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Exploring the Spectrum
of Dynamic Scheduling Algorithms

for Scalable Distributed-Memory Ray Tracing
Paul A. Navrátil, Member, IEEE, Hank Childs, Donald S. Fussell and Calvin Lin, Member, IEEE

Abstract—This paper extends and evaluates a family of dy-
namic ray scheduling algorithms that can be performed in-situ
on large distributed memory parallel computers. The key idea
is to consider both ray state and data accesses when scheduling
ray computations. We compare three instances of this family of
algorithms against two traditional statically scheduled schemes.
We show that our dynamic scheduling approach can render
datasets that are larger than aggregate system memory and that
cannot be rendered by existing statically scheduled ray tracers.
For smaller problems that fit in aggregate memory but are
larger than typical shared memory, our dynamic approach is
competitive with the best static scheduling algorithm.

Index Terms—Distributed memory, dynamic scheduling, par-
allel, ray tracing

I. INTRODUCTION

Ray tracing is a well-known technique for rendering high-
fidelity images. While originally designed for entertainment
and artistic purposes, ray tracing is becoming increasingly
important for scientific visualization, where its faithful ad-
herence to the physics of light transport allows it to better
express spatial relationships and realistic lighting than less
computationally expensive rendering techniques.

To complicate matters, scientific visualization is now typi-
cally computed on the same hardware that produces the data.
There are two reasons for this trend. First, most scientific
simulations are performed on massively parallel supercomput-
ing clusters and produce terabytes or more of data, so it is
prohibitively expensive to ship this data to dedicated hardware
for rendering and analysis. Second, it is impractical, and some-
times impossible, to pre-compute highly-tuned acceleration
structures for these large datasets: The pre-processing would
require significant additional machine time and disk space, and
the resulting acceleration structure would consume significant
additional DRAM, sometimes factors larger than the original
dataset [1].

Thus, we now face the challenge of performing parallel
ray tracing on distributed memory clusters, but with it comes
the opportunity to construct visualization algorithms that can
more-easily be used for in-situ and co-processing visualization,
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where an HPC simulation and interconnected visualization run
on the same system simultaneously.

Whitted’s traditional ray tracing algorithm is embarrassingly
parallel, but when rendering secondary rays, the algorithm
quickly loses ray coherence and exhibits poor memory system
locality, as different rays touch different geometry and differ-
ent parts of the acceleration structure. Thus, when the needed
data are too large to fit in main memory—which is typical
of scientific data—disk- and memory-efficient algorithms are
needed for good performance.

To address the issue of poor ray coherence in the se-
rial realm, Pharr, et al. [2] reformulate Whitted’s algorithm
to allow more flexible scheduling of ray-object intersection
calculations. This formulation organizes rays and data into
coherent work units, known as ray queues, which introduces
a new tradeoff: Work units increase ray coherence—which in
turn increases locality in the memory system—at the cost of
increased memory state. Unfortunately, the use of the disk
to cache excess ray state [2] can become intractable in a
massively parallel environment due to I/O costs, specifically,
file system contention from hundreds to thousands of processes
performing extra I/O for rays both frequently and consistently
throughout the rendering.

To create disk- and memory-efficient parallel algorithms,
Navrátil et al. [3] generalize the flexible scheduling approach
of Pharr, et al., to consider the issue of load balance, which
is important for achieving good parallel efficiency. The basic
idea is to consider locality when scheduling work units. This
dynamic scheduling of rays and data can improve performance
for large datasets where disk I/O and inter-processor commu-
nication limit performance.

The work by Navrátil et al. opens a rich space of dynamic
scheduling, but their paper is limited in its evaluation, as it
considers just one simple dynamic scheduling strategy. This
paper is an extension of the work of Navrátil et al. that makes
the following contributions:
• We provide a deeper exploration of their original dy-

namic scheduling policy (LoadOnce), and we explore two
additional related dynamic scheduling policies: one that
allows domain data to be replicated if there is sufficient
demand for it on other processors (LoadAnother), and one
that greedily processes the work unit that has the largest
number of pending rays (LoadAnyOnce).

• We evaluate these schedulers on two parallel comput-
ers and across five dimensions that influence ray tracer
performance: data set, data size, shading effects, camera
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Fig. 1. The isosurfaces of the Perlin noise volumes used in our scaling study: Each is a 10% isovalue increment from 10% (far left) to 50% (far right).

position and number of processors.
• We empirically confirm Navrátil et al.’s result that when

computing resources are limited, the LoadOnce dynamic
scheduling policy outperforms static schedulers. Further,
we demonstrate that the LoadAnyOnce policy performs
best when shading generates many rays, such as with
hemispheric sampling to compute diffuse reflections, and
that allowing multiple processes to simultaneous load
popular data domains using the LoadAnother policy pro-
vides little or no benefit over our other policies that map
domains uniquely to processes.

The remainder of this paper proceeds as follows. We discuss
related work in Section II. We then present ray tracing
concepts essential to our discussion in Section III, followed
by a description of our solution in Section IV. We describe
our experimental methodology in Section V, an evaluation of
the scheduling algorithms in Section VI, and a detailed scaling
study on synthetic volumes in Section VII. We then conclude
with a discussion of future work.

II. RELATED WORK

To date, most parallel ray tracing research has been lim-
ited to either ray tracing on shared-memory machines [4],
[5] or to ray casting (tracing only first-generation rays) on
distributed memory architectures [6], [7], [8], [9]. Recent work
on distributed-memory ray tracers [10], [11], [12], [13], [1],
[14], [15] has demonstrated only modest scaling and has been
hampered by various system limitations, including limited
interconnect bandwidth and limited disk I/O bandwidth.

A. Shared-Memory Ray Tracing

Most parallel ray tracers assume a shared address space
architecture [4], [16], [17], [5], [18], [19]. While these systems
achieve impressive performance, the shared address space
does not map to supercomputer clusters, and it tends to hide
load balance concerns from the programmer. Explicitly out-of-
core ray tracers [20], [21] also target shared memory systems,
and their caching structures, if extrapolated to the distributed
memory case, are similar to the distributed shared memory
caching techniques described below.

