
Abstractions for Portable, Scalable ParallelProgrammingGail A. AlversonWilliam G. GriswoldCalvin LinDavid NotkinLawrence SnyderSeptember 24, 1997AbstractIn parallel programming, the need to manage communication, load imbalance, and irregular-ities in the computation puts substantial demands on the programmer. Key properties of thearchitecture, such as the number of processors and the cost of communication, must be exploitedto achieve good performance, but coding these properties directly into a program compromisesthe portability and
exibility of the code because signi�cant changes are then needed to portor enhance the program. We describe a parallel programming model that supports the con-cise, independent description of key aspects of a parallel program|including data distribution,communication, and boundary conditions|without reference to machine idiosyncrasies. The in-dependence of such components improves portability by allowing the components of a programto be tuned independently, and encourages reuse by supporting the composition of existing com-ponents. The isolation of architecture-sensitive aspects of a computation simpli�es the task ofporting programs to new platforms. Moreover, the model is e�ective in exploiting both dataparallelism and functional parallelism. This paper provides programming examples, comparesthis work to related languages, and presents performance results.1 IntroductionThe diversity of parallel architectures puts the goals of performance and portability in con
ict. Program-mers are tempted to exploit machine details|such as the interconnection structure and the granularity ofparallelism|tomaximize performance. Yet software portability is needed to reduce the high cost of software1

development, so programmers are advised to avoid making machine-speci�c assumptions. The challenge,then, is to provide parallel languages that minimize the tradeo� between performance and portability.1Such languages must allow a programmer to write code that assumes no particular architecture, allow acompiler to optimize the resulting code in a machine-speci�c manner, and allow a programmer to performarchitecture-speci�c performance tuning without making extensive modi�cations to the source code.In recent years, a parallel programming style has evolved that might be termed aggregate data-parallelcomputing. This style is characterized by:� Data parallelism. The program's parallelism comes from executing the same function on many elementsof a collection. Data parallelism is attractive because it allows parallelism to grow|or scale|with thenumber of data elements and processors. SIMD architectures exploit this parallelism at a very �negrain.� Aggregate execution. The number of data elements typically exceeds the number of processors, somultiple elements are placed on a processor and manipulated sequentially. This is attractive becauseplacing groups of interacting elements on the same processor vastly reduces communication costs.Moreover, this approach uses good sequential algorithms locally, which is often more e�cient thansimply multiplexing parallel algorithms. Another bene�t is that data can be passed between processorsin batches to amortize communication overhead. Finally, when a computation on one data element isdelayed waiting for communication, other elements may be processed.� Loose synchrony. Although strict data parallelism applies the \same" function to every element, localvariations in the nature or positioning of some elements can require di�erent implementations of thesame conceptual function. For instance, data elements on the boundary of a computational domainhave no neighbors with which to communicate, but data parallelism normally assumes that interiorand exterior elements be treated the same. By executing a di�erent function on the boundaries, theseexceptional cases can be easily handled.These features make the aggregate data-parallel style of programming attractive because it can yielde�cient programs when executed on typical MIMD architectures. However, without linguistic support thisstyle of programming promotes in
exible programs through the embedding of performance-critical featuresas constants, such as the number of processors, the number of data elements, boundary conditions, theprocessor interconnection, and system-speci�c communication syntax. If the machine, its size, or the problemsize changes, signi�cant program changes to these �xed quantities are generally required. As a consequence,1We consider a program to be portable with respect to a given machine if its performance is competitive withmachine-speci�c programs solving the same problem [2]. 2

several languages have been introduced to support key aspects of this style. However, unless all aspects ofthis style are supported, performance, scalability, portability, or development cost can su�er.For instance, good locality of reference is an important aspect of this programming style. Low-levelapproaches [25] allow programmers to hand-code data placement. The resulting code typically assumesone particular data decomposition, so if the program is ported to a platform that favors some other de-composition, extensive changes must be made or performance su�ers. Other languages [4, 5, 15] give theprogrammer no control over data decomposition, leaving these issues to the compiler or hardware. Butbecause good data decompositions can depend on characteristics of the application that are di�cult to de-termine statically, compilers can make poor data placement decisions. Many recent languages [6, 22] providesupport for data decompositions, but hide communication operations from the programmer and thus donot encourage locality at the algorithmic level. Consequently, there is a reliance on automated means ofhiding latency|multithreaded hardware, multiple lightweight threads, caches, and compiler optimizationsthat overlap communication and computation|which cannot always hide all latency. The trend towardsrelatively faster processors and relatively slower memory access times only exacerbates the situation.Other languages provide inadequate control over the granularity of parallelism, requiring either onedata point per process [21, 43], assuming some larger �xed granularity [14, 29], or including no notion ofgranularity at all, forcing the compiler or runtime system to choose the best granularity [15]. Given thediversity of parallel computers, no particular granularity can be best for all machines. Computers such asthe CM-5 prefer coarse granularities; those such as the J Machine prefer �ner granularity; and those such asthe MIT Alewife and Tera computer bene�t from having multiple threads per process. Also, few languagesprovide su�cient control over the algorithm that is applied to aggregate data, preferring instead to multiplexthe parallel algorithm when there are multiple data points on a processor [43, 44].Many language models do not adequately support loose synchrony. The boundaries of parallel compu-tations often introduce irregularities that require signi�cant coding e�ort. When all processes execute thesame code, programs become riddled with conditionals, increasing code size and making them di�cult tounderstand, hard to modify, and potentially ine�cient. Programming in a typical MIMD-style language isnot much cleaner. For instance, writing a slightly di�erent function for each type of boundary process isproblematic because a change to the algorithm is likely to require all versions to be changed.In this paper we describe language abstractions|a programmingmodel|that fully support the aggregatedata-parallel programming style. This model can serve as a foundation for portable, scalable MIMD lan-guages that preserve the performance available in the underlying machine. Our belief is that for many tasksprogrammers|and not compilers or runtime systems|can best handle the performance-sensitive aspects ofa parallel program. This belief leads to three design principles.First, we provide abstractions that are e�ciently implementable on all MIMD architectures, along with3

speci�c mechanisms to handle common types of parallelism, data distribution, and boundary conditions.Our model is based on a practical MIMD computing model called the Candidate Type Architecture (CTA)[45].Second, the insigni�cant but diverse aspects of computer architectures are hidden. If exposed to theprogrammer, assumptions based on these characteristics can be sprinkled throughout a program, makingportability di�cult. Examples of characteristics that are hidden include the details of the machine's com-munication style and the processor (or memory) interconnection topology. For instance, one machine mightprovide shared memory and another message passing, but either can be implemented with the other insoftware.Third, architectural features that are essential to performance are exposed and parameterized in anarchitecture-independent fashion. A key characteristic is the speed, latency, and per-message overhead ofcommunication relative to computation. As the cost of communication increases relative to computation,communication costs must be reduced by aggregating more processing onto a smaller number of processors,or by �nding ways to increase the overlap of communication and computation.The result is the Phase Abstractions parallel programmingmodel, which provides control over granularityof parallelism, control over data partitioning, and a hybrid data and function parallel construct that supportsconcise description of boundary conditions. The core of our solution is the ensemble construct that allowsa global data structure to be de�ned and distributed over processes, and allows the granularity|and thelocation of data elements|to be controlled by load-time parameters. The ensemble also has a code form fordescribing what operations to execute on which elements and for handling boundary conditions. Likewise,interprocessor connections are described with a port ensemble that provides similar
exibility. By usingensembles for all three components of a global operation|data, code and communication|they can bescaled together with the same parameters. Because the three parts of an ensemble and the boundaryconditions are speci�ed independently, reusability is enhanced.The remainder of this paper is organized as follows. We �rst present our solution to the problem bydescribing our architectural model and the basic language model|the CTA and the Phase Abstractions.Section 3 then gives a detailed illustration of our abstractions, using the Jacobi Iteration as an example. Todemonstrate the expressiveness and programmability of our abstractions, Section 4 shows how simple arraylanguage primitives can be built on top of our model. Section 5 discusses the advantages of our programmingmodel with respect to performance and portability, and Section 6 presents experimental evidence that thePhase Abstractions support portable parallel programming. Finally, we compare Phase Abstractions withrelated languages and models, and close with a summary.4

