Hierarchical Cache Consistency in a WAN
Extended Abstract

Jian Yin, Lorenzo Alvisi, Mike Dahlin, Calvin Lin
Department of Computer Sciences
University of Texas at Austin

Abstract techniques can be used to scale to even larger systems. To

This paper explores ways to provide strong consistency foRnswer these questions, this paper explores ways to combine
Internet applications scaling to millions of clients. Wekea vqlume leases with hierarchies for systems with millions of
four contributions. First, we identify the ways in which spe clients.

cific characteristics of data-access workloads affect¢hias Adding hierarchy to a server-driven cache consistency
bility of cache consistency algorithms. Second, we defire tw scheme can yield three benefits. First, latency can be rdduce
primitive mechanismssplit andjoin for growing and shrink- if clients can register callbacks or renew leases by going to
ing hierarchies. We show how these primitives can be implea nearby node in the consistency hierarchy rather than to the
mented with a simple mechanism already present in a proteserver. Second, it can improve network efficiency by form-
col for strong consistency that we have previously proposedng a multicast tree and a reduction tree for sending inealid
Third, we describe and evaluate policies for using split andion messages to caches and gathering their replies. Third,
join to address the fault tolerance and performance chgdlen improves server scalability by distributing load and cadlk

of hierarchies. Finally, we compare various algorithms forstate across a collection of nodes.

maintaining strong consistency in a range of hierarchy con- However, using hierarchies for scalable consistencyintro

figurations. We evaluate our algorithms using simulations. duces its own challenges. Availability may suffer becatise h
erarchical structures consist of multiple nodes that ckhimfa

1 Introduction dependently. Also, latency can increase if the hierarchgtmu

To prevent the rapid growth of Web traffic from degrading P€ traversed to satisfy requests. Finally, it unclear hosv th
Internet performance, caching has become a ubiquitous InteNi€rarchy should be configured.
net technology. However, web caching introduces the prob- This paper develops solutions for hierarchical consistenc
lem of maintaining consistency. With weak notions of consis and addresses the three issues mentioned above. We make
tency, innovative web services and new classes of progranfour contributions. First, we identify the ways in which spe
driven applications—such as agents, robots, and distiibut cific characteristics of data-access workloads affect¢htas
databases—uwill likely produce incorrect results. Thusysy bility of cache consistency algorithms. Second, we defire tw
consistency—which guarantees that a client’s read of an olprimitive mechanismsplit andjoin for growing and shrink-
ject returns the latest completed write of that object—a#t ing hierarchies, and we show how these primitives can be im-
come increasingly desirable. Even in human-driven brosyser plemented with a simple mechanism already present in the
consistency polling can increase latency and reduce the-eff Volume Lease algorithms. Third, we describe and evaluate
tiveness of large scale caches [3]. Thus, strong consigtengolicies for using split and join to address the fault tohe
can also be advantageous for current applications. and performance challenges of hierarchies. Fourth, we exam
Strong consistency can be provided using callbacks, buh€e and compare various algorithms for maintaining strong
simple callback algorithms are unacceptable for a WAN beconsistency in a range of hierarchy configurations.
cause servers may be forced to delay their writes indefinitel We evaluate our algorithms using simulation. To study
when there are client failures or network partitions. In-pre scalability and to evaluate how it is affected by different
vious work, we have shown how to combine strong consisworkload characteristics, we first use a series of synthetic
tency with timely server writes by using the notionMflume workloads. To calibrate these results with realistic woakls,
Leased12], a generalization ofeases which were first in- we also examine some smaller trace-based workloads. Over-
troduced for file systems [5]. Our results used trace-driverall, we find that even without hierarchies, volume leases can
simulations to show that Volume Leases perform well. scale to large services with tens of thousands or hundreds of
The key questions that this paper answers are (1) how largaousands of clients; with hierarchies, scalability beyonil-
a system can Volume Leases accommodate, and (2) whhbns of clients appears feasible.