B. Distributed-Memory Ray Tracing

On distributed memory computers, non-queueing ray tracers
face a tradeoff: They can minimize data access by tracing
ray groups that pass through contiguous pixels, or they can
balance load by tracing disparate pixels in hopes of evenly
distributing the rendering work [22]. These systems typically

optimize performance by relying on expensive preprocessing
steps, such as a low-resolution rendering pass to pre-load data
on the processes [23] or an expensive pre-built acceleration
structure to guide on-demand data loads [24], [12].

DeMarle et al. [1], [25], [13] use distributed shared memory
to hide the memory complexities from the ray tracer. Their
system achieves interactive performance for simple lighting
models, but disk contention ruins performance if the scene
does not fit in available memory. Moreover, their results rely
on a preprocessing step to distribute the initial data, a step that
typically takes several hours for a several gigabyte dataset. Ize
et al. [14] update this approach using the Manta ray tracer [5]
and modern hardware, but they experience similar memory and
scaling limitations while retaining the expensive preprocessing
step. Brownlee et al. [15] incorporate Ize et al.’s tracer into
their OpenGL intercept framework using an explicit image-
plane decomposition to achieve interactive performance for
datasets that can fit in each process’s available RAM.

Reinhard et al. [11], [10] distribute data across the cluster
and assign tasks to processes based on load. This approach
keeps camera and shadow rays on the originating process,
while passing reflection and refraction rays to a process that
contains the data required to process them. While the division
of work is different, this technique is similar to that of DeMarle
et al. in that it relies on data preprocessing and the caching of
data in available system memory.

To balance load, the Kilauea system [26], [27] distributes
the scene across all processes, but it replicates each ray on
each process. This system requires scene data to fit entirely in
aggregate memory, and it is unclear whether its small, frequent
ray communication will scale beyond the few processes re-
ported. It is also unclear whether the system can accommodate
scientific data that does not have pre-tessellated surfaces.

To date, distributed memory ray tracers that queue and
reorder rays have only been implemented on specialized
hardware [28] and on a single workstation with GPU acceler-
ation [29], [30], [31], solutions which are not feasible for the
large datasets produced by supercomputing clusters.

C. Improving Memory Access Coherence

The importance of data coherence for improving rendering
performance has been known for over thirty years [32]. Green
and Paddon [33] propose three categories of coherence for ray
tracing, and we use these categories to describe previous work
in improving memory access coherence:

a) Image Coherence: Rays traced through adjacent pix-
els are likely to travel through the same regions of scene space,
traverse the same acceleration structure nodes, and intersect
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the same objects. Thus, image coherence can be achieved by
tracing together primary rays that pass through contiguous
pixels, such as in tiles [34] or along a space-filling curve [35].
Some parallel ray tracers sacrifice image coherence for the
sake of load balance by tracing primary rays from widely
separated pixels [23], [12].

b) Ray Coherence: Rays that travel a similar path are
likely to require the same data for their traversal and intersec-
tion computations. Ray packeting [34], and similar techniques
that trace a group of rays together, exploit ray coherence to
achieve better performance. Pharr et al. [2] expand this concept
to include rays that occupy the same region of scene space si-
multaneously, regardless of their origins or directions. We use
this broader definition in our work. Secondary rays generated
by ray-coherent primary rays often do not remain ray-coherent
themselves, so ray reordering [36] and ray queueing [31],
[30], [28], [37], [2], [38] are methods of building ray-coherent
groups of secondary rays.

c) Data Coherence: Objects that are nearby in scene
space are stored in nearby locations in machine memory. This
relationship translates the coherent references of an algorithm
into coherent requests to memory. Data coherence must exist
for image- or ray-coherent traversals to maximize efficient
use the memory system [33], [16], [2]. Otherwise, coherent
accesses in the scene might result in random requests in
memory, eliminating the coherence benefit.

From a parallelization perspective, the conditions for image
and ray coherence are best served by algorithms that divide
rays over processors and then load data as needed, while the
conditions of data coherence are best served by algorithms
that divide data over processors and pass ray data to the
corresponding processor as it moves through the volume.

III. BACKGROUND

This section explains—by summarizing the important issues
in producing an efficient parallel ray tracing algorithm for
large distributed memory computers—how parallel ray tracing
is essentially a scheduling problem.

Consider a ray tracing problem with a fixed data set, camera
location, and lighting properties. Over the entire computation,
including both primary and secondary rays, this problem has
some fixed number of calculations to perform, N, and each
calculation matches a ray with the geometry that it intersects.
Ideally, each calculation would take a fixed (and short) period
of time, and ideally a ray tracing algorithm would simply
divide the work evenly over P processes, leading to a P-
fold speedup. Unfortunately, this ideal case rarely occurs: The
amount of time needed to carry out a calculation often varies
greatly due to cost of getting the ray and its intersecting
geometry together on the same process.

Focusing on systems where individual processes own rays,
there are three primary actions that a process Pi can make
when considering ray R:

1) Pi calculates the next intersection of R.
2) Pi directs Pj to calculate the next intersection of R.
3) Pi takes no action with R.

For the first action, the bottleneck comes from fetching the
geometry that R intersects, whether it has to be transferred

from cache to registers or whether it has to be read from disk.
These data movement costs often greatly exceed the cost of
calculating the intersection itself. For the second action, the
algorithm might be moving the ray intersection to a process
that already contains the object data, where the calculation can
be performed more efficiently, or it might be moving the ray
intersection to a less heavily loaded process, in which case the
calculation has the potential to be computed earlier. The third
action simply introduces an additional delay, meaning that the
computation is not being advanced.

In short, the efficiency of a parallel ray tracing algorithm
depends on the time and location at which each calculation
is performed, which introduces a scheduling problem whose
goal is to minimize the overhead required to perform each
individual calculation. The specific goals are to minimize
disk reads, network communication, and load imbalance. As
these costs are reduced, the performance of the algorithm
increasingly mirrors that of an optimal one that carries out
intersections as fast as it can perform floating-point arithmetic.

A. Static Ray Schedulers

Previous distributed memory ray tracers use static schedules
that statically partition data among processes. The first, image-
plane decomposition, partitions the screen space into a grid
of domains and allocates to each domain any object whose
projection overlaps that grid cell. The second, data-domain
decomposition, partitions world space into a grid of domains,
assigning to each domain all objects that overlap that domain.