2 Phase AbstractionsIn sequential computing, languages such as C, Pascal and Fortran have successfully combined e�ciency withportability. What do these languages have in common that make them successful? All are based on amodel where a sequence of operations manipulate some in�nite random-access memory. This programmingmodel succeeds because it preserves the characteristics of the von Neumann machine model, which itself hasbeen a reasonably faithful representation of sequential computers. While these models are never literallyimplemented|unit-cost access to in�nite memory is an illusion provided by virtual memory, caches andbacking store|the model is accurate for the vast majority of programs. There are only rare cases, suchas programs that perform extreme amounts of disk I/O, where the deviations from the model are costlyto the programmer. It is critical that the von Neumann model capture machine features that are relevantto performance: If some essential machine features were ignored, better algorithms could be developedusing a more accurate machine model. Together, the von Neumann machine model and its accompanyingprogramming model allow languages such as C and Fortran to be both portable and e�cient.In the parallel world, we propose that the Candidate Type Architecture (CTA) play the role of the vonNeumann model,2 and the Phase Abstractions the role of the programming model. Finally, the sequentiallanguages are replaced by languages based on the Phase Abstractions, such as Orca C [32, 34].The CTA. The CTA [45] is an asynchronous MIMD model. It consists of P von Neumann processorsthat execute independently. Each processor has its own local memory, and the processors communicatethrough some sparse but otherwise unspeci�ed communication network. Here \sparse" means that thenetwork has a constant degree of connectivity. The network topology is intentionally left unbound to providemaximumgenerality. Finally, the model includes a global controller that can communicate with all processorsthrough a low bandwidth network. Logically, the controller provides synchronization and low bandwidthcommunication such as a broadcast of a single value.Although it is premature to claim that the CTA is as e�ective a model as the von Neumann model, itdoes appear to have the requisite characteristics: It is simple, makes minimal architectural assumptions, butcaptures enough signi�cant features that it is useful for developing e�cient algorithms. For example, theCTA's unbound topology does not bias the model towards any particular machine, and the topologies ofexisting parallel computers are typically not signi�cant to performance. On the other hand, the distinctionbetween global and local memory references is key, and this distinction is clear in the CTA model. Finally,the assumption of a sparse topology is realistic for all existing medium and large scale parallel computers.The Phase Abstractions extend the CTA in the same way that the sequential imperative programming2The more recent BSP [48] and LogP [8] models present a similar view of a parallel machine and for the most partsuggest a similar way of programming parallel computers.5

model extends the von Neumann model. The main components of the Phase Abstractions are the XYZ levelsof programming and ensembles [1, 19, 46].2.1 XYZ Programming LevelsA programmer's problem-solving abilities can be improved by dividing a problem into small, manageablepieces|assuming the pieces are su�ciently independent to be considered separately. Additionally, thesepieces can often be reused in other programs, saving time on future problems. One way to build a parallelprogram from smaller reusable pieces is to compose a sequence of independently implemented phases, eachexecuting some parallel algorithm that contributes to the overall solution. At the next conceptual level, eachsuch phase is comprised of a set of cooperating sequential processes that implements the desired parallelalgorithm. Each sequential process may be developed separately. These levels of problem solving|program,phase, and process, also called the Z, Y, and X levels|have direct analogies in the CTA.The X level corresponds to the individual von Neumann processors of the CTA, and an X level programspeci�es the sequential code that executes in one process. Because the model is MIMD, each process canexecute di�erent code.The Y level is analogous to the set of von Neumann processors cooperating to compute a parallelalgorithm, forming a phase. The Y-level may specify how the X-level programs are connected to each otherfor inter-process communication. Examples of phases include parallel implementations of the FFT, matrixmultiplication, matrix transposition, sort, and global maximum. A phase has a characteristic communicationstructure induced by the data dependencies among the processes. For example, the FFT induces a butter
y,while Batcher's sort induces a hypercube [1].Finally, the Z level corresponds to the actions of the CTA's global controller, where sequences of parallelphases are invoked and synchronized. A Z level program speci�es the high level logic of the computationand the sequential invocation of phases (although their execution may overlap) that are needed to solvecomplex problems. For example, the Car-Parrinello molecular dynamics code simulates the behavior of acollection of atoms by iteratively invoking a series of phases that perform FFT's, matrix products, and othercomputations [49]. In Z-Y-X order, these three levels provide a top-down view of a parallel program.Example: XYZ Levels of the Jacobi Iteration. Figure 1 illustrates the XYZ levels of programmingfor the Jacobi Iteration. The Z level consists of a loop that invokes two phases, one called Jacobi(), whichperforms the over-relaxation, the other called Max(), which computes the maximum di�erence betweeniterations that is used to test for termination.Each Y level phase is of a collection of processes executing concurrently. Here, the two phases are graph-ically depicted with squares representing processes and arcs representing communication between processes.6

program Jacobi
<declarations>
data := Load();

while (error>Tolerance)
{
 Jacobi();
 error := Max();
}

Output();

Z Level X LevelY Level

xJacobi()
{
 for each (i,j) in local section
 new(i,j)=(old(i,j+1)+old(i,j-1)+
 old(i+1,j)+old(i-1,j))/4;
}

xMax()
{
 local_max=Max(local_max, left_child);
 local_max=Max(local_max, right_child);
 Send local_max to parent;
}Figure 1: XYZ Illustration of the Jacobi IterationThe Jacobi phase uses a mesh interconnection topology, and the Max phase uses a binary tree. Other detailsof the Y level, such as the distribution of data, are not shown in this �gure but will be explained in the nextsubsection.Finally, a sketch of the X level program for the two phases is shown at the right of Figure 1. The X levelcode for the Jacobi phase assigns to each data point the average of its four neighbors. The Max phase �nds,for all data points, the largest di�erence between the current iteration and the previous iteration. 2A Z level program is basically a sequential program that provides control
ow for the overall computation.An X level program, in its most primitive form, can also be viewed as a sequential program with additionaloperations that allow it to communicate with other processes. Although parallelism is not explicitly speci�edat the X and Z levels, these two levels may still contain parallelism. For example, phase invocation maybe pipelined, and the X level processes can execute on superscalar architectures to achieve instruction-levelparallelism.It is the Y level that speci�es scalable parallelism and most clearly departs from a sequential program.Ensembles support the de�nition and manipulation of this parallelism.2.2 EnsemblesThe Phase Abstractions use the ensemble structure to describe data structures and their partitioning, processplacement, and process interconnection. In particular, an ensemble is a partitioning of a set of elements|data, codes, or port connections|into disjoint sections. Each section represents a thread of execution, so thesection is a unit of concurrency and the degree of parallelism is modulated by increasing or decreasing the7

number of sections. Because all three aspects of parallel computation|data, code and communication|areuni�ed in the ensemble structure, all three components can be recon�gured and scaled in a coherent, concisefashion to provide
exibility and portability.A data ensemble is a data structure with a partitioning. At the Z level the data ensemble provides alogically global view of the data structure. At the X level a portion of the ensemble is mapped to eachsection and is viewed as a locally de�ned structure with local indexing. For example, the 6�6 data ensemblein Figure 2 has a global view with indices [0 : 5]� [0 : 5], and a local view of 3� 3 subarrays with indices[0 : 2]� [0 : 2]. The mapping of the global view to the local view is performed at the Y level and will bedescribed in Section 3. The use of local indexing schemes allows an X level process to refer to generic arraybounds rather than to global locations in the data space. Thus, the same X level source code can be usedfor multiple processes.
A00 A01 A02 A03 A04 A05

A10 A11 A12 A13 A14 A15

A20 A21 A22 A23 A24 A25

A30 A31 A32 A33 A34 A35

A40 A41 A42 A43 A44 A45

A50 A51 A52 A53 A54 A55

A00 A01 A02

A10 A11 A12

A20 A21 A22

Local ViewGlobal View

A00 A01 A02

A10 A11 A12

A20 A21 A22

A00 A01 A02

A10 A11 A12

A20 A21 A22

A00 A01 A02

A10 A11 A12

A20 A21 A22Figure 2: A 6�6 Array (left) and its corresponding Data Ensemble for a 2�2 array of sections.A code ensemble is a collection of procedures with a partitioning. The code ensemble gives a global viewof the processes performing the parallel computation. When the procedures in the ensemble di�er the modelis MIMD; when the procedures are identical the model is SPMD. Figure 3 shows a code ensemble for theJacobi phase in which all processes execute the xJacobi() function.
xJacobi()

xJacobi()xJacobi()

xJacobi()Figure 3: Illustration of a Code EnsembleFinally, a port ensemble de�nes a logical communication structure by specifying a collection of port namepairs. Each pair of names represents a logical communication channel between two sections, and each of8

these port names is bound to a local port name used at the X level. Figure 4 depicts a port ensemble forthe Jacobi phase. For example, the north port (N) of one process is bound to the south port (S) of itsneighboring process.
E

