansend invalidation messages when (and if) the client renews the volume lease. In particular, the VolumeLeases with Delayed Invalidations algorithm modi�es Volume Leases as follows. If the server modi�esan object for which a client holds a valid object lease but an expired volume lease, the server moves theclient to a per-volume Inactive set, and the server appends any object invalidations for inactive clientsto a per-inactive-client Pending Message list. When an inactive client renews a volume, the serversends all pending messages to that client and waits for the client's acknowledgment before renewingthe volume. After a client has been inactive for d seconds, the server moves the client from the Inactiveset to the Unreachable set and discards the client's Pending Message list. Thus, d limits the amount ofstate stored at the server. Small values for d reduce server state but increase the cost of re-establishingvolume leases when unreachable clients become reconnected.As Table I indicates, when a write occurs, the server must contact the Cv clients that hold validvolume leases rather than the Co clients that hold valid object leases. Delayed invalidations providethree advantages over Volume Leases. First, server writes can proceed faster because many invalidationmessages are delayed or omitted. Second, the server can batch several object invalidation messagesto a client into a single network message when the client renews its volume lease, thereby reducingnetwork overhead. Third, if a client does not renew a volume for a long period of time, the server canavoid sending the object invalidation messages by moving the client to the Unreachable set and usingthe reconnection protocol if the client ever returns.C. Best-e�ort volume leasesSome applications do not require strong consistency but do want to deliver timely updates to clients.For example, when an important event occurs, a news service would like to invalidate stale copies oftheir front page quickly rather than wait until all customers know that the old page is invalid. Thus,it is interesting to consider best-e�ort algorithms. A best e�ort algorithm should always allow writesto proceed immediately, and it should notify clients of writes when doing so does not delay writes.Any of the volume algorithms may be converted to best e�ort algorithms by sending invalidationsin parallel with writes. Table I summarizes the characteristics of the best e�ort version of the DelayedInvalidations algorithm. By sending invalidations in parallel with writes, the algorithm limits theexpected stale read time to notify(Cv)|the time it takes for the server to send the messages|withoutdelaying writes.Note that in the best e�ort algorithms, volume leases serve a di�erent purpose than in the originalvolume algorithms: they limit the time during which clients can see stale data. Whereas strongconsistency algorithms generally set the volume lease time (tv) to be the longest period they arewilling to delay a write, this is no longer a factor for best e�ort algorithms. Instead, these algorithmsset tv to the longest time they will allow disconnected clients to unknowingly see stale data. Sinceonly the disconnected clients are a�ected by long tv values, this may allow larger values for tv thanbefore. For example, a news service using strong consistency might not want to block dissemination ofa news update for more than a few seconds, but it may be willing to allow a few disconnected clientsto see the old news for several minutes. Thus, such a system might use tv = 10 seconds under strongconsistency, but it might use tv = 10 minutes under a best e�ort algorithm. As with the original