The thesis of this paper is not that all servers should proShort volume leases allow servers to write quickly in theefac
vide strong consistency, but rather, that for Internetesggs- of client and network failures: since clients can’t read bn o
tems, strong consistency is feasible for a wide range of-applject when its corresponding volume lease is invalid, in the
cations. The rest of this paper proceeds as follows. Se2tion worst case the server waits only for the the short volumesleas
discuss a few ideas that are needed to understand this worka expire before modifying an object. The long object lease
Section 3 describes our new algorithm whose performancminimizes the overhead of renewing object leases, while the
we evaluate in Section 4. We close by discussing related workost of renewing volume leases is amortized across the num-

and drawing conclusions. ber of objects that reside in the same volume.
In the Volume Leases algorithm, a server maintains a list
2 Background of unreachablelients whose volume leases expired while the

This section describes four concepts necessary to unde$erver was attempting to invalidate an object lease. When a
stand hierarchical consistency: callbacks, leases, then client on the unreachable list recovers and tries to rengw it
Leases algorithm, and reconnection under Volume Leases. Volume lease, the algorithm uses a reconnection protocol to
In server-driven consistency, a client registeasibacks restore co_nsistency between the client’s and servers dist
with a server for objects that it caches [7, 9]. Before modify current object leases.
ing an object, a server first sends invalidation messagds to a Because the reconnection protocol is a key building block
clients that have registered interest in that object. Thamd for hierarchical caching, we describe it in detail. Eactveer
tage of this approach is that servers have enough informatigmnaintains an epoch number. Whenever a server recovers from
to know exactly when cache objects must be invalidated. Ir crash, the epoch number is incremented and logged to a sta-
contrast, in client-driven consistency schemes, suchaseth ble storage device before the server proceeds with normal op
currently used in NFS and HTTP, clients periodically ask theerations. All messages from the server to the clients irelud
server if objects have been modified. This creates a dilemmé€ €poch number. When a client receives a message, the

for the client. A short polling period increases both serveréPoch number is recorded by the client and associated with

the risk of reading stale cache data. client sends a volume lease request to a server. Upon receiv-

There are two challenges for server-driven consistency if'd volume lease requests, the server grants a volume lease
large distributed systems. First, scalability is an isssdarge ~ Only if the epoch number in the message matches its own and
numbers of clients lead to large server state and largesurstf the client hasn’t been moved to the unreachable list. Oth-
of load when popular objects are modified. Second, perforerwise, the server sends the client a reconnect reques: Inr
mance in the face of failures is an issue. Servers cannot mo§Ponse to a reconnect request, a client sends to the seever th
ify an object until clients have been notified that their eath list of obj_ects it currently caches and the version n_umbérs 0
object is no longer valid, so server writes can be delayed inthese objects. The server then compares the version numbers

definitely while the server waits for acknowledgments fromOf the cached objects and the objects in the server. Object
unreachable clients. leases are granted to all objects whose versions match. The
These issues can be addressed by introducing the notigi¢rver invalidates all other cached objects. The volumlga
of leaseg5]. When a client registers a lease with a server,'slthe” granted. Note that all these tasks can be accomglishe
the lease specifies some time T during which the server willVith one message from the server to the clients. When the
notify clients of updates. This improves scalability bessau client finishes updating its object_ leases, it sends a cannec
servers only need to track active clients, and it improvett fa Message back to the server, which then removes the client
tolerance because even if a client is unreachable, wriees affom the unreachable list.
only delayed until the client’s lease expires. The leasgtlen)
T represents a trade-off. Longer leases minimize the overhe 3 Algorithms
of renewing leases, while short leases reduce server stdte aWe first describe the basic static hierarchy algorithm asd di
improve failure-mode write performance. cuss its performance and fault tolerance properties. We the
Leases do not perform well for web workloads becausegresent two primitive mechanisms, split and join, for recon
the interval between a client’s reads is typically long, e o figuring the hierarchy. These mechanisms can be constructed
ject leases must be long to amortize the cost of lease resewakith trivial additions to the basic Volume Leases algorithm
across many reads. The Volume Leases algorithm introducé&e then describe policies that use these mechanisms to en-
the notion of a volume, which is a collection of objects tleat r hance the fault tolerance and performance of the basic stati
side on the same server, and associates a lease with each Violerarchy.
ume. A client’s cached object is valid only if both its object Both the static and dynamic versions of the algorithm as-
lease and corresponding volume lease are valid. The Volumsume that nodes participating in the consistency service ha
Leases algorithm uses a combination of long object leasks arbeen identified and organized into an initial hierarchy.sThi
short volume leases to break the tradeoff with lease lengthstudy does not specify a particular mechanism for doing so.