S
W

S

N
WE

NFigure 4: Illustration of a Port EnsembleA Y level phase is composed of three components: a code ensemble, a port ensemble that connects thecode ensemble's processes, and data ensembles that provide arguments to the processes of the code ensemble.The sections of each ensemble are ordered numerically so that the ith section of a code ensemble is bound tothe ith section of each data and port ensemble. This correspondence allows each section to be allocated toa processor for normal sequential execution: The process executes on that processor, the data can be storedin memory local to that processor, and the ports de�ne connections for interprocessor communication.Consequently, the ith sections of all ensembles are assigned to the same processor to maintain locality acrossphases. If two phases share a data ensemble but require di�erent partitionings for best performance, aseparate phase may be used to move the data.The Z level logically stores ensembles in Z level variables, composes them into phases and stores theirresults. The phase invocation interface between the Z and X levels encourages modularity because the sameX level code can be invoked with di�erent ensemble parameters in the same way that procedures are reusedin sequential languages.The ensemble abstraction helps hide the diversity of parallel architectures. However, to map well toindividual architectures the abstraction must be parameterized, for example, by the number of processorsand the size of the problem. This parameterization is illustrated in the next section.3 Ensemble Example: JacobiTo provide a better understanding of the ensembles and the Phase Abstractions, we now complete thedescription of the Jacobi program. We adopt notation from the proposed Orca C language [30, 32], butother languages based on the Phase Abstractions are possible (see Section 4).9

3.1 Overall Program Structure#define Rows 1 /* Constants to define the shape */#define Cols 2 /* of the logical processor array */#define TwoD 3program Jacobian (shape, Processors)switch (shape)f /* Configuration Computation */case Rows: rows = Processors;cols = 1;break;case Cols: rows = 1;cols = Processors;break;case TwoD: Partition2D(&rows, &cols, Processors);break;g(rows, cols, Processors) /* Configuration Parameter List */<data ensemble de�nitions>; /* Y Level */<port ensemble de�nitions>;<code ensemble de�nitions>;<process de�nitions>; /* X Level */begin /* Z Level */Input();while (tolerance > delta)f Jacobi(p, newP);tolerance = Max(p, newP);tempP = p; /* Swap p and newP to prepare for */p = newP; /* the next iteration */newP = tempP;gOutput();end Figure 5: Overall Phase Abstraction Program StructureAs shown in Figure 5, a Phase Abstractions program consists of X, Y, and Z descriptions, plus a list ofcon�guration parameters that are used by the program to adapt to di�erent execution environments. In thiscase, two runtime parameters are accepted: Processors and shape. The �rst parameter is the number ofprocessors, while the second speci�es the shape of the processor array. As will be discussed later, the programuses a 2D data decomposition, so by setting shape to Rows (Cols) we choose a horizontal strips (vertical10

strips) decomposition. (The function Partition2D() computes values of rows and cols such that (rows* cols) = Processors and the di�erence between rows and cols is minimized.) With this con�gurationcomputation this program can, through the use of di�erent load time parameters, adapt to di�erent numbersof processors and assume three di�erent data decompositions. The con�guration computation is executedonce at load time.3.2 Z Level of JacobiAfter the program is con�gured, the Z level program is executed, which initializes program variables, readsthe input data, and then iteratively invokes the Jacobi and Max phases until convergence is reached, atwhich point an output phase is invoked. The data, processing, and communication components of the Jacobiand Max phases are speci�ed by de�ning and composing code, data and port ensembles as described below.3.3 Y Level: Data EnsemblesThis program uses two arrays to store
oating point values at each point of a 2D grid. Parallelism is achievedby partitioning these arrays into contiguous 2D blocks:partition block[r][c] float p[rows][cols],float newP[rows][cols];This declaration states that p and newP have dimensions (rows * cols) and are partitioned onto an (r * c)section array (process array). The keyword partition identi�es p and newP as ensemble arrays, and blocknames this partitioning so that it can be reused to de�ne other ensembles. This partitioning corresponds tothe one in Figure 2 when rows=6, cols=6, r = 2 and c = 2, and this ensemble declaration belongs in the<data ensembles> meta-code of Figure 5. (Section 5 shows how an alternate decomposition is declared.)The values of r and c are assumed to be speci�ed in the program's con�guration parameter list. Eachsection is implicitly de�ned to be of size (s * t), where s = rowsr and t = colsc . (If r does not dividerows evenly, some sections will have s = d rowsr e while others will have s = b rowsr c.) Consequently, X levelprocesses contain no assumptions about the data decomposition except the dimension of the subarrays, sothese processes can scale in both the number of logical processors and in the problem size.3.4 Jacobi PhasePort Ensemble. The Jacobi phase computes for each point the average of its four nearest neighbors,implying that each section will communicate with its four nearest neighbor sections (See Figure 4). Thefollowing Y level ensemble declaration de�nes the appropriate port ensemble:11

Jacobi.portnames <--> N, E, W, S /* North, East, West, South */Jacobi[i][j].port.N <--> Jacobi[i-1][j].port.S where 1 <= i < r, 0 <= j < cJacobi[i][j].port.W <--> Jacobi[i][j-1].port.E where 0 <= i < r, 1 <= j < cThe �rst line declares the phase's port names so the following bindings can be speci�ed. The second andthird lines de�ne a mesh connectivity between Y level port names. This port ensemble declaration does notspecify connections for the ports that lie on the boundaries. In this case these unbound ports are boundto derivative functions, which compute boundary conditions using data local to the section. The followingbinds derivative functions to ports on the edges of Jacobi.Jacobi[0][i] .port.N receive <--> RowZero, where 0 <= i < cJacobi[i][c-1] .port.E receive <--> ColZero, where 0 <= i < rJacobi[i][0] .port.W receive <--> ColZero, where 0 <= i < rJacobi[r-1][i] .port.S receive <--> RowZero, where 0 <= i < cRowZero and ColZero are de�ned as:double RowZero(){ static double row[1:t] /* default initialized to 0's */return row;}double ColZero(){ static double col[0][1:s] /* default initialized to 0's */return col[0];}The values of s and t are determined by the process' X level function|in this case xJacobi().In the absence of derivative functions, X level programs could check for the existence of neighbors, butsuch tests complicate the source code and increases the chance of introducing errors. As Section 5 shows,even modestly complicated boundary conditions can lead to a proliferation of special case code.Code Ensemble. To de�ne the code ensemble for Jacobi, each of the r * c sections is assigned an instanceof the xJacobi() code:Jacobi[i][j].code <--> xJacobi(); where 0 <= i < r, 0 <= j < cBecause Jacobi contains heterogeneity only on the boundaries, which in this program is handled by derivativefunctions, all the functions are the same. In general, however, the only restriction is that the function'sargument types and return type must match those of the phase invocation.12

X Level. The X level code for Jacobi is shown in Figure 6. It �rst sends edge values to its four neighbors,it then receives boundary values from its neighbors, and �nally it uses the four point stencil to compute theaverage for each interior point. Several features of the X level code are noteworthy:� parameters|The arguments to the X level code establish a correspondence between local variables andthe sections of the ensembles. In this case, the local value array is bound to a block of ensemble values.� communication|Communication is speci�ed using the transmit operator (<==), for which a port nameon the left speci�es a send of the righthand side, and a port on the right indicates a receive into thevariable on the lefthand side. The semantics are that receive operations block, but sends do not.� uniformity|Because derivative functions are used, the xJacobi() function contains no tests for bound-ary conditions when sending or receiving neighbor values.� border values|The values s and t, used to de�ne the bounds of the value array, are parameters derivedfrom the section size of the data ensemble. To hold data from neighboring sections, value is declared tobe one element wider on each side than the incoming array argument. This extra storage is explicitlyspeci�ed by the di�erence between the local declaration, x[0:s+1][0:t+1], and the formal declaration,x[1:s][1:t], where the upper bounds of these array declarations are inclusive.� array slices|Slices provide a concise way to refer to an entire row (or in general, a d-dimensionalblock) of data. When slices are used in conjunction with the transmit operator (<==), the entire blockis sent as a single message, thus reducing communication overhead.The Complete Phase. To summarize, the data ensemble, the port ensemble, and the code ensemblecollectively de�ne the Jacobi phase. Upon execution the sections declared by the con�guration parametersare logically connected in a nearest-neighbor mesh, and each section of data is manipulated by one xJacobi()process. The end result is a parallel algorithm that computes one Jacobi iteration.3.5 Max PhaseThe Max phase �nds the maximum change of all grid points, and uses the same data ensemble as the Jacobiphase. The port ensemble is shown graphically in Figure 8 and is de�ned below.Max.portnames <--> P, L, R /* Parent, Left, Right */Max[i].port.R <--> Max[2*i].port.P where 0 <= i < r*c/2 - 1Max[i].port.L <--> Max[2*i+1].port.P where 0 <= i < r*c/2 - 113