01 RayQueue queue, all_queues[]
02 Domain d
03
04 ProcessQueue(RayQueue queue):
05 while (! queue.empty() ):
06 Ray r = queue.top()
07 queue.pop()
08
09 # Intersect ray r against domain d
10 # add any new rays to the queue
11 PerformRayOperations(d, r, queue)
12
13 if (! RayFinished(r) ):
14 Enqueue(all_queues, r)
15 else:
16 ColorFramebuffer(r)
17
18 GenerateRays():
19 if ( Image or Dynamic schedule ):
20 rays[] = create camera rays for my image tile
21 else: # Domain schedule
22 rays[] = create camera rays for my domain(s)
23 return rays[]
24
25 EnqueueRays(rays[]):
26 RayQueue queues[]
27 for r in (rays[]):
28 int q = r.queue_num
29 queues[q].push(r)
30 return queues[]

Fig. 2. Pseudocode for ProcessQueue(), GenerateRays() and EnqueueR-
ays(). These are used in each schedule’s pseudocode (see Figures 3 – 5).
PerformRayOperations() includes the traversal, intersection, shading
and spawning of new rays.

Static Image-Plane Decomposition: Perhaps the simplest and
most common way to parallelize a ray tracer is to partition
objects and primary rays among processes according to their
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01 ImageTrace():
02 Ray rays[] = GenerateRays()
03 RayQueue queues[] = EnqueueRays(rays)
04
05 while (! queues.empty() ):
06 RayQueue q = FindQueueWithMostRays(queues)
07 Domain d = LoadDomain(q.domain_id)
08 ProcessQueue(q)
09 queues.delete(q) # q is now empty
10
11 MergeFramebuffers()

Fig. 3. Pseudocode for the Static Image-Plane Decomposition Schedule.

overlap of the image plane. See Figure 3. Initially each process
is responsible for an equal-sized subset of the image plane
comprising one or more grid cells; each grid cell maintains
a queue of rays that have entered that domain; and data
are loaded to each process on demand. The primary rays
are evenly divided among these queues (and thus among the
processes, see line 2). As rays are processed forward from
their origin, they are re-queued whenever they leave one grid
cell and enter another (line 8 and see Figure 2), which always
occurs locally (i.e. rays are never sent to another process).
When secondary rays are spawned, they are also enqueued
and processed locally. At each scheduling step, each process
selects for further processing its grid cell domain that has the
largest number of local rays queued for further processing (line
6).

Note that primary rays always remain within the portion of
the scene initially assigned to their local process. Secondary
rays, however, can enter any region of the scene, including
regions not initially allocated to their process. In such cases,
a process will need to load partitions which were not initially
assigned to it. In the worst case, all processes could have to
load all portions of the scene. While primary rays are initially
evenly distributed, this strategy can exhibit poor load balance
as the computation proceeds because secondary rays can be
extremely unevenly distributed among processes. It can also be
difficult for the initial partition to evenly distribute the objects
across processes for scenes that have a highly uneven spatial
distribution.

This strategy has been commonly used [15], [5], [1], [25],
[13], [23], [4], [39], [24], [12] and also corresponds to the
demand-driven component of the schedule used by Reinhard
et al. [11], [10]. It directly parallelizes a Pharr-like approach
by using multiple serial instances run in parallel, where each
instance is seeded with a subset of camera rays.

01 DomainTrace():
02 Ray rays[] = GenerateRays()
03 RayQueue queues[] = EnqueueRays(rays)
04
05 Domain last_d = NONE
06 boolean done = FALSE
07 while (! done ):
08 # each process only has rays for its domains
09 RayQueue q = FindQueueWithMostRays(queues)
10 if (q.domain_id != last_d):
11 Domain d = LoadDomain(q.domain_id)
12 last_d = q.domain_id
13
14 RayQueue new_rays = ProcessQueue(q)
15 queues.delete(q) # q is now empty
16
17 SendLiveRaysToNextProcess(queues)
18 done = AllProcessesReportEmpty()
19
20 MergeFramebuffers()

Fig. 4. Pseudocode for the Static Domain Decomposition Schedule.

Static Domain Decomposition: Another simple strategy is to
spatially subdivide the dataset in world space and to distribute
these domains among the available processes such that each
process is responsible for a similar number of objects. See the
pseudocode in Figure 4. A process can be assigned multiple
domains if there are more domains than processes. Again,
rays that have entered a domain are enqueued at each domain
(line 3). As with the image-space approach, at each scheduling
step each process selects the assigned domain with the largest
number of local rays queued for processing (line 9), and rays
are re-queued as they leave one domain and enter another (line
17). Note that all rays of the selected queue are processed (line
14) and the queue is emptied (line 15) before selecting the next
queue. Unlike the image-space approach, however, the initial
assignment of domains to processes is fixed throughout the
computation. A ray that leaves its local process must be sent
to the process responsible for the domain that it is entering.

This type of decomposition can more naturally balance
the number of objects that each process is responsible for,
regardless of how they project into screen space, but it can
still exhibit poor load balance if the number of rays enqueued
at each domain cell varies. Unlike the image-decomposition
approach, even the primary rays may be poorly balanced.
However, it does much less loading of data into memory in
the global illumination case since all domain assignments are
fixed. This is traded off for the need to communicate ray state
among processes.

This strategy is used by several ray tracers [28], [40], [41]
and in the data parallel component of the scheduling strategy
in Reinhard et al. [11], [10]. It is a typical approach for large-
scale volume renderers [6], [8], [9], [7]. Like the image-plane
decomposition strategy, it parallelizes a Pharr-like approach
by using multiple serial instances run in parallel, where each
instance is assigned a set of domains and where rays are moved
among processes.

IV. OUR ALGORITHM

In this section, we present a dynamic scheduling framework
and three dynamic scheduling policies that relax the static
assignment of domains to processes to improve both locality
and load balance. The pseudocode for this overall scheduling
framework is shown in Figure 5. The basic idea is to start with
a uniform volumetric world-space partitioning of the scene
data into domains—as in a static domain decomposition—
and to partition primary rays into queues for each process
uniformly across the image plane—as in a static image plane
decomposition. Thus, the ray queues are initially the same size
for each process, as in the static image plane decomposition
approach.