For some systems, manually constructing the hierarchy wilB.2 Join and split

suffice; for some, such as the server-proxy-client configurathe solution to both problems is to reconfigure the consis-
tion that we address in Section 4.3, automatic Construgsion tency hierarchy dynamically without breaking the guarante
trivial; and, for others, more sophisticated automatiatstr of strong consistency. We propose a mechanism that uses two
gies such as those described by Plaxton et. al [10] may bgimitives: join, which removes an intermediate node from
required. This hierarchy may be embedded on current clientg,o hierarchy, andplit, which adds an intermediate node to
and proxies, it may be coincident with a larger cache hieraryne hierarchy. Both primitives work on a per-volume basis—
chy [1] or it may be part of a separate data-location-me&datin our system different volumes can use different hierahi

hierarchy [4, 11]. Join and split can be trivially implemented using a mech-
anism already required by the Volume Leases algorithm. Re-
3.1 Static hierarchy call that join removes a node from the hierarchy, connecting

. hi hvi . the children of the node directly to the node’s parent. To im-
Our consistency hierarchy is a tree structure of intercotate plement join we augment the volume epoch number to in-

nqdes. We refer to .the root as the origin server, Fo the leaes clude the ID of the parent node. When a child decides to ini-
clients, and to the intermediate nodes as consistencyrserve ;. a join for a particular volume, it simply begins usits |

Each node runs the standard Volume Leases algorithm, ang, e\ grandparent as a parent. The old volume epoch num-
each node acts both as a clientand as a server, reatingits P he|q by the child will not match its new parent, so the new
entas its server and its children as its clients. Each nage th . ot il initiate the standard volume reconnection peot
Sat'Sf'?S. lease requests from its gh|ldren by returningia V‘,"‘I to synchronize its state with its new child. Thus, going to a
lease if it has_ one cached or.—|f it does not—by requt_estlnghew parent in the hierarchical algorithm is no differenttha
? lease f_romh'% par_en_;[, (fachm%thedlease, and rt—_:‘turcg“rilg tt’tfoing to a server that has crashed and lost a client’s state in
ease 1o its child. Similarly, each node passes to its " the original Volume Leases algorithm. Similarly, to sphiet
ywth valid leases the invalidation messages it receivesfro hierarchy, a child chooses a descendant of its parent artsl sta
Its parent. .])) using the new node as its parent, again using the reconnectio
Such hierarchies have the potential to improve perforprotocol to synchronize the state. Note that for both spiit a
mance by reducing both server load and by the latency ofin, the decision to use a new parent is made by children.
client lease renewals. In the Internet, a popular site mighch decisions are a matter of policy. Children can thus de-

serve millions of clients, and by using a hierarchy, a servegige to find new parents to improve fault tolerance or they can
only communicates with and tracks its immediate childrenye told to use new parents to improve performance.

This reduces memory state, average load for lease renewals,
and _bursts of Ioaql when p_opular objects are m_odlfled. Es:-g_3 Fault tolerant static hierarchy
sentially, the consistency hierarchy forms a multicast foe - .]))

sending invalidation messages and a reduction tree foegath Using join and split, an intermediate node failure can be han
ing replies. By the same token, if clients can renew leases bled as follows. If a node N cannot contact its parent P to
going to nearby intermediate consistency servers ratlagr th "enew a lease, it sends the renewal message to one of its an-

to the root server, read latency and network load may be re€stors A, triggering the volume reconnection protocol be-
duced. tween N and A. Note that if A cannot send an invalidation to

However, the use of leases in the hierarchy is not guararf-» it d0€s not try to contact N, but instead waits for the vol-
teed to reduce either server load or latency. When volumedMe IeaS(_a t_|meout_; this means that pafe”ts only need to know
are popular and frequently accessed, it is likely that cansi about the_" immediate children, not thelr_ more dlstant_ dasc :
tency servers will hold valid leases and will respond tortlie ‘?'e”ts- Finally, When node P rECOVers, It can sgnd hints to its
requests without consulting their parents, and it is likbigt !'S,t of (former) children suggesting that they split from Ada
the hierarchical “multicast’ will achieve a large fan-owtda 101N P instead.
significantly reduce server load. However, for unpopular or
infrequently accessed volumes, the time between accasses3.4 Dynamic hierarchy configuration
consistency nodes is likely to be longer than the volumeeleas For volumes where read frequency is high and there are many
so the cached leases may often have expired when they agetive clients, a deep hierarchy can reduce read latency and
accessed. In these cases, many messages would traverse digribute load. However, for less popular objects, or fopp
entire hierarchy, increasing the average read latencyowith ylar objects with low read frequency, intermediate hops can
reducing server load. increase read latency without significantly reducing serve