xJacobi(value[1:s][1:t], new_value[1:s][1:t])double value[0:s+1][0:t+1]; /* extra storage on all four sides */double new_value[0:s+1][0:t+1];port North, East, West, South;{ double new_value[0:s+1][0:t+1];int i, j;/* Send neighbor values */North <== value [1][1:t]; /* 1:t is an array slice */East <== value[1:s][t];West <== value[1:s][1];South <== value[s][1:t];/* Receive neighbor values */value[s+1][1:t] <== South;value[1:s][0] <== West;value[1:s][t+1] <== East;value[0][1:t] <== North;for (i=1; i<=s; i++){ for (j=1; i<=t; i++){ new_value[i][j] = (value[i][j+1] + value[i][j-1] +value[i+1][j] + value[i-1][j]) / 4;}}for (i=1; i<=s; i++){ for (j=1; i<=t; i++){ value[i][j] = new_value[i][j];}}} Figure 6: X Level Code for the Jacobi Phase14

The derivative functions for this phase are bound so that a receive from a leaf section's Left or Right portwill return the value computed by the Smallest Value() function, and a send from the root's unboundParent port will be a no-op.Max[i].port.L receive <--> Smallest_Value() where r*c/2 -1 <= i < ProcessorsMax[i].port.R receive <--> Smallest_Value() where r*c/2 -1 <= i < ProcessorsMax[i].port.P send <--> No_Op() where i = 0The Smallest Value() derivative function simply returns the smallest value that can be represented on thearchitecture. The code ensemble for this phase is similar to the Jacobi phase, except that xMax() replacesxJacobi(). (See Figure 7.)xMax(value[1:s][1:t], new_value[1:s][1:t])double value[1:s][1:t];double new_value[1:s][1:t];port Parent, Left, Right;{ int i, j;double local_max;double temp;/* Compute the local maximum */local_max = -1;for (i=1; i<=s; i++){ for (j=1; j<=t; j++){ temp = abs(value[i][j] - new_value[i][j]);local_max = Max(temp, local_max);}}/* Compute the global maximum */temp <== Left; /* receive */local_max = Max(temp, local_max);temp <== Right; /* receive */local_max = Max(temp, local_max);Parent <== local_max; /* send */} Figure 7: X Level Code for the Max PhaseWith applications that are more complicated than Jacobi, the bene�t of using ensembles increases whiletheir cost is amortized over a larger program. The cost of using ensembles will also decrease as libraries of15

L R
P

L R

L R

PPPP

PFigure 8: Illustration of a Tree Port Ensembleensembles, phases, derivative functions and X level codes are built. For example, the Max phase of Jacobiis common to many computations and would not normally be de�ned by the programmer.4 High Level Programming with the Phase AbstractionsPhase Abstractions are not a programming language, but rather a foundation for the development of parallelprogramming languages that support the creation of e�cient, scalable, portable programs. Orca C, used inthe previous section, is a literal, textual instantiation of the Phase Abstractions. It clearly shows the powerof the Phase Abstractions, but some may �nd it too low-level and tedious.In fact, a departure from the literal Orca C language is not required to achieve an elegant programmingstyle. By adopting certain conventions, it is possible to build reusable abstractions directly on top of OrcaC. By staying within the Orca C framework, this solution has the advantage that di�erent sublanguages canbe used together for a single large problem that requires diverse abstractions for good performance. As anexample, consider the design of an APL-like array sublanguage for Orca C.3Recall that an X level procedure receives two kinds of parameters|global data passed as arguments andport connections|that support two basic activities: computations on data and communication. However,it is possible to constrain X level functions to perform just one of these two tasks|a local computation or acommunication operation. That is, there could be separate computation phases and communication phases.For example, there can be X level computation functions for adding integers, computing the minimumof somevalues, or sorting some elements. There can be X level communication functions for shifting data cyclicallyin a ring, for broadcasting data, or for communicating up and down a tree structure. Reductions, whichnaturally combine both communication and computation, are notable exceptions where the separation of3Since the submission of this paper, an array sublanguage known as ZPL has been developed to support dataparallel computations [35, 47, 31, 37]. While its syntax di�ers signi�cantly from Orca C, ZPL remains true to thePhase Abstractions model. It provides a powerful Z level language that hides all of the X and Y level details fromthe user. 16

communication from computation is not desirable. For such operations it su�ces to de�ne a communication-oriented phase that takes an additional function parameter for combining the results of communications.To illustrate, reconsider the Jacobi example. Rather than specify the entire Jacobi iteration in one Xlevel process, each communication operation constitutes a separate phase and the results are combined byZ level add and divide phases. The convergence test is computed at the Z level by subtracting the oldarray from the new one and performing a maximum reduction on the di�erences. The program skeleton inFigure 9 illustrates this method, providing examples of X level functions for + (referred to as operator+in the syntactic style of C++), shift, and reduce; the Z level code shows how data ensembles are declaredand how phase structures for add, left-shift and reduce are initialized. The divide and subtract phases areanalogous to add, and the other shift functions are analogous to the left-shift.There are three consequences of this approach. First, the interface to a phase is substantially simpli�ed.Second, some problems are harder to describe because it is not possible to combine computation and com-munication within a single X level function. Finally, X level functions (and the phases that they comprise)are smaller and are more likely to perform just one task, increasing their composability and reusability.Although the array sublanguage de�ned here is similar to APL, it has some salient di�erences. Mostsigni�cantly, the Orca C functions operate on subarrays, rather than individual elements, which meansthat fast sequential algorithms can be applied to subarrays. So while this solution achieves some of theconciseness and reusability of APL, it does not sacri�ce control over data decompositions or lose the abilityto use separate global and local algorithms. This solution also has the advantage of embedding an arraylanguage in Orca C, allowing other programming styles to be used as they are needed.5 DiscussionThe power of the Phase Abstractions comes from the decomposition of parallel programs into X, Y and Zlevels, the encoding of key architectural properties as simple parameters, and the concept of ensembles, whichallows data, port and code decompositions to be speci�ed and reused as individual components. The threetypes of ensembles work together to allow the problem and machine size to be scaled. In addition, derivativefunctions allow a single X level program to be used for multiple processes even in the presence of boundaryconditions. This section discusses the Phase Abstractions with respect to performance and expressiveness.Portability and Scalability. When programs are moved from one platform to another they must adaptto the characteristics of their host machine if they are to obtain good performance. If such adaptation isautomatic or requires only minor e�ort, portability is achieved. The Phase Abstractions support portabilityand scalability by encoding key architectural characteristics as ensemble parameters and by separating phasede�nitions into several independent components. 17

xproc TYPE[1:s][1:t] operator+(TYPE x[1:s][1:t], TYPE y[1:s][1:t]){TYPE result[1:s][1:t];int i, j;for (i=1; i<=s; i++)for (j=1; j<=t; i++)result[i][j] = x[i][j] + y[i][j];return result;}xproc void shift(TYPE val[1:s][1:t])port write_neighbor,read_neighbor;{TYPE temp[1][1:t];int i;write_neighbor <== val[1];temp <== read_neighbor;for (i=2; i<=t; i++)val[i-1] = val[i];val[s] = temp;}...xproc int reduce(TYPE val[1:k], TYPE*()op)port Parent,Child[1:n];{int i;TYPE accum;accum = val[1];for (i=2; i<=k; i++)accum = op(accum,val[i]);for (i=1; i<=n; i++)accum = op(accum,Child[i]);Parent <== accum;}

begin Zdouble X[1:J][1:K], OldX[1:J][1:K];...phase operator+;phase Left;phase Reduce;...operator+.code = operator+;Left.code = shift;Left.port = WriteLeft(Zero);...Reduce.code = reduce;Reduce.port = Tree(No_Op, Largest_Value, Largest_Value);do{OldX = X;X := (Left(X) + Right(X) + Up(X) + Down(X)) / 4;} while (Reduce(X - OldX, max) > tolerance);end Z
Figure 9: Jacobi Written in an Array Style Using Orca C18