Each process loads on demand an initial data domain as
the first ray in its queue enters the initial domain (lines 6–
7). For all of our policies, we allow only one data domain to
be loaded into the memory of a process at any given time, so
initially each process will queue for later processing any of its
rays that enter a different domain than the one initially loaded
(line 3). Since the initial data domains need not contain the
same amount of data (indeed, some may be completely empty),
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01 DynamicTrace():
02 Ray rays[] = GenerateRays()
03 RayQueue queues[] = EnqueueRays(rays)
04 Schedule schedule
05
06 RayQueue q = FindQueueWithMostRays(queues)
07 Domain d = LoadDomain(q.domain_id)
08 Domain last_d = q.domain_id
09
10 ProcessQueue(q) # traverse rays in queue
11 queues.remove(q) # q is now empty
12
13 boolean done = AllProcessesReportEmpty()
14
15 while (! done ):
16 # schedule next round of ray processing
17 case (schedule_policy):
18 :LoadOnce:
19 = LoadOncePolicy(last_d, queues)
20 :LoadAnyOnce:
21 q = LoadAnyOncePolicy(last_d, queues)
22 :LoadAnother:
23 q = LoadAnotherPolicy(last_d, queues)
24
25 ReceiveSchedule( schedule )
26 SendLiveRaysToNextProcess(queues)
27
28 d = schedule( my_process_id )
29 q = queues[d]
30
31 if (q.domain_id != last_d):
32 d = LoadDomain(q.domain_id)
33 last_d = q.domain_id
34
35 ProcessQueue(q) # traverse rays in queue
36 queues.remove(q) # q is now empty
37
38 done = AllProcessesReportEmpty()
39
40 MergeFramebuffers()

Fig. 5. Pseudocode for Dynamic Scheduling Framework. ProcessQueue() is
defined in Figure 2 and the policies are defined in Figures 6–8.

and since the rays in each process’ queue can enter different
domains, the initial computational load is not balanced any
more than it is in the static image decomposition scheme,
despite the fact that the ray queues are all the same size.

Our dynamic scheduling framework proceeds in stages,
where each stage consists of a scheduling phase, a commu-
nication phase, and a computation phase. In the first stage,
a special scheduling phase determines the initial workload of
each process as described above and the communication phase
is skipped (lines 2–13). In the scheduling phase of subsequent
stages, a master process assigns to each slave process a data
domain based on ray demand information that the master has
received from the slave processes in previous stages (lines 16–
23). By varying the criteria used by the master process for this
assignment, different scheduling policies can be obtained.

Once the domain assignment has been determined, the mas-
ter communicates the domain mapping to the slave processes
(line 25), which then exchange rays in the communication
phase (line 26). In this phase, each slave partitions its pro-
cessed rays according to the domain that it is entering. It then
exchanges rays with each of the other slaves to move rays
to the appropriate domain. Once each slave has completed its
exchange of rays with all other slaves, it enters its computation
phase (lines 28–36). In this phase, it simply traces each ray
in its next queue of unprocessed rays until it either intersects
an object in its data domain or reaches the domain boundary.

If a ray intersects an object, child rays are spawned as
needed and added to the local unprocessed ray queue for local

01 LoadOncePolicy( current_domain,
02 local_ray_queues ):
03 foreach q in local_ray_queue:
04 queue_map[ q.domain_id ] = q.ray_count
05
06 if slave:
07 SendQueueInfoToMaster( current_domain,
08 queue_map )
09
10 else if master:
11 current_schedule = {}
12 new_schedule = {}
13 foreach p in all_processes:
14 ReceiveQueueInfo( current_domain[p],
15 queue_map[p] )
16
17 # note domains that have rays pending
18 foreach q in queue_map[p]:
19 # track total rays
20 # that request this domain
21 domains_to_schedule[ q.domain_id ]
22 += q.ray_count
23
24 # note the domain (if any)
25 # loaded at each proc
26 if ( current_domain[p] != NONE ):
27 current_schedule[p]
28 = current_domain[p]
29
30 # if a domain is already loaded, keep it
31 # and remove it from further processing
32 foreach d in domains_to_schedule:
33 proc_d = current_schedule.find( d )
34 if ( proc_d != NONE ):
35 new_schedule[proc_d] = d
36 domains_to_schedule.remove( d )
37 else:
38 victims.push( proc_d )
39
40 # sort remaining domains
41 # by number of waiting rays
42 domains_to_schedule.sort()
43
44 # for all victim procs,
45 # assign the next unassigned domain
46 # (with the next most rays requesting it)
47 foreach v in victims:
48 if ( domains_to_schedule.empty() ):
49 break
50 Domain d = domains_to_schedule.pop()
51 new_schedule[v] = d
52
53 SendScheduleToAllProcesses( new_schedule )

Fig. 6. Pseudocode for LoadOncePolicy(), called by the scheduling frame-
work.

processing in the current stage. Note that all rays, whether
primary or secondary rays, carry as part of their state the pixel
to which they contribute illumination information. This pixel
information is copied to the state of each spawned child ray.
Thus, when a ray intersects an object, the partial illumination
information for its pixel that can be determined at that ray
object intersection is added to a local copy of the frame buffer
maintained by each process. This parallel version of Pharr’s
ray deferral scheme allows the full illumination computation
to be completed by merging all slave processes’ frame buffers
at the end of the computation.