A second problem with a static hierarchy is reliability. The load. Therefore, it is useful for different volumes to con-
hierarchy consists of a large number of nodes that can fail instruct different dynamic hierarchies. These hierarchies a
dependently, and one node failure can effectively discohne constructed out of the static hierarchy using the split @ |
a subtree. mechanisms in response to changing workloads. Hence, a

node can have different children in the static and dynamic hi e For the aggressive deployment scenario with flexible hi-
erarchies: we refer to the former as static children, anteo t erarchy configurations, static hierarchies can reduce la-
latter as simply children. tency compared to the flat Volume Lease algorithm for
In the dynamic configuration algorithm a node monitors ~ high request-rate services, but they can increase latency
the number of lease requests it receives from its children an ~ for low request-rate services. In contrast, the dynamic

the fraction of these requests that it can satisfy locallyrdy version always performs as well as the flat algorithm for
time intervals of length T. Using this data, it instructsdtsl- low request rates and as well as the static hierarchy for
dren to join with its parent if (1) the load from its children high request rates.

would not cause the load on its parent to exceed a threshold
value, and (2) its children would receive better read latenc
by skipping the node and going directly to the parent. A node
N performs the latency calculation as follows.

Let C1 be the cost for a child of N to renew a lease cached
at N, and let C2 be the cost for N to renew a lease cached at
its parent. If the fraction of renewals that N satisfies lycal
is F, then the expected latency that a child of N pays to renew
alease is C1 + (1-F) C2. Assuming that the cost of accessing
N's parent is about the same for both N and N's child, the ex- o |y the server-proxy-client configuration, which models

pected cost after a join is C2. When C1 + (1-F) C2 is greater g simple deployment path given current infrastructures,

e For workloads with modest request rates in the range of
many current web services, the flat Volume Leases algo-
rithm with a single server can scale to client populations
in the tens or hundreds of thousands of nodes; distribut-
ing the consistency algorithm across a group of nodes—
either in a cluster or across a WAN—uvia hierarchies can
provide scalability to millions of clients even under very
aggressive workloads.

than C2 by some threshold, N instructs its children to pemfor the simple static hierarchy performs well for our web
a join unless doing so would raise the load of the parentto an race workload; this configuration has the added benefit
unacceptable level. that it might also provide a controlled way to traverse

Similarly, to determine when to initiate a split, a node firewalls to deliver consistency signals. The synthetic
monitors the requests from its children, and simulates ithe h workload suggests that there may be other workloads for

statistics for any skipped static child. When these stesist which the dynamic algorithm’s flexibility is desirable.
show that the expected read latency for a group of children

would decrease by connecting to a skipped static child, the Our methodology makes several significant assumptions
node instructs that group of children to perform a split. Sim and simplifications. For our latency estimates, we do not sim
ulating hit statistics is easy, because for each messagé it s ulate network or server contention. We use a simple network
fices to check the simulated lease and increment the numb#gpology model (described in more detail below) to make our
of hits or misses. A node may also initiate a split if its load analysis tractable. Our synthetic workloads simulate dne o
exceeds some threshold. ject per volume, which may understate the apparent benefit of
hierarchies because long-lived object leases are mucéreasi
luati to cache in the hierarchy than short volume leases; the small
4 Evaluation number of object per volume may also hurt the relative per-
Our evaluation of the hierarchical consistency consists oformance of the static algorithm.

three parts corresponding to different deployment condigur Due to space constraints for the extended abstract, we alattesour
tions and workloads. First, we examine an aggressive dgesults section as follows: we do provide details about gstem configura-
ployment model to characterize the factors that affect 8e b tion to put the results in perspective, but we present themessiults in bullet
havior of the core algorithms and to determine the perfortorm.

mance limits of our approach. Second, we examine a simple

clustered-server configuration in which the hierarchy isdus 4.1 Generic hierarchy

to distribute the algorithm across a LAN cluster to improveour Generic Hierarchy configuration represents a system
scalability but not latency. Third, we examine a configura-with relatively few constraints on deployment. We examine
tion embedded on the server-proxy-client infrastructbieg t thijs configuration to understand the basic behavior of the co
is common today. algorithms as we vary several key parameters. This configu-
Our methodology is to evaluate these algorithms usingation also models an aggressive deployment strategy such a
simulations. To stress scalability and to evaluate how difmight be employed within a large cache service or in a system
ferent aspects of workloads impact scalability, we firstaise where collections of servers and cache systems coordimate t
series of synthetic workloads. Then, to calibrate thesdisss provide consistency.
we also examine a smaller, trace-based workload in the con- The consistency hierarchy is a tree with one server at its