Changes to either the problem size or the number of processors are encapsulated in the data ensembledeclaration. As in Section 3, we relate the size of a section (s * t), the overall problem size (rows * cols),and the number of sections (r * c) as follows:s = rows/rt = cols/cThe problem size scales by changing the values of rows and cols, the machine size scales by changing thevalues of r and c, and the granularity of parallelism is controlled by altering either the number of processorsor the number of sections in the ensemble declaration. This
exibility is an important aspect of portabilitybecause di�erent architectures favor di�erent granularities.While it is desirable to write programs without making assumptions about the underlying machine,knowledge of machine details can often be used to optimize program performance. Therefore, tuning maysometimes be necessary. For example, it may be bene�cial for the logical communication graph to matchthe machine's communication structure. Consider embedding the binary tree of the Max phase onto a mesharchitecture: Some logical edges must span multiple physical links. This edge dilation can be eliminatedwith a connectivity that allows comparisons along each row of processors and then along a single column(see Figure 10). Figure 10: Rows and Columns to Compute the Global MaximumTo address the edge dilation problem the �xed binary tree presented in Section 3 can be replaced by anew port ensemble that uses a tree of variable degree. Such a solution is shown in Figure 11, where the childports are represented by an array of ports. This new program can use either a binary tree or the \rows andcolumns" approach. The port ensemble declaration for the latter approach is shown below./* Rows and Columns communication structure */Max[i][j].port.P <--> Max[i][j-1].port.C[0] where 0 <= i < r, 1 <= j < cMax[i][0].port.P <--> Max[i-1][0].port.C[1] where 1 <= i < rWith the code suitably parameterized, this program can now execute e�ciently on a variety of architecturesby selecting the proper port ensemble. 19

xMax(value[1:s][1:t], new[1:s][1:t], numChildren)double value[1:s][1:t];double new_value[1:s][1:t];port Parent, Child[numChildren];{ int i, j;double local_max;double temp;/* Compute the local maximum */local_max = -1;for (i=1; i<=s; i++){ for (j=1; i<=t; i++){ temp = abs(value[i][j] - new_value[i][j]);local_max = Max(temp, local_max);}}/* Compute the global maximum */for (i=0; i<numChildren; i++){ temp <== Child[i]; /* receive */local_max = Max(temp, local_max);}Parent <== local_max; /* send */} Figure 11: Parameterized X Level Code for the Max Phase
20

Locality. The best data partitioning depends on factors such as the problem and machine size, the hard-ware's communication and computation characteristics, and the application's communication patterns. Inthe Phase Abstractions model, changes to the data partitioning are encapsulated by data ensembles. Forexample, to de�ne a 2D block partitioning on P processors, the con�guration code can de�ne the numberof sections to be r =pP, c =pP: If a 1D strip partitioning is desired, the number of sections can simplybe de�ned to be r = 1, c = P. This strip decomposition requires that each process have only East-Westneighbors instead of the four neighbors used in the block decomposition. By using the port ensembles tobind derivative functions to unused ports|in this case the North and South ports|the program can easilyaccommodate this change in the number of neighbors. No other source level changes are required.The explicit dichotomy between local and non-local access encourages the use of di�erent algorithmslocally and globally. Batcher's sort, for example, bene�ts from this approach (see Section 1). This contrastswith most approaches in which the programmer or compiler identi�es as much �ne-grained parallelism aspossible and the compiler aggregates this �ne-grained parallelism to a granularity appropriate for the targetmachine.Boundary Conditions. Typically, processes on the edge of the problem space must be treated separately.4In the Jacobi Iteration, for example, a receive into the East port must be conditionally executed becauseprocesses on the East edge have no eastern neighbors. Isolated occurrences of these conditionals pose littleproblem, but in most realistic applications these lead to convoluted code. For example, SIMPLE can have upto nine di�erent cases|depending on which portions of the boundaries are contained within a process|andthese conditionals can lead to code that is dominated by the treatment of exceptional cases [18, 41].For example, suppose a program with a block decomposition assumes in its conditional expression thata process is either a NorthEast, East, or SouthEast section, as shown below:if (NorthEast){ /* special case 1 */}else if (East){ /* special case 2 */}else if (SouthEast){ /* special case 3 */}A problem arises if the programmer then decides that a vertical strips decomposition would be more e�cient.4Although we discuss this problem in the context of a message passing language, shared memory programs mustalso deal with these special cases. 21

The above code assumes that exactly one of the three boundary conditions holds. But in the vertical stripsdecomposition there is only one section on the Eastern edge, so all three conditions apply, not just one.Therefore, the change in data decomposition forces the programmer to rewrite the above boundary conditioncode.Our model attempts to insulate the port and code ensembles from changes in the data decomposition:Processes send and receive data through ports that in some cases involve interprocess communication and inother cases invoke derivative functions. The handling of boundary conditions has thus been decoupled fromthe X level source code. Instead of cluttering up the process code, special cases due to boundary conditionsare handled at the problem level where they naturally belong.Reusability. The same characteristics that provide
exibility in the Phase Abstractions also encouragereusability. For example, the Car-Parrinello molecular dynamics program [49] consists of several phases,one of which is computed using the Modi�ed Gram-Schmidt (MGS) method of solving QR factorization.Empirical results have shown that the MGS method performs best with a 2D data decomposition [36].However, other phases of the Car-Parrinello computation require a 1D decomposition, so in this case a 1Ddecomposition for MGS yields the best performance since it avoids data movement between phases. Thisillustrates that a reusable component is most e�ective if it is
exible enough to accommodate a variety ofexecution environments.Irregular Problems. Until now this paper has only described statically de�ned array-based ensembles.However, this should not imply that Phase Abstractions are ill suited to dynamic or unstructured problems.In fact, to some extent LPAR [28], a set of language extensions for irregular scienti�c computations (seeSection 7), can be described in terms of the Phase Abstractions. The key point is that an ensemble is aset with a partitioning; to support dynamic or irregular computations we can envision dynamic or irregularpartitionings that are managed at runtime.Consider �rst a statically de�ned irregular problem such as �nite element analysis. The programmerbegins by de�ning a logical data ensemble that will be replaced by a physical ensemble at runtime. Thislogical de�nition includes the proper record formats and an array of port names, but not the actual datadecomposition or the actual port ensemble. At runtime a phase is run that determines the partitioningand creates the data and port ensembles: The size and contents of the data ensemble are de�ned, theinterconnection structure is determined, and the sections are mapped to physical processors. We assumethat the code ensemble is SPMD since this obviates the need to assign di�erent codes to di�erent processesdynamically. Once this partitioning phase has completed the ensembles behave the same as statically de�nedphases.Dynamic computations could be generalized from the above idea. For example, a load balancing phase22

could move data between sections and also create revised data and port ensembles to represent the newpartitioning. Technical di�culties remain before such dynamic ensembles can be supported, but the conceptsdo not change.Limits of the Non-Shared Memory Model. The non-shared memory model encourages good localityof reference by exposing data movement to the programmer, but the performance advantage for this model issmall for applications that inherently have poor locality. For example, direct methods of performing sparseCholesky factorization have poor locality of reference because of the sparse and irregular nature of the inputdata. For certain solutions to this problem, a shared memory model performs better because the singleaddress space leads to better load balance through the use of a work queue model [38]. The shared memorymodel also provides notational convenience, especially when pointer-based structures are involved.6 Portability ResultsExperimental evidence suggests that the Phase Abstractions can provide portability across a diverse set ofMIMD computers [32, 33]. This section summarizes these results for just one program, SIMPLE, but similarresults were achieved for QR factorization and matrix multiplication [30]. Here we brie
y describe SIMPLE,the machines on which this program was run, the manner in which this portable program was implemented,and the signi�cant results.SIMPLE is a large computational
uid dynamics benchmark whose importance to high performancecomputing comes from the substantial body of literature already devoted to its study. It was introduced in1977 as a sequential benchmark to evaluate new computers and Fortran compilers [7]. Since its creation ithas been studied widely in both sequential and parallel forms [3, 9, 13, 16, 17, 23, 24, 40, 42].Hardware. The portability of our parallel SIMPLE program was investigated on the iPSC/2 S, iPSC/2F, nCUBE/7, Sequent Symmetry, BBN Butter
y GP1000, and a Transputer simulator. These machinesare summarized in Table 1. The two Intel machines di�er in that the iPSC/2 S has a slower Intel 80387
oating point coprocessor, while the other has the faster iPSC SX
oating point accelerator. The simulatoris a detailed Transputer-based non-shared memory machine. Using detailed information about arithmetic,logical and communication operators of the T800 [24], this simulator executes a program written in a PhaseAbstraction language and estimates program execution time.Implementation. The SIMPLE program was written in Orca C. Since no compiler exists for any languagebased on the Phase Abstractions, this program was hand-compiled in a straight-forward fashion to C codethat uses a message passing substrate to support the Phase Abstractions. The resulting C code is machine-23