If the domain boundary is reached, the ray is added to the
set associated with the domain that it is entering for further
processing in a subsequent stage. Once the local queue of
unprocessed rays is empty, the slave communicates with the
master the set of domains that its spawned rays are entering
and the number of rays entering each domain. This information
will be used by the master for domain assignments in the next
stage. Once the master has received this information from all
slaves, the stage ends. If all slaves indicate that no rays are



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. YYY, ZZZ 2013 6

01 LoadAnyOncePolicy( current_domain,
02 local_ray_queues ):
03 foreach q in local_ray_queue:
04 queue_map[ q.domain_id ] = q.ray_count
05
06 if slave:
07 SendQueueInfoToMaster( current_domain,
08 queue_map )
09
10 else if master:
11 current_schedule = {}
12 new_schedule = {}
13 foreach p in all_processes:
14 ReceiveQueueInfo( current_domain[p],
15 queue_map[p] )
16
17 # note domains that have rays pending
18 foreach q in queue_map[p]:
19 # track total rays
20 # that request this domain
21 domains_to_schedule[ q.domain_id ]
22 += q.ray_count
23
24 # note the domain (if any)
25 # loaded at each proc
26 if ( current_domain[p] != NONE ):
27 current_schedule[p]
28 = current_domain[p]
29
30 # every proc is a victim
31 victims = all_processes
32
33 # sort domains
34 # by number of waiting rays
35 domains_to_schedule.sort()
36
37 # for all victim procs,
38 # assign the next unassigned domain
39 # (with the next most rays requesting it)
40 foreach v in victims:
41 if ( domains_to_schedule.empty() ):
42 break
43 Domain d = domains_to_schedule.pop()
44 new_schedule[v] = d
45
46 SendScheduleToAllProcesses( new_schedule )

Fig. 7. Pseudocode for LoadAnyOncePolicy(), called by the scheduling
framework.

pending, the final stage has completed and the illumination is
computed by merging the slave processes’ frame buffers as
described above (line 40).

Unlike static approaches, our scheduling framework pro-
vides some latitude in assigning both ray state information
and domain data to processes. Thus, we can experiment with
different policies—used by the master process in the schedul-
ing phase—that can be designed to optimize data reloading,
ray state communication, load balance, or a combination of
such factors to achieve the best performance for a given work-
load configuration and given set of machine parameters. Our
dynamic scheduling system opens a wide range of possible
assignment strategies. In previous work [3], we presented
one possible dynamic scheduling policy, which we now dub
LoadOnce, and compared it with the static policies described
above. In this paper, we extend our analysis by adding two
additional scheduling policies that help us better understand
the tradeoffs involved.

Three Dynamic Scheduling Policies: We first describe how
the LoadOnce policy makes domain assignments. Pseudocode
for this policy is given in Figure 6. Recall that at the beginning
of a stage, the master process has (1) a list of data domains
that unprocessed rays are entering and (2) the number of such
rays entering each such domain, aggregated from the results of

01 LoadAnotherPolicy( current_domain,
02 local_ray_queues ):
03 foreach q in local_ray_queue:
04 queue_map[ q.domain_id ] = q.ray_count
05
06 if slave:
07 SendQueueInfoToMaster( current_domain,
08 queue_map )
09
10 else if master:
11 current_schedule = {}
12 new_schedule = {}
13 foreach p in all_processes:
14 ReceiveQueueInfo( current_domain[p],
15 queue_map[p] )
16
17 # note domains that have rays pending
18 foreach q in queue_map[p]:
19 # track total rays
20 # that request this domain
21 domains_to_schedule[ q.domain_id ]
22 += q.ray_count
23
24 # note the domain (if any)
25 # loaded at each proc
26 if ( current_domain[p] != NONE ):
27 current_schedule[p]
28 = current_domain[p]
29
30 # if a domain is already loaded, keep it
31 # and keep it for further processing too
32 foreach d in domains_to_schedule:
33 proc_d = current_schedule.find( d )
34 if ( proc_d != NONE ):
35 new_schedule[proc_d] = d
37 else:
38 victims.push( proc_d )
39
40 # sort remaining domains
41 # by number of waiting rays
42 domains_to_schedule.sort()
43
44 # for all victim procs,
45 # assign the next unassigned domain
46 # (with the next most rays requesting it)
47 foreach v in victims:
48 if ( domains_to_schedule.empty() ):
49 break
50 Domain d = domains_to_schedule.pop()
51 new_schedule[v] = d
52
53 SendScheduleToAllProcesses( new_schedule )

Fig. 8. Pseudocode for LoadAnotherPolicy(), called by the scheduling
framework.

all slave processes in the previous stage (lines 17–22). Popular
domains with large ray counts represent the best opportunity
to get the most additional work done with the fewest new
domain loads. Thus, the master sorts demanded domains by
their ray counts (line 42). Assuming that loads are expensive,
the master avoids loading new domains by allowing any slave
process that has a domain with a non-zero ray count to process
that same domain in the next stage (lines 32–38). Any slave
with unassigned domains is put on a victims list (line 38). For
each process on the victims list, new domains are assigned
in order of decreasing ray count (lines 47–51). Once either
the victims list or the demanded domain list is empty, the
scheduling phase ends and the computation proceeds.

The first new policy, which we call LoadAnyOnce, attempts
to reduce the LoadOnce policy’s scheduling overhead while
retaining its advantages over static scheduling. Rather than
preferentially keeping already-loaded domains resident, this
policy (see Figure 7) simply sorts the available domains by ray
count (line 35) and then assigns domains to slave processes
in order of decreasing ray count, i.e. the victims list is simply
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the list of all slave processes (line 31). This change offers two
potential advantages over LoadOnce. First, the scheduler can
run faster because it doesn’t need to search the domain demand
list for already-loaded domains (see Figure 6, lines 30–38).
Second, it avoids the pathology that may afflict LoadOnce in
which a resident domain with very few entering rays takes
precedence over domains with significantly higher ray counts.

The second new policy, which we call LoadAnother, sim-
plifies LoadOnce in a different way that has the potential
to improve load balance for highly skewed ray distributions.
LoadAnother (Figure 8) computes the victims list just as for
LoadOnce, i.e. it prioritizes resident domains that have non-
zero ray count and puts all remaining slaves on the victims
list. However, these already resident domains are not removed
from the demanded domains list (i.e. Figure 6, line 36), which
allows them to be assigned by the master to a second slave
if their ray count is sufficiently high. Since some slaves can
now send their rays to either of two processes that have the
same domain, we must change the communication phase to
allow each slave to choose the target copy. For simplicity, this
choice is made randomly; the slave sends all of its rays that
are destined for the given domain to the chosen target process.

V. METHODOLOGY

The optimal scheduling algorithm depends on the charac-
teristics of the available hardware and the configuration of
the ray tracing problem; this configuration includes multiple
factors, each of which must be considered when evaluating
the scheduling algorithms. For this study, we consider the
following factors:
• Dataset. Certain datasets may exhibit unique behaviors.
• Data size. We consider the data size separately from the

dataset, because we can obtain different resolutions of the
same dataset.