10volume algorithms, combining short volume leases with long object leases allows leases to be shortwhile amortizing renewal costs over many objects.IV. MethodologyTo examine the algorithms' performance, we simulated each algorithm discussed in Table I under aworkload based on web trace data.A. SimulatorWe simulate a set of servers that modify �les and provide �les to clients, and a set of clients thatread �les. The simulator accepts timestamped read and modify events from input �les and updatesthe cache state. The simulator records the size and number of messages sent by each server and eachclient, as well as the size of the cache consistency state maintained at each server.We validated the simulator in two ways. First, we obtained Gwertzman and Seltzer's simulator [10]and one of their traces, and compared our simulator's results to theirs for the algorithms that arecommon between the two studies. Second, we used our simulator to examine our algorithms undersimple synthetic workloads for which we could analytically compute the expected results. In bothcases, our simulator's results match the expected results.Limitations of the simulator. Our simulator makes several simplifying assumptions. First, itdoes not simulate concurrency|it completely processes each trace event before processing the nextone. This simpli�cation allows us to ignore details such as mutual exclusion on internal data structures,race conditions, and deadlocks. Although this could change the messages that are sent (if, for instance,a �le is read at about the same time it is written), we do not believe that simulating these detailswould signi�cantly a�ect our performance results.Second, we assume in�nitely large caches and we do not simulate server disk accesses. Both of thesee�ects reduce potentially signi�cant sources of work that are the same across algorithms. Thus, ourresults will magnify the di�erences among the algorithms.Finally, we assume that the system maintains cache consistency on entire �les rather than on some�ner granularity. We chose to examine whole-�le consistency because this is currently the most commonapproach for WAN workloads [1]. Fine-grained consistency may reduce the amount of data tra�c, butit also increases the number of control messages required by the consistency algorithm. Thus, �ne-grained cache consistency would likely increase the relative di�erences among the algorithms.B. WorkloadWe use a workload based on traces of HTTP accesses at Boston University [6]. These traces span fourmonths during January 1995 through May 1995 and include all HTTP accesses by Mosaic browsers|including local cache hits|for 33 SPARCstations.Although these traces contain detailed information about client reads, they do not indicate when�les are modi�ed. We therefore synthesize writes to the objects using a simple model based on twostudies of write patterns for web pages. Bestavros [2] examined traces of the Boston University webserver, and Gwertzman and Seltzer [10] examined the write patterns of three university web servers.Both studies concluded that few �les change rapidly, and that globally popular �les are less likely tochange than other �les. For example, Gwertzman and Seltzer's study found that 2%{23% of all �leswere mutable (each �le had a greater than 5% chance of changing on any given day) and 0%{5% ofthe �les were very mutable (had greater than 20% chance of changing during a 24-hour period).Based on these studies, our synthetic write workload divides the �les in the trace into four groups.We give the 10% most referenced �les a low average number of random writes per day (we use aPoisson distribution with an expected number of writes per day of 0.005). We then randomly placethe remaining 90% of the �les into three sets. The �rst set, which includes 3% of all �les in the trace,are very mutable and have an expected number of writes per day of 0.2. The second set, 10% of all
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Fig. 5. Number of messages vs. timeout length.�les in the trace, are mutable and have an expected number of writes per day of 0.05. The remaining77% of the �les have an expected number of writes per day of 0.02. In section V-D, we examine thesensitivity of our results to these parameters.We simulate the 1000 most frequently accessed servers; this subset of the servers accounts for morethan 90% of all accesses in the trace. Our workload consists of 977,899 reads of 68,665 di�erent �lesplus 209,461 arti�cially generated writes to those �les. The �les in the workload are grouped into 1000volumes corresponding to the 1000 servers. We leave more sophisticated grouping as future work.V. Simulation resultsThis section presents simulation results that compare the volume algorithms with other consistencyschemes. In interpreting these results, remember that the trace workload tracks the activities of arelatively small number of clients. In reality, servers would be accessed by many other clients, so theabsolute values we report for server and network load are lower than what the servers would actuallyexperience. Instead of focusing on the absolute numbers in these experiments, we focus on the relativeperformance of the algorithms under this workload.A. Server/network loadFigure 5 shows the performance of the algorithms. The x-axis, which uses a logarithmic scale, givesthe object timeout length in seconds (t) used by each algorithm, while the y-axis gives the number ofmessages sent between the client and servers. For Volume Lease, t refers to the object lease timeoutand not the volume lease timeout; we use di�erent curves to show di�erent volume lease timeouts andindicate the volume lease time (tv) in the second parameter of the label. For the Delay Volume lines,we assume an in�nite acknowledgement wait delay (d) as signi�ed by the third parameter; this meansthat a server never moves idle clients to the unreachable list. The line for Callback is 