text of the server-proxy-client configuration. root, C clients at its leaves, anld— 1 levels of intermediate
Based on these experiments, we reach the following prinodes. For simplicity, we assume that the degtatall lev-
mary conclusions: els of a tree are the same, with= C. We use a simple cost

model for accessing consistency servers. Lease renewal la-e The dynamic hierarchy appears to be a good default
tencies between any internal or leaf node in a subtree and the choice for this configuration. If a service's access pat-
root of that subtree are equal and increase with the number of terns are known precisely and if these access patterns do
subtree’s leaves as follows: subtrees with 100 or feweelgav not change much, then either the flat Volume Leases or
have a latency of 30 ms, subtrees with 10,000 or fewer leaves static hierarchy may be reasonable.

have a cost of 100 ms, and subtrees with more than 100,000 _. . .

leaves have a cost of 400 ms; costs for subtrees of other sizes F|naI_Iy, note_that the variations among d|fferent_ depths_ of
are estimated through interpolation. These costs are Mantunderlymg static trees for each graph depend on intemgtio

be suggestive of department-, enterprise-, and Intecwes between the number of clients under each level of a subtree
delays, but do not represent a,ny specific s;/stem and our assumptions on the network distances between sub-

We use a synthetic workload and examine the average rea‘{{jees as a function of subtree size. So this experimentghoul

. not be used for general comparisons between the number of
latency and server load. We simulate the accesses of a<colle : . .
i) . . évels that should be used in the underlying hierarchy.
tion of clients to a single volume. Out @¥;,;,; clients, we . T . .
choose a subset of siZé, clients that access the volume Figure 3 shows similar experiments but with 100,000 to-
. e ctive . . tal clients (20,000 of them active) rather than 1,000,000. B
with per-client inter-access times determined using armexp

nential distribution around an average valug.,s expressed comparing these results to those with more clients, we gain

. . : intuition about the effects of scaling the client populatibat
as a ratio of the average inter-access time to the volume leas . : !
renewal time. may help predict system behavior for populations largem tha

. the 1,000,000 that we are able to simulate.
Figure 1 shows the average lease renewal latency as per-

client read frequency is varied, and Figure 2 shows lease re- o As expected, increasing (decreasing) the total number of
newal latency as the fraction of clients that access thewelu clients decreases (increases) the per-client request rate
in question is varied. Both sets of graphs have the same gen- for which hierarchies begin to pay off relative to the flat
eral shape because both increase the total request raiyasth \blume Leases configuration. We also varied the num-
move right, but they represent different dimensions of e d ber of active clients from the population (graph omitted
sign space. to save space) and found similar results.

To interpret these graphs it is helpful to consider where
different classes of services might lie or where a single ser Figure 4 shows how server load varies with client request
vice might lie under different workloads. For example, arate hierarchies spanning one million clients. (Results fo
weather service with a 10-second lease period and for whickarying the number of active clients or simulating a unieers
an average client that uses the service visits once per d&8f 100,000 clients are omitted, but are qualitatively samil
for a minute would correspond to a read frequency of less
than 0.001 reads per volume lease period per client. Simi-
larly, a news service whose typical users visit for 5 minutes
during the 8-hour working day would correspond to a vol-

ume renewal frequency near 0.01 per volume lease period ¢ The addition of hierarchies supports scalability to many
per client. That same service's read frequency might jump millions of clients under nearly arbitrary workloads be-
above 0.1 or even near 1 for periods of time during news cause it bounds the rate of requests at the root to one

events of widespread interest (e.g., a Ford Bronco chase) as request per volume lease period per immediate child of
clients constantly monitor the news for new developments. the root.

Similarly, emerging program-driven applications mighasp

e The flat Volume Leases algorithm scales to hundreds of
thousands of clients under workloads corresponding to a
range of reasonable web access patterns.

a wide range of the parameter space. 4.2 Server cluster
With respect to lease renewal latency in the Generic HierDue to space constraints, we omit details of our serverelust
archy, the main observations are as follows: experiment. The main idea is that the hierarchical consiste

mechanisms can be used not only to distribute consistency al
e Hierarchies can significantly reduce latency for activegorithms across a WAN, but also to split a consistency ser-
and popular services. vice across a clustered web server. Although an algorithm
built from the ground up for splitting consistency state and
e The dynamic hierarchy succeeds in matching the latencjoad across a cluster might marginally outperform our more
of the flat Volume Leases algorithm for less active orgeneral mechanisms, such an algorithm would have to solve
less popular services while matching the performance ofhe same basic problems of fault tolerance, distributinglin
the static hierarchy for busier services. Relative to flatidations, gathering acknowledgments, and partitioniagest
Volume Leases, the static hierarchy can hurt latency fothat our algorithm handles, so the simplicity of using a sin-
less active or less popular services but can help latencgle framework for both LAN and WAN distribution appears
for active and popular services. attractive.