• Ray effects. We explore the impact of secondary ray
effects, such as specular and diffuse lighting.

• Camera position. We explore the effects of camera zoom
on performance.

• Concurrency. We explore performance as a function of
the number of processors used.

When studying performance, each of these factors can con-
flate with the others. Further, studying the entire cross-product
of all factors leads to a prohibitive number of experiments. So
we perform our analysis in two phases; for each phase, we
hold some factors constant and vary others. This separation
produces a tractable number of tests and isolates the impact
of individual test factors. Ultimately, this approach allows us to
identify configurations where a particular scheduling algorithm
can be most useful. The first phase (Section VI) focuses on
evaluating all five scheduling algorithms, while the second
phase (Section VII) focuses on the scalability of our three
dynamic algorithms.

A. System Configuration

Our experiments are run on Longhorn and Stampede, both
hosted at the Texas Advanced Computing Center. Longhorn is
a 2,048 core, 256 node cluster, where each node contains two

TABLE I
PERLIN NOISE DATASET CONFIGURATIONS

2563 5123 10243 20483 40963

domains 8 64 64 512 512
disk size 0.065 GB 0.51 GB 4 GB 32.3 GB 257 GB
volume % polygons
10% 0.01M 0.02M 0.08M 0.83M 3.33M
20% 0.11M 0.41M 1.68M 8.03M 32.2M
30% 0.56M 3.56M 13.5M 45.3M 181M
40% 1.37M 11.7M 41.1M 117M 468M
50% 2.00M 18.7M 64.1M 177M 711M

four-core Intel Xeon E5540 “Gainestown” processors and 48
GB of local RAM. All nodes are connected via a Mellanox
QDR InfiniBand fabric, and we use MVAPICH2 v1.4 for MPI-
based communication. Stampede is a 462,462 core, 6400 node
cluster, where each node contains two eight-core Intel Xeon
E5-2680 “Sandy Bridge” processors, a 61-core Intel Xeon Phi
SE10P coprocessor (not used in our experiments) and 32 GB
of local RAM. All nodes are connected via a Mellanox FDR
InfiniBand fabric, and we use MVAPICH2 v1.9a2 for MPI-
based communication.

Our ray tracer is implemented within VisIt [42], a parallel
visualization tool designed to operate on large-scale data. We
use the VisIt infrastructure to load data and to generate isosur-
faces, while all code related to ray tracing and ray scheduling
is our own. To focus on the effects of the schedulers, we turn
off all caching within the VisIt infrastructure, so that only one
dataset is maintained per process. Each load of non-resident
data accesses the I/O system.

All MPI communication in our implementation is two-way
asynchronous. This implementation decision impacts dynamic
schedulers the most, since they have the highest degree of
communication among processes.

B. Datasets

Our study uses a set of synthesized Perlin noise [43]
volumes scaled by powers-of-two from 2563 to 40963. From
these volumes we extract five isosurfaces that yield increasing
geometric complexity, from a 10% isovalue to 50%. We
show the full details of the volume size, decomposition and
isosurface complexity in Table I. Sample images can be found
in Figure 1.

We extract isosurfaces using VisIt’s VTK-based isosurfacing
and internal BVH acceleration structure, and we then ray
trace the returned geometry using two directional lights. The
specular reflection cases use two-bounce reflections and the
diffuse reflection cases use Monte Carlo integration with
sixteen hemispheric samples and a 10% termination chance per
bounce. While the isosurface extraction and BVH generation
is performed each time the dataset is loaded from disk, the cost
is small relative to the I/O cost. These costs are all included
in the rendering times in Sections VI and VII. We do not save
the BVH since that would incur additional disk and I/O costs.
In addition, we use the coarse acceleration structure from
the spatial decomposition implied by the disk image of each
dataset, since large simulation-derived datasets are typically
stored across multiple files.
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VI. EVALUATING SCHEDULING ALGORITHMS

For the first phase of our evaluation, we vary five factors:
• Scheduling algorithm: Image, Domain, LoadOnce, Load-

AnyOnce, and LoadAnother (5 options)
• Data size: 10243 and 40963 versions of the 40% isosur-

face from the Perlin noise dataset (2 options)
• Camera position: five positions ranging from “zoomed

out” to “zoomed in” (5 options)
• Ray effects: primary rays and shadows, as well as primary

rays, shadows, and diffuse reflection rays (2 options)
• Concurrency: 16 processors and 64 processors (2 options)

Thus, we run 200 tests (= 5×2×5×2×2), terminating any
test that exceeds four hours.

The results (see Figure 9) lead to the following conclusions:
• LoadAnyOnce is the only scheduling algorithm that com-

pletes all renderings within the four hour window.
• LoadAnother exceeds four hours most often, followed

by Image. That said, these algorithms are the fastest
scheduling algorithms in some of the other configurations.

• For the regimes where the static schedulers are expected
to perform best, the dynamic algorithms are competitive
with the traditional schedulers. For example, in the tests
calculating just primary rays and shadows with the 40963

dataset and using 64 processors, the dynamic algorithms
were faster than the others for all camera positions.

• Both Domain and Image can exhibit poor behaviors based
on the zoom factor. The dynamic algorithms are more
successful at avoiding pitfalls.

We also consider the efficiency of each algorithm, which
informs our ultimate goal of understanding which schedul-
ing algorithm has the fastest execution time for a given
configuration. Parallel efficiency is typically measured as a
ratio of serial and parallel execution times. In our case, it is
generally intractable to run our algorithms serially on these
large datasets, and in any case our interest is in comparing
different parallel algorithms. We therefore define efficiency by
considering the processor’s activity. If a processor is currently
“rendering,”, i.e., calculating intersections or other work which
tangibly advances the ray tracing, then we consider that
processor to be productive. If all processors are productive for
the entire execution time, then the algorithm should exhibit
perfect scalability, modulo issues such as hot caches. In a
parallel setting processors are frequently not productive, and
typically their efficiency is eroded either by data loads from
disk or by idle time. In Figure 10, we plot the efficiency of
each test—that is, the proportion of the total test time (over
all processors) that is productive. The results suggest that
the dynamic scheduling algorithms have a slight advantage
in efficiency, but the larger point is that certain tests make it
very difficult to achieve high efficiency, for example those that
use 40963 data. In the remainder of this section, we examine
the relationships between efficiencies, test configurations, and
scheduling algorithm.