Machine Sequent Intel Intel nCUBE BBN Transputermodel Symmetry A iPSC/2 S iPSC/2 F nCUBE/7 Butter
y GP1000 simulatornodes 20 32 32 64 24 64processors Intel 80386 Intel 80386 Intel 80386 custom Motorola 68020 T800memory 32MB 4 MB/node 8 MB/node 512 KB/node 4 MB/node N/Acache 64KB 64 KB 64KB none nonenetwork bus hypercube hypercube hypercube omega meshTable 1: Machine Characteristicsindependent except for process creation, which is dependent on each operating system's method of spawningprocesses.
Sp

ee
du

p

Number of Processors

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

1680 points on a Transputer
1680 points on the Intel iPSC/2
1680 points on the Butterfly
1680 points on the NCUBE/7
1680 points on the Symmetry

Sp
ee

du
p

Number of Processors

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

Pingali&Rogers
Lin&Snyder
Hiromoto et al.

Figure 12: (a) SIMPLE Speedup on Various Machines (b) SIMPLE with 4096 pointsFigure 12(a) shows that similar speedups were achieved on all machines. Many hardware characteristicscan a�ect speedup, and these can explain the di�erences among the curves. In this discussion we concentrateon communication costs relative to computational speed, the feature that best distinguishes these machines.For example, the iPSC/2 F and nCUBE/7 have identical interconnection topologies but the ratio of com-putation speed to communication speed is greater on the iPSC/2 [11, 12]. This has the e�ect of reducingspeedup because it decreases the percentage of time spent computing and increases the fraction of time spenton non-computation overhead. Similarly, since message passing latency is lowest on the Sequent's shared24

bus, the Sequent shows the best speedup. This claim assumes little or no bus contention, which is a validassumption considering the modest bandwidth required by SIMPLE.Figure 12(b) shows the SIMPLE results of Hiromoto et al. on a Denelcor HEP using 4096 data points [23],which indicate that our portable program is roughly competitive with machine-speci�c code. The manydi�erences with our results|including di�erent problem sizes, di�erent architectures, and possibly evendi�erent problem speci�cations|make it di�cult to draw any stronger conclusions.As another reference point, Figure 12(b) compares our results on the iPSC/2 S against those of Pingaliand Rogers' parallelizing compiler for Id Nouveau, a functional language [42]. Both experiments were run oniPSC/2's with 4MB of memory and 80387
oating point units. All other parameters appear to be identical.The largest potential di�erence lies in the performance of the sequential programs on which speedups arecomputed. Although these results are encouraging for proponents of functional languages, we point outthat our results do not make use of a sophisticated compiler: The type of compiler technology developed byPingali and Rogers can likely improve the performance of our programs as well.Even though the machines di�er substantially|for example, in memory structure|the speedups fallroughly within the same range. Moreover, this version of SIMPLE compares favorably with machine-speci�cimplementations. These results suggest, then, that portability has been achieved for this application runningon these machines.7 Related WorkMany systems support a global view of parallel computation, SPMD execution, and data decompositionsthat are similar to various aspects of the Phase Abstractions. None, however, provide support for an X-level algorithm that is di�erent from the Z-level parallel algorithm. Nor do any provide general support forhandling boundary conditions or controlling granularity. This section discusses how some of these systemsaddress scalability and portability in the aggregate data parallel programming style.Dataparallel C. Dataparallel C [21] (DPC) is a portable shared-memory SIMD-style language that hassimilarities to C++. Unlike the Phase Abstractions, DPC supports only point-wise parallelism. DPC haspoint-wise processor (poly) variables that are distributed across the processors of the machine. Unlike itspredecessor C* [43], DPC supports data decompositions of its data to improve performance on coarse-grained architectures. However, because DPC only supports point-wise communication, the compiler orruntime system must detect when several point sends on a processor are destined for the same processorand bundle them. Also, to maintain performance of the SIMD model on a MIMD machine, extra compileranalysis is required to detect when the per-instruction SIMD synchronizations are not necessary and canbe removed. Because each point-wise process is identical, edge e�ects must be coded as conditionals that25

determine which processes are on the edge of the computation. It is hard to reuse such code because theboundary conditions may change from problem to problem. Constant and variable boundary conditions canbe supported by expanding the data space and leaving some processes idle.Dino. Dino [44] is a C-like, SPMD language. Like C*, it constructs distributed data structures by repli-cating structures over processors and executing a single procedure over each element of the data set. Dinoprovides a shared address space, but remote communication is speci�ed by annotating accesses to non-localobjects by the # symbol, and the default semantics are true message-passing. Parallel invocations of a pro-cedure synchronize on exit of the procedure. Dino allows the mapping of data to processes to be speci�edby programmer-de�ned functions. To ensure fast reads to shared data, a partitioning can map an individualvariable to multiple processors. Writes to such variables are broadcast to all copies. Dino handles edgee�ects in the same fashion as C*. Because Dino only supports point-wise communication, the compiler orruntime system must combine messages.Mehrotra and Rosendale. A system described by Mehrotra and Rosendale [39] is much like Dino inthat it supports a small set of data distributions. However, this system provides no way to control orprecisely determine which points are local to each other, so it is not possible to control communication costsor algorithm choice based on locality. On the other hand, this system does not require explicit markingof external memory references as in Dino. Instead, their system infers, when possible, which references areglobal and which are not. In algorithms where processes dynamically choose their \neighbors," this simpli�esprogramming. Also, programs are more portable than those written in Dino. The communication structureof the processor is not visible to the programmer, but the programmer can change the partitioning clauseson the data aggregates. SPMD processing is allowed, but there are no special facilities for handling edgee�ects.Fortran Dialects. Recent languages such as Kali [26], Vienna Fortran [6], and HPF [22] focus on datadecomposition as the expression of parallelism. Their data decompositions are similar to the Phase Ab-stractions notion of data ensembles, but the overall approach is fundamentally di�erent. Phase Abstractionsrequire more e�ort from the programmer, while this other approach relies on compiler technology to exploitloop level parallelism. This compiler-based approach can guarantee deterministic sequential semantics, butit has less potential for parallelism since there may be cases where compilers cannot transform a sequentialalgorithm into an optimal parallel one.Kali, Vienna Fortran and HPF depart from sequential languages primarily in their support for datadecomposition, though some of these languages do provide mechanisms for specifying parallel loops. ViennaFortran provides no form of parallel loops, while the FORALL statement in HPF and Kali speci�es that a26