at becauseCallback invalidates all cached copies regardless of t. The Lease and basic Volume Lease lines declineuntil t reaches about 100,000 seconds and then rise slightly. This shape comes from two competingin
uences. As t rises, the number of lease renewals by clients declines, but the number of invalidationssent to clients holding valid leases increases. For this workload, once a client has held an object for100,000 seconds, it is more likely that the server will modify the object than that the client will readit, so leases shorter than this reduce system load. As t increases, Client Poll and Delayed Invalidationsend strictly fewer messages. Client Poll never sends invalidation messages, and Delayed Invalidationavoids sending invalidations to clients that are no longer accessing a volume, even if the clients hold
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Delay Volume(t, 100,∝)Fig. 6. Number of messages vs. timeout length for Volume Leases with Delayed Invalidates as volume lease length isvaried.valid object leases. Note that for timeouts of 100,000 seconds, Client Poll results in clients accessingstale data on about 1% of all reads, and for timeout values of 1,000,000 seconds, the algorithm resultsin clients accessing stale copies on about 5% of all reads.The separation of the Lease(t), Volume(t; tv = 10), and Volume(t; tv = 100) lines shows the additionaloverhead of maintaining volume leases. Shorter volume timeouts increase this overhead. Lease can bethought of as the limiting case of in�nite-length volume leases.Although Volume Leases imposes a signi�cant overhead compared to Lease for a given value of t,applications that care about fault tolerance can achieve better performance with Volume Leases thanwithout. For example, the triangles in the �gure highlight the best performance achievable by a systemthat does not allow writes to be delayed for more than 10 seconds for Lease(t), Volume(t; tv = 10),and Delayed Invalidations(t; tv = 10; d = 1). Volume(t = 100000; tv = 10) sends 32% fewer messagesthan Lease(t = 10), and Delayed Invalidations(t = 107; tv = 10; d = 1) sends 39% fewer messagesthan Lease(t = 10). Similarly, as indicated by the squares in the �gure, for applications that candelay writes at most 100 seconds, Volume Lease outperforms Lease by 30% and Delayed Invalidationsoutperforms the lease algorithm by 40%.Although providing strong consistency is more expensive than the Poll algorithm, the cost appearstolerable for many applications. For example, Poll(t = 100000) uses about 15% fewer messages thanDelayed Invalidations(t = 107; tv = 100; d = 1), but it supplies stale data to clients on about 1% ofall reads. Even in the extreme case of Poll(t = 107) (in which clients see stale data on over 35% ofreads), Delayed Invalidations uses less than twice as many messages as the polling algorithm.We also examined the network bytes sent by these algorithms and the server CPU load imposedby these algorithms. By both of these metrics, the di�erence in cost of providing strong consistencycompared to Poll was smaller than the di�erence by the metric of network messages. The relativedi�erences among the lease algorithms was also smaller for these metrics than for the network messagesmetric for the same reasons.A key advantage of Best E�ort Volume Leases for applications that permit relaxed consistency isthe algorithm may enable longer volume lease timeouts and thus may reduce consistency overhead.Strict consistency algorithms set the volume timeout, tv, to be the longest tolerable write delay, butthe best e�ort algorithms can set tv to be the longest time disconnected clients should be allowed tounknowingly access stale data; this may allow larger values of tv for some services that use Best E�ort.Figure 6 shows the e�ect of varying the volume lease timeout on the number of messages sent.
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Fig. 10. Periods of heavy server load under \bursty write" workload for the most heavily loaded server.have not yet quanti�ed this e�ect because it will depend on implementation details of the reconnectionprotocol.C. Bursts of loadFigure 9 shows a cumulative histogram in which the y value, shown in log scale, counts the numberof 1-second periods in which the load at the server was at least x messages sent or received per second.There are three groups of lines. Client Poll and Object Lease both use short timeouts, so when clientsread groups of objects from a server, these algorithms send groups of object renewal messages tothe server. Callback and Volume use long object lease periods, so read tra�c puts less load on theserver, but writes result in bursts of load when popular objects are modi�ed. For this workload, peakloads correspond to bursts of about one message per client. Finally, Delay uses long object leases toreduce bursts of read tra�c from clients accessing groups of objects, and it delays sending invalidationmessages to reduce bursts of tra�c when writes occur. This combination reduces the peak load on theserver for this workload.For the experiment described in the previous paragraph, Client Poll and Object Lease have periodsof higher load than Callback and Volume for two reasons. First, the system shows performance for a