Table II compares the scheduling algorithms across dif-
ferent configurations. Each row holds one factor constant
and averages the efficiencies over the remaining factors. The
averages are unweighted, meaning that tests that finish quickly

contribute equally to the average as those that run for a long
time. Tests that did not finish in four hours were given an
efficiency of zero. The zoomed in and zoomed out tests only
reflect a subset of all tests. Note that the variance for each
average is high and conclusions must be drawn with caution.
This table is complemented by Table III, which shows the
percentage of tests that failed to complete.

These tables reveal several points:

• Efficiency for the 40963 data is very low, partially because
the number of ray tracing operations (i.e., intersections,
ray calculation) is proportional to the image size, which
was constant in our tests. As larger datasets take more
overhead to manage, the resulting efficiencies drop.

• Image does well with zoomed in camera positions, since
less data needs to be loaded. The Domain algorithm does
poorly, since this configuration creates a bottleneck.

• When the camera is zoomed out, the Domain algorithm
does better, and the Image algorithm does worse.

• Of the dynamic algorithms, LoadAnyOnce has the highest
efficiency (or near highest) for every factor.

• LoadAnother has the worst efficiency of the dynamic
schemes, partially because it exceeds the four hour time
limit so often.

• Comparing between Image and LoadAnyOnce, LoadAny-
Once has a better average efficiency in the cases where
Image does poorly (40963 data or zoomed out camera
position) and provides similar efficiencies on most other
factors. The only case where LoadAnyOnce is clearly
inferior is with zoomed in camera positions.

TABLE II
EFFICIENCY OF SCHEDULING ALGORITHMS FOR DIFFERENT TEST

CONFIGURATIONS.

Load- Load- Load-
Factor Domain Image Once Any- An-

Once other
16 processors 6.4% 9.2% 7.7% 9.0% 7.2%
64 processors 2.9% 3.5% 3.2% 3.1% 3.0%

10243 data 8.6% 12.7% 10.6% 10.9% 10.0%
40963 data 0.7% 0.0% 0.3% 1.1% 0.1%

primary rays 2.7% 3.9% 4.1% 4.1% 3.9%
secondary rays 6.7% 8.8% 6.8% 8.0% 6.3%

zoomed out 5.2% 2.9% 5.5% 6.2% 4.9%
zoomed in 3.1% 13.2% 4.9% 5.4% 4.4%

TABLE III
PERCENTAGE OF TESTS THAT FAILED TO COMPLETE WITHIN FOUR HOURS

FOR DIFFERENT TEST CONFIGURATIONS AND ALGORITHMS.

Load- Load- Load-
Factor Domain Image Once Any- An-

Once other
16 processors 10% 25% 25% 0% 45%
64 processors 15% 25% 20% 0% 20%

10243 data 5% 0% 0% 0% 0%
40963 data 20% 50% 45% 0% 65%

primary rays 5% 0% 0% 0% 20%
secondary rays 20% 50% 45% 0% 45%

zoomed out 0% 25% 12.5% 0% 12.5%
zoomed in 37.5% 25% 25% 0% 37.5%
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Fig. 9. Comparison of scheduling algorithms. Five factors are varied in the study; each of the eight scatter plots holds three of these factors constant and
varies the remaining two. The factors held constant are concurrency, data size, and ray effects. Each factor has two options. The X-axes correspond to time,
measured in seconds. The Y-Axis represents camera position. There are five camera positions and each horizontal line within a scatter plot is for one camera
position. The bottommost line is the most zoomed out position, and the topmost line the most zoomed in. Each test is colored by the scheduling algorithm
employed. Finally, tests that do not complete within four hours are rendered to the right of its scatter plot.
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Fig. 10. Efficiency results. total run time (X-Axis) vs. efficiency (Y-Axis).

A. Evaluating Larger Data

In this section, we extend the above study to larger data
sets that stress the limits of the test machine. We test two
larger versions of the Perlin noise set: at 61443 (4096 domains,
729 GB on disk, 557M tri at the 40% isosurface); and at
81923 (4096 domains, 1722 GB on disk, 992M tri at the 40%
isosurface). Since these datasets stress both the capabilities
and the runtime limits of TACC Longhorn, we limit our
experiments to trace only primary rays plus shadows. We
present the results of these runs in Figure 11. Note that
for the 81923 case, we present only results on 64 cores,
since only three of the twenty-five runs on sixteen cores
completed. We note that the LoadAnyOnce schedule is again
the only schedule to successfully complete every run and no
Image run completes. While LoadAnyOnce suffers a bit of
performance penalty at 16 cores due to swapping already-
loaded domains among processors, the fewer overall loads at
64 cores eliminates this disadvantage.

B. Evaluating Platform Differences

We have also extended the study described in Section VI
to run on TACC’s Stampede machine. The goal here is
to measure the effects of technological improvements, in
particular, the degree to which a new supercomputer—with
its increased disk speeds, faster communication times, and
increased computational power—can accelerate the tests. Ta-
ble IV shows the results as speedups of Stampede performance
over Longhorn performance averaged over all tests for each
algorithm. Our key finding is that the newer architecture does
lead to speedups, but they do not qualitatively change execu-
tion times. We believe that each scheduling algorithm benefits
for different reasons. Algorithms that perform many loads,
such as Image, benefit from increased disk speed, while those
that require significant parallel coordination, such as Domain,

Fig. 11. Results from our larger data evaluation. The plots are arranged as
in Figure 9.

benefit from the improved network. Finally, the enhanced
speedup for the LoadAnyOnce scheduler is misleading, be-
cause so many of the computationally-challenging tests—ones
that could receive bigger speedups—only finished with this
scheduling algorithm, and thus cannot be compared with the
others. We would expect numbers from such comparisons to
improve their average speedups. We leave further breakdown
of this topic for future work.

TABLE IV
SPEEDUP OF STAMPEDE PERFORMANCE OVER LONGHORN

PERFORMANCE.

Scheduling Average
Algorithm Speedup
Domain 1.26
Image 1.19

LoadOnce 1.27
LoadAnyOnce 1.43
LoadAnother 1.26

All Schedulers 1.29
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Fig. 12. Results from tests using three lighting models: shadows from two
lights (top); shadows and specular reflections (middle); and shadows with
4×4 sampled diffuse reflections.