loop has no loop carried dependencies. To ensure deterministic semantics of updates to common variablesby di�erent loop iterations, values are deterministically merged at the end of the loop. This construct isoptional in HPF; the compiler may attempt to extract parallelism even where a FORALL is not used.HPF and Vienna Fortran allow arrays to be aligned with respect to an abstract partitioning. Theseare very powerful constructs. For example, arrays can be dynamically remapped, and procedures can de�netheir own data distribution. Together these features are potentially very expensive because although theprogrammer helps in specifying the data distribution at various points of the program, the compiler mustdetermine how to move the data. In addition to data distribution directives, Kali allows the programmer tocontrol the assignment of loop iterations to processors through the use of the On clause, which can help inmaintaining locality.LPAR. LPAR is a portable language extension that supports structured, irregular scienti�c parallel com-putations [28, 27]. In particular, LPAR provides mechanisms for describing non-rectangular distributedpartitions of the data space to manage load-balancing and locality. These partitions are created throughthe union, intersection and set di�erence of arrays. Because support for irregular decompositions has a highcost, LPAR syntactically distinguishes irregular decompositions so that faster runtime support can be usedfor regular decompositions.5 Computations are invoked on a group of arrays by the foreach operator, whichexecutes its body in parallel on each array to yield coarse-grained parallelism. LPAR uses the overlappingindices of distributed subarrays to support sharing of data elements. Overlapping domains provide an ele-gant way of describing multilevel mesh algorithms and computations for boundary conditions. There is anoperator for redistributing data elements, but LPAR depends on a routine written in the base language tocompute what the new decomposition should be.The Phase Abstraction's potential to support dynamic, irregular decompositions is discussed in Section 5.For multigrid decompositions, a sublanguage supporting scaled partitionings and communication betweenscaled ensembles would be useful. The Phase Abstractions' support for loose synchrony naturally supportsthe use of re�ned grids in conjunction with the base grid.Split-C. Split-C is a shared-memory SPMD language with memory reference operations that supportlatency-hiding [10]. Split-C procedures are concurrently applied in an \owner-computes" fashion to thepartitions of an aggregate data structure such as an array or pointer-based graph. A process reads data thatit does not own with a global pointer (a Split-C data type). To hide latency, Split-C supports an asynchronousread|akin to an unsafe Multilisp future [20]|that initiates a read of a global pointer but does not waitfor the data to arrive. A process can invoke the sync() operation to block until all outstanding reads5Scott Baden, Personal Communication. 27

complete. There is a similar operation for global writes. These operations hide latency while providing aglobal namespace and reducing the copying of data in and out of message queues. (Copying may be necessaryfor bulk communication of non-contiguous data, such as the column of an array.) However, these operationscan lead to complex programming errors because a misplaced reference or synchronization operation canlead to incorrect output but no immediate failure.Array distribution in Split-C is straightforward but somewhat limited; some number of higher orderdimensions can be cyclically distributed while the remaining dimensions are distributed as blocks. Loadbalance, locality, and irregular decompositions may be di�cult to achieve for some applications. Arraydistribution declarations are tied to a procedure's array parameter declarations, which can limit reusabilityand portability because these declarations and the code that depends on them must be modi�ed when thedistribution changes. This coupling can also incur a performance penalty because the bene�t of an optimalarray distribution for one procedure invocation may be o�set by the cost of redistributing the array for othercalculations that use the array. Split-C provides no special support for boundary conditions. The usual trickof creating an enlarged array is possible; otherwise, irregularities must be handled by conditional code in thebody of the SPMD procedures.8 ConclusionParallelism o�ers the promise of great performance but thus far has been hampered by a lack of portability,scalability, and programming convenience that unacceptably increase the time and cost of developing e�cientprograms. Support is required for quickly programminga solution and easily moving it to newmachines as oldones become obsolete. Rather than de�ning a new parallel programming paradigm, the Phase Abstractionsmodel supports well-known techniques for achieving high-performance|computing sequentially on localaggregates of data elements and communicating large groups of data as a unit|by allowing the programmerto partition data across parallel machines in a scalable manner. Furthermore, by separating a program intoreusable parts|X level, Y level, Z-level, ensemble declarations, and boundary conditions|the creation ofsubsequent programs can be signi�cantly simpli�ed. This approach provides machine-independent, low-levelcontrol of parallelism and allows programmers to write in an SPMD manner without sacri�cing the e�ciencyof MIMD processing.Message passing has often been praised for its e�ciency but condemned as being di�cult to use. Thecontribution of the Phase Abstractions is a language model that focuses on e�ciency while reducing thedi�culty of non-shared memory programming. The programmability of this model is exempli�ed by thestraight-forward solution of problems such as SIMPLE, as well as the ability to de�ne specialized high-levelarray sublanguages. Because the Phase Abstractions model is designed to be structurally similar to MIMDarchitectures, it performs very well on a variety of MIMD processors. This claim is supported by tests on28

machines such as the Intel iPSC, the Sequent Symmetry and the BBN Butter
y.References[1] G. Alverson, W. Griswold, D. Notkin, and L. Snyder. A
exible communication abstraction for non-shared memory parallel computing. In Proceedings of Supercomputing '90, November 1990.[2] G. Alverson and D. Notkin. Program structuring for e�ective parallel portability. IEEE Transactionson Parallel and Distributed Systems, 4(9), September 1993.[3] T. S. Axelrod, P. F. Dubois, and P. G. Eltgroth. A simulator for MIMD performance prediction {application to the S-1 MkIIa multiprocessor. In Proceedings of the International Conference on ParallelProcessing, pages 350{358, 1983.[4] G. E. Blelloch. NESL: A nested data-parallel language. Technical Report CMU-CS-92-103, School ofComputer Science, Carnegie Mellon University, January 1992.[5] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM, 32(4):444{458, April1989.[6] B. Chapman, P. Mehrotra, and H. Zima. Vienna Fortran { a Fortran language extension for distributedmemory multiprocessors. Technical Report No. 91-72, ICASE, September 1990.[7] W. Crowley, C. P. Hendrickson, and T. I. Luby. The Simple code. Technical Report UCID-17715,Lawrence Livermore Laboratory, 1978.[8] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and T. vonEiken. LogP: Towards a realistic model of parallel computation. In Proceedings of the Fourth Symposiumon Principle and Practice of Parallel Programming, pages 1{12, May 1993.[9] D. E. Culler and Arvind. Resource requirements of data
ow programs. In Proceedings of the Interna-tional Symposium on Computer Architecture, pages 141{150, 1988.[10] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick.Parallel programming in Split-C. In Proceedings of Supercomputing '93, pages 262{273, November 1993.[11] T. Dunigan. Hypercube performance. In Proceedings of the 2nd Conference on Hypercube Architectures,pages 178{192, 1987.[12] T. Dunigan. Performance of the Intel iPSC/860 and NCUBE 6400 hypercubes. Technical ReportONRL/TM-11790, Oak Ridge National Laboratory, 1991.[13] K. Ekanadham and Arvind. SIMPLE: Part I, an exercise in future scienti�c programming. TechnicalReport 273, MIT CSG, 1987.[14] W. Fenton, B. Ramkumar, V. Saletore, A. Sinha, and L. Kale. Supporting machine independentprogrammingon diverse parallel architectures. In Proceedings of the International Conference on ParallelProcessing, pages II 193{201, 1991.[15] J. Feo, D. C. Cann, and R. Oldehoeft. A report on the Sisal language project. Journal of Parallel andDistributed Computing, 10:349{366, December 1990.[16] D. Gannon and J. Panetta. SIMPLE on the CHiP. Technical Report 469, Computer Science Department,Purdue University, 1984. 29

[17] D. Gannon and J. Panetta. Restructuring Simple for the CHiP architecture. In Parallel Computing,pages 3:305{326, 1986.[18] K. Gates. Simple: An exercise in programming in Poker. Technical report, Applied MathematicsDepartment, University of Washington, 1989.[19] W. Griswold, G. Harrison, D. Notkin, and L. Snyder. Scalable abstractions for parallel programming. InProceedings of the Fifth Distributed Memory Computing Conference, 1990. Charleston, South Carolina.[20] R. H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM Transactions onProgramming Languages and Systems, 7(4):501{538, 1985.[21] P. J. Hatcher, M. J. Quinn, R. J. Anderson, A. J. Lapadula, B. K. Seevers, and A. F. Bennett.Architecture-independent scienti�c programming in Dataparallel C: Three case studies. In Proceed-ings of Supercomputing '91, pages 208{217, 1991.[22] High Performance Fortran Forum. High Performance Fortran Speci�cation. November 1994.[23] R. E. Hiromoto, O. M. Lubeck, and J. Moore. Experiences with the Denelcor HEP. In ParallelComputing, pages 1:197{206, 1984.[24] T. J. Holman. Processor Element Architecture for Non-Shared Memory Parallel Computers. PhD thesis,University of Washington, Department of Computer Science, 1988.[25] Intel Corporation. iPSC/2 User's Guide. October 1989.[26] C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for distributed execution.IEEE Transactions on Parallel and Distributed Systems, 2(4):440{451, October 1991.[27] S. R. Kohn and S. B. Baden. Lattice parallelism: A parallel programming model for non-uniform,structured scienti�c computations. Technical Report CS92-261, University of California, San Diego,Dept. of Computer Science and Engineering, September 1992.[28] S. R. Kohn and S. B. Baden. An implementation of the LPAR parallel programming model for scien-ti�c computations. In Proceedings of the Sixth SIAM Conference on Parallel Processing for Scienti�cComputing, March 1993.[29] M. S. Lam and M. C. Rinard. Coarse-grain parallel programming in Jade. In Third ACM SIGPLANSymposium on Principles and Practice of Parallel Programming, April 1991.[30] C. Lin. The Portability of Parallel Programs Across MIMD Computers. PhD thesis, University ofWashington, Department of Computer Science and Engineering, 1992.[31] C. Lin. ZPL language reference manual. Technical Report 94{10{06, Department of Computer Scienceand Engineering, University of Washington, 1994.[32] C. Lin and L. Snyder. A portable implementation of SIMPLE. International Journal of ParallelProgramming, 20(5):363{401, 1991.[33] C. Lin and L. Snyder. Portable parallel programming: Cross machine comparisons for SIMPLE. InJ. Dongarra, K. Kennedy, P. Messina, D. C. Sorensen, and R. G. Voigt, editors, Proceedings of the FifthSIAM Conference on Parallel Processing for Scienti�c Computing, pages 564{569. SIAM, 1992.[34] C. Lin and L. Snyder. Data ensembles in Orca C. In U. Banerjee, D. Gelernter, A. Nicolau, andD. Padua, editors, Languages and Compilers for Parallel Computing, pages 112{123. Springer-Verlag,1993. 30