15

0

50000

100000

150000

200000

250000

300000

350000

400000

0.1 1 10 100

M
es

sa
ge

s 
E

xc
ha

ng
ed

Write Multiplier

Volume(1x10^7,100)

Delay Volume(1x10^7,100,    )∝

ClientPoll(100)
ObjectLease(100)

Callback

Fig. 11. Messages sent under di�erent write frequencies. The x-axis represents a multiplier to the write frequencycompared to our default workload.modest number of clients. Larger numbers of clients would increase the peak invalidate load forCallbackand Volume. For Client Poll and Object Lease, increasing the number of clients would increase peakserver load less dramatically because read requests from additional clients would be more spread outin time. The second reason for Callback and Volume's advantage in this experiment is that in thetrace clients read data from servers in bursts, but writes to volumes are not bursty in that a write toone object in a volume does not make it more likely that another object from the same volume willsoon be modi�ed. Conversely, Figure 10 shows a \bursty write" workload in which when one objectis modi�ed, we select k other objects from the same volume to modify at the same time. For thisgraph, we compute k as a random exponential variable with a mean of 10. This workload signi�cantlyincreases the bursts of invalidation tra�c for Volume and Callback.D. SensitivityOur workload utilizes a trace of read events, but it generates write events synthetically. In thissubsection, we examine how di�erent assumptions about write frequency a�ect our results.Figure 11 shows the performance of the algorithms for representative parameters as we vary the writefrequency. Our default workload gives the 10% most referenced �les a per-day change probability of0.5%, 3% of the �les a per-day change probability of 20%, 10% of the �les a probability of 5%, and77% of the �les a per-day change probability of 2%. For each point on the graph, we multiply thoseper-day probabilities by the value indicated by the x-axis. Note that our workload generator convertsper-day change probabilities to per-second change probabilities, so per-day probabilities greater than100% are possibleWe examine the lease algorithms as they might be parameterized in a system that never wishes todelay writes more than 100 seconds and compare to a poll algorithm with a 100-second timeout anda callback algorithm with in�nite timeout. These results indicate that the Client Poll(t = 100) andLease(t = 100) are little a�ected by changing write rates. This is because the object timeouts areso short that writes are unlikely to cause many invalidations even when their frequency is increased100-fold. The volume lease algorithms and Callback all cost more as write frequency increases. Thecost of Volume(t = 1000000; tv = 100) and Callback increase more quickly than the cost of DelayedVolume(t = 10000000; tv = 100; d = 1) because the �rst two algorithms have long object callbackperiods and thus send invalidation messages to all clients that have done reads between a pair of writes.Delayed Volume rises more slowly because it does not send object invalidations once a volume leaseexpires.