VII. SCALING STUDY

In this section, we present a detailed performance evaluation
of our three original scheduling algorithms [3]—dynamic
(LoadOnce), image decomposition (Image), and domain de-
composition (Domain)—for rendering the Perlin noise dataset.
We test performance along three axes: lighting model, geom-
etry within each dataset, and overall dataset size. Through
each axis we perform a strong scaling study by increasing
the number of processes used to render the images.

We first test the performance of each schedule under in-
creasingly complex lighting models. As described in Sec-
tion V, our simplest lighting model uses only shadows from
two light sources, which provides at most two secondary
rays per intersection. We then add two-bounce specular re-
flections, which spawns three secondary rays (two shadow +
one specular) per non-shadow intersection. Finally, we replace
the specular reflections with 4× 4 diffuse reflections, which

provides eighteen rays (two shadow + sixteen diffuse) per non-
shadow intersection. Diffuse rays are culled with a 10% chance
of termination each bounce.

We next test the effect of geometry load. We have produced
five sizes of Perlin noise volume from 2563 to 40963 in
increasing powers of two along each axis. These five volumes
test the impact of data load time on each schedule. The number
of domains in the volume also increases as the volumes grow
larger. This increase will impact the number of processes
needed to hold the volume resident; it is also likely to increase
the number of domains that must be loaded during the render.

Last, by taking various isosurfaces of a volume of Perlin
noise, we can create pseudo-random datasets with varying
amounts of geometry that all form features similar to what
might be found in dense scientific datasets. We can thus mea-
sure the effect of total non-zero data on schedule performance.
We take five representative isosurfaces, shown in Figure 1.

In each test set, we also evaluate the strong scaling perfor-
mance of each schedule by increasing the number of processes
used in the render. We are thus able to observe the parallel
efficiency enabled by each schedule.

In the rest of this section, we present a representative sample
of results across these three dimensions. By holding two of the
dimensions constant in each series, we can examine the effect
of each dimension on each schedule.

A. Lighting Tests

For our lighting tests, we hold the other two dimensions
constant: we use the 10243 dataset at the 50% isosurface level.
We present the lighting test results in Figure 12. In each of
these cases, we see that the LoadOnce schedule is best or com-
petitive at small process counts. When the number of processes
matches or exceeds the number of domains (64 for the 10243

case), the Domain schedule outperforms the others since it
only loads each domain once. The Image schedule performs
best when ray transfer costs are high compared to domain
loads, since only the Domain and LoadOnce schedules incur
ray transfer costs. Since the diffuse reflection model generates
eighteen rays per intersection, and since there is sufficient
geometry in the 50% case to cause many intersections, the
ray transfer costs outweigh the cost of a domain in the 10243

dataset. Once there are sufficient processes to hold all domains,
however, the Domain schedule again outperforms the others
since it incurs no domain loading costs.

B. Geometry Tests

For our geometry tests, we use diffuse lighting, which is the
most interesting result from Section VII-A, and we hold the
data size constant at 10243. We present the results in a log-
log chart in Figure 13. We see that the performance trend for
the Image and LoadOnce schedules is similar across increasing
geometric loads, while the Domain schedule converges past 64
processes. Similar to the results above, the LoadOnce schedule
generally outperforms the other schedules at low process
counts across all geometry loads, only losing to the Image
schedule at the largest geometry loads (40% and 50%) and at
middle process counts (8 and 16), where the image schedule
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benefits from parallel rendering while the other schedules must
transfer rays as well as load domains. The Domain schedule
again outperforms the other two schedules when there are
sufficient processes to hold all domains, but when there are
large geometry loads, it is the worst-performing schedule.

C. Data Size Tests

In the final test series we hold both the lighting model and
the geometric complexity constant and vary the size of the
dataset rendered. Due to the runtime limitations of Longhorn,
we use the specular lighting model rather than the diffuse
model from the previous tests. We present the results of
these tests in Figure 14. We see that consistent trends for
each schedule across data sizes. As the data size increases,
the Image schedule is penalized more due to the increased
load cost for each domain. The LoadOnce schedule slightly
outperforms the Domain schedule until sixty-four processes.
This matches or exceeds the total number of domains in the
datasets up to 10243; however, for the datasets that have
more domains (20483, 40963) the LoadOnce schedule still
outperforms the Domain schedule.

D. Discussion

The results of the above experiments express the behavior
of these schedulers across a wide range of conditions. We
see that the LoadOnce schedule outperforms the Image and
Domain schedules for cases where each process is likely
to load many data domains, particularly when data load
costs exceed ray communication costs. The Image scheduler
performs best when ray communication costs exceed data
load costs, since the Image scheduler never redistributes rays.
The Domain scheduler performs best when the number of
processors available matches or exceeds the number of data
domains, since in that case each domain has a dedicated
process and no data is reloaded.

VIII. FUTURE WORK AND CONCLUSION

In this paper, we have presented and analyzed a family
of dynamic scheduling algorithms for large-scale distributed
memory ray tracing. This approach was designed for very large
datasets that do not fit in the aggregate memory of a distributed
memory supercomputer. Traditional ray tracing approaches
often fail to render such datasets, and, as we have shown
here and elsewhere [3], our schedulers can render datasets that
would otherwise be too large to complete. Our more detailed
analysis here shows that our dynamic scheduling policies are
robust across many data sizes and rendering modes. Indeed,
even on data sets that favor static scheduling, our schemes are
competitive with the best known traditional static scheduling
schemes. We also show that hardware advancements are not
likely to bring about sufficient performance improvements to
allow rendering of such datasets by traditional algorithms and
that further development of efficient algorithms is needed.

There are many additional directions to explore in the
space of dynamic schedulers. For example, a dynamic sched-
uler could speculatively load data based on anticipated ray

travel, particularly for an animation sequence where rendering
information from the previous frame is available, though
care should be taken to keep scheduling costs low relative
to data load and ray intersection work. We anticipate that
enabling asynchronous ray communication by moving to a
one-way MPI communication model will further increase the
performance benefit of dynamic schedules over static sched-
ules, though the communication patterns make this change
decidedly non-trivial.
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