[35] C. Lin and L. Snyder. ZPL: An array sublanguage. In U. Banerjee, D. Gelernter, A. Nicolau, andD. Padua, editors, Languages and Compilers for Parallel Computing, pages 96{114. Springer-Verlag,1993.[36] C. Lin and L. Snyder. Accommodating polymorphic data decompositions in explicitly parallel programs.In Proceedings of the 8th International Parallel Processing Symposium, pages 68{74, 1994.[37] C. Lin and L. Snyder. SIMPLE performance results in ZPL. In K. Pingali, U. Banerjee, D. Gelernter,A. Nicolau, and D. Padua, editors, Languages and Compilers for Parallel Computing, pages 361{375.Springer-Verlag, 1994.[38] C. Lin and W. D. Weathersby. Towards a machine-independent solution of sparse cholesky factorization.In Proceedings of Parallel Computing '93, 1993.[39] P. Mehrotra and J. Rosendale. Compiling high level constructs to distributed memory architectures.Technical Report ICASE Report No. 89-20, Institute for Computer Applications in Science and Engi-neering, March 1989.[40] J. M. Meyers. Analysis of the SIMPLE code for data
ow computation. Technical Report MIT/LCS/TR{216, MIT, 1979.[41] D. Notkin, D. Socha, M. Bailey, B. Forstall, K. Gates, R. Greenlaw, W. Griswold, T. Holman, R. Korry,G. Lasswell, R. Mitchell, P. Nelson, and L. Snyder. Experiences with Poker. In Proceedings of theACM SIGPLAN Symposium on Parallel Programming: Experience with Applications, Languages, andSystems, July 1988.[42] K. Pingali and A. Rogers. Compiler parallelization of SIMPLE for a distributed memory machine.Technical Report 90{1084, Cornell University, 1990.[43] J. Rose and G. L. Steele Jr. C*: An extended C language for data parallel programming. In 2ndInternational Conference on Supercomputing, March 1987.[44] M. Rosing, R. Schnabel, and R. Weaver. The Dino parallel programming language. Technical ReportCU-CS-457-90, Dept. of Computer Science, University of Colorado, April 1990.[45] L. Snyder. Type architecture, shared memory and the corollary of modest potential. In Annual Reviewof Computer Science, pages I:289{318, 1986.[46] L. Snyder. The XYZ abstraction levels of Poker-like languages. In D. Gelernter, A. Nicolau, andD. Padua, editors, Languages and Compilers for Parallel Computing, pages 470{489. MIT Press, 1990.[47] L. Snyder. A ZPL programming guide. Technical Report 94{12{02, Department of Computer Scienceand Engineering, University of Washington, 1994.[48] L. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103{111,1990.[49] J. Wiggs. A parallel implementation of the Car-Parrinello method. Technical Report General Exam,Dept. of Chemistry, University of Washington, June 1993.31

Index WordsMIMDParallelPortableProgramming modelScalable

Address for correspondence:Calvin LinUniversity of TexasDept. of Computer SciencesTaylor 2.124Austin, TX 78712(512) 471-9560(512) 471-8885 (FAX)lin@cs.utexas.eduA�liations of AuthorsGail A. Alverson, Tera Computer CompanyWilliam G. Griswold, University of California at San DiegoDepartment of Computer Science and EngineeringCalvin Lin, The University of Texas at AustinDepartment of Computer SciencesDavid Notkin, University of WashingtonDepartment of Computer Science and EngineeringLawrence Snyder, University of WashingtonDepartment of Computer Science and Engineering

Footnotes1 We de�ne a program to be portable with respect to a given machine if its performance is competitivewith machine-speci�c programs solving the same problem [2].2 The more recent BSP [48] and LogP [8] models present a similar view of a parallel machine and forthe most part suggest a similar way of programming parallel computers.3 Scott Baden, Personal Communication.

List of Figures1 XYZ Illustration of the Jacobi Iteration . 72 A 6�6 Array (left) and its corresponding Data Ensemble for a 2�2 array of sections. 83 Illustration of a Code Ensemble . 84 Illustration of a Port Ensemble . 95 Overall Phase Abstraction Program Structure . 106 X Level Code for the Jacobi Phase . 147 X Level Code for the Max Phase . 158 Illustration of a Tree Port Ensemble . 169 Jacobi Written in an Array Style Using Orca C . 1810 Rows and Columns to Compute the Global Maximum . 1911 Parameterized X Level Code for the Max Phase . 2012 (a) SIMPLE Speedup on Various Machines (b) SIMPLE with 4096 points 24

Technical BiographiesGail Alverson is the project leader of the Debugger and Application Libraries group at Tera ComputerCompany in Seattle, Washington. She joined Tera after receiving her Ph.D. in Computer Science from theUniversity of Washington in 1991. She received her B.Sc.(Honours) from Queen's University at Kingston,Ontario in 1986. Her technical interests include runtime support, performance, and correctness debuggingfor multithreaded systems.William Griswold is an Associate Professor in the Department of Computer Science and Engineering atthe University of California, San Diego. He received his Ph.D. in Computer Science from the Universityof Washington in 1991, and BA in Mathematics from the University of Arizona in 1985. He is a memberof the program committee for the International Conference on Software Engineering in 1997 and 1998. Hisresearch interests include software evolution and design, compiler technology, and programming languages.He is a member of the IEEE.Calvin Lin is an Assistant Professor in the Department of Computer Sciences at the University of Texasat Austin. He received the B.S.E from Princeton University in 1985 and his PhD in Computer Science fromthe University of Washington in 1992. His research interests are in languages and compilers for portable ande�cient parallel programming. He is the co-designer of the ZPL programming language.David Notkin is a Professor of Computer Science and Engineering at the University of Washington. Hisresearch interests are in software engineering with a focus on software evolution. His current projects includework on software model checking, software design, and software tools and techniques. Notkin received anScB from Brown University and a PhD from Carnegie Mellon University, both in computer science. He is amember of the IEEE, ACM, and Sigma Xi.Lawrence Snyder, Professor of Computer Science and Engineering at the University of Washington,received a bachelor's degree from the University of Iowa in mathematics and economics, and in 1973 receiveda Ph.D. from Carnegie Mellon University in Computer Science. He joined UW in 1983 after serving on thefaculties at Purdue and Yale.Snyder's research has ranged from the design and development of a 32 bit single chip (CMOS) micro-processor, the Quarter Horse, to proofs of the undecidability of properties of programs. He created theCon�gurable Highly Parallel (CHiP) architecture, the Poker Parallel Programming Environment, and isco-inventor of Chaotic Routing. He is a co-developer of the Take/Grant Security Model and co-creator ofseveral new algorithms and data structures. He is inventor of the CTA, co-designer of Phase Abstractionsand the ZPL programming language.He has been an editor of the IEEE Transactions on Parallel and Distributed Systems, and the Journalof the ACM. He has served on many advisory committees for the NSF, has chaired two NRC committees,and is on the Board of the Computer Research Association. He is a fellow of IEEE and ACM.