16 VI. Related workOur study builds on e�orts to assess the cost of strong consistency in wide area networks. Gwertzmanand Seltzer [10] compare cache consistency approaches through simulation and conclude that protocolsthat provide weak consistency are the most suitable to a Web-like environment. In particular, they�nd that an adaptive version of Poll(t) exerts a lower server load than an invalidation protocol if thepolling algorithm is allowed to return stale data 4% of the time. We arrive at di�erent conclusions. Inparticular, we observe that much of the apparent advantage of weak consistency over strong consistencyin terms of network tra�c comes from clients reading stale data [14]. Also, we use volume leases toaddress many of the challenges to strong consistency.We also build on the work of Liu and Cao [14], who use a prototype server invalidation system toevaluate the overhead of maintaining consistency at the servers compared to client polling. They alsostudy ways to reduce server state via per-object leases. As with our study, their workload is based ona trace of read requests and synthetically-generated write requests. Our work di�ers primarily in ourtreatment of fault tolerance issues. In particular, after a server recovers our algorithm uses volumetimeouts to \notify" clients that they must contact the server to renew leases; Liu and Cao's algorithmrequires the server to send messages to all clients that might be caching objects from the server. Also,our volume leases provide a graceful way to handle network partitions; when a network failure occurs,Liu and Cao's algorithm must periodically retransmit invalidation messages, and it does not guaranteestrong consistency in that case.Cache consistency protocols have long been studied for distributed �le systems [11], [17], [19]. Severalaspects of Coda's [13] consistency protocol are re
ected in our algorithms. In particular, our notionof a volume is similar to that used in Coda [16]. However, ours di�er in two key respects. First,Coda does not associate volumes with leases, and relies instead on other methods to determine whenservers and clients become disconnected. The combination of short volume leases and long objectleases is one of our main contributions. Second, because Coda was designed for di�erent workloads, itsdesign trade-o�s are di�erent. For example, because Coda expects clients to communicate with a smallnumber of servers and it regards disconnection as a common occurrence, Coda aggressively attemptsto set up volume callbacks to all servers on each hoard walk (every 10 minutes). In our environment,clients are associated with a larger universe of servers, so we only renew volume leases when a clientis actively accessing the server. Also, in our algorithm when an object is modi�ed, the server doesnot send volume invalidation messages to clients that hold volume leases but not object leases on theobject in question. We thus avoid the false sharing problem of which Mummert warns [16].Our best e�ort leases algorithm provides similar semantics to and was inspired by Coda's optimisticconcurrency protocol [13]. Bayou [20] and Rover [12] also implement optimistic concurrency, but theycan detect and react to more general types of con
icts than can Coda.Worrell [21] studied invalidation-based protocols in a hierarchical caching system and concluded thatserver-driven consistency was practical for the web. We plan to explore ways to add hierarchy to ouralgorithms in the future.Cache consistency protocols have long been studied for distributed �le systems [18], [17], [19].Howard et. al [11] reached the somewhat counter-intuitive conclusion that server-driven consistencygenerally imposed less load on the server than client polling even though server-driven algorithms pro-vide stronger guarantees for clients. This is because servers have enough information to know exactlywhen messages need to be sent.Mogul's draft proposal for HTTP 1.1 [15] includes a notion of grouping �les into volumes to reducethe overhead of HTTP's polling-based consistency protocol. We are not aware of any implementationsof this idea.Finally, we note that volume leases on the set of all objects provided by a server can be thought ofas providing a framework for the \heartbeat" messages used in many distributed state systems.



17VII. ConclusionsWe have taken three cache consistency algorithms that have been previously applied to �le systemsand quantitatively evaluated them in the context of Web workloads. In particular, we compared thetimeout-based Client Poll algorithm with the Callback algorithm, in which a server invalidates beforeeach write, and Gray and Cheriton's Lease algorithm. The Lease algorithm presents a tradeo� similarto the one o�ered by Client Poll. On the one hand, long leases reduce the cost of reads by amortizingeach lease renewal over many reads. On the other hand, short leases reduce the delay on writes whena failure occurs. To solve this problem, we have introduced the Volume Lease, Volume Lease withDelayed Invalidation, and Best E�ort Volume Lease algorithms that allow servers to perform writeswith minimal delay, while minimizing the number of messages necessary to maintain consistency. Oursimulations con�rm the bene�ts of these algorithm.AcknowledgmentsSome of the work described here appeared in an earlier paper [22]. We thank James Gwertzmanand Margo Seltzer for making their simulator available to us so we could validate our simulator.We thank Carlos Cunha, Azer Bestavros and Mark Crovella for making the BU web traces availableto us. This work was funded in part by a NSF CISE grant (CDA-9624082), gifts from Novell andSun Microsystems, and DARPA/SPAWAR grant number N66001-98-8911. Dahlin and Alvisi weresupported by NSF CAREER awards (CCR-9733842) and (CCR-9734185), respectively.Jian Yin is currently a Ph.D. student in Computer Science at University of Texas, Austin. His researchinteresting includes distributed computing, operating systems and computer networks.
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