Figure 5 shows the load on the server in the server clusstale data [8]. Other studies have noted significant numbers
ter hierarchy where the server and all of the internal nodesf consistency-related polling “misses” to unmodified and
of the consistency hierarchy are located in a tightly-cedpl cached objects under current client-polling approachies [3
cluster, and the lowest internal nodes in the hierarchy camm We also build on the work of Liu and Cao [8], who use a
nicate across a WAN with the clients. We do not show resultgrototype server invalidation system to evaluate the czath
for latency because this configuration is not designed to imef maintaining consistency at the servers compared totclien
prove latency, just load-scalability; the latency measweets polling.
do not vary significantly across different configurationsnS
ilarly, the dynamic hierarchy does not have any significants Conclusions

advantage over the static one. In this paper we have shown that the Volume Leases algo-

o For the server-cluster configuration, the static hierarchyithm can provide strong consistency for Internet services
(with split and join for fault tolerance) provides a simple with tens of thousands of clients. We have also shown how

mechanism to scale the flat Volume Leases algorithm b}he Volume Leases can be applied to hierarchical caches to
distributing it across a group of nodes in a cluster; O|y_perform well for workloads with millions of clients. The key

namic configuration to minimize latency is not required. Mechanisms, join and split, can be implemented using a triv-
ial extension of the Volume Leases algorithm. Finally, we
4.3 Server, proxy, client have evaluated a number of hierarchy configurations, and our

Figures 6 and 7 show the latency and load measurement§sults show that a dynamically configurable hierarchy pro-
when the hierarchy algorithms are run on the server-proxyvides almost arbitrary amounts of scalability.

client underlying hierarchy. Figure 8 shows latency for-sev

eral selected volumes under a trace workload. The tracReferences

workload is the DEC trace [2], and we configure the sys- [1] A. Chankhunthod, P. Danzig, C. Neerdaels,
tem to have all clients under a single proxy and have each M. Schwartz, and K. Worrell. A Hierarchical In-
volume represented by a single server that communicates di- ternet Object Cache. IfProceedings of the 1996
rectly with proxies. The 8 servers are the 4 most popular,ones USENIX Technical Conferencgéanuary 1996.

and 4 of medium popularity.

[2] Digital Equipment Corpora-
¢ As illustrated by the synthetic workload, as was true for tion. Digital's Web Proxy Traces.
the Generic Hierarchy, the dynamic hierarchy may be ftp://ftp.digital.com/pub/DEC/traces/proxy/webtradgmi,
needed to accommodate the full range of services. September 1996.

e The trace workloads include multiple objects per vol- [3] B. Duska, D. Marwood, and M. Feeley The
ume, and long object leases are easier to cache in a hi- T ' . '
erarchy. As a result, the static hierarchy begins to pay
dividends even with relatively low access rates.

Measured Access Characteristics of World-Wide-Web
Client Proxy Caches. IProceedings of the USENIX
Symposium on Internet Technologies and Syst&ras
e For many current web workloads, the simple static hi- cember 1997.
erarchy using the simple server-proxy-client hierarchy
may be a reasonable deployment option. This config-
uration might also provide a controlled way to traverse
firewalls to deliver consistency signals.

4] S. Gadde, J. Chase, and M. Rabinovich. Directory
Structures for Scalable Internet Caches. Technical Re-
port CS-1997-18, Duke University Department of Com-
puter Science, November 1997.

5 Related work
This section abbreviated for extended abstract.

Our study builds on efforts to assess the cost of strong
consistency in wide area networks. Gwertzman and Seltzer
[6] compare cache consistency approaches through simula-

tion and conclude that protocols that provide weak consis-[6] J. Gwertzman and M. Seltzer. World-Wide Web Cache

tency are the most suitable to a Web-like environment. In Consistency. IProceedings of the 1996 USENIX Tech-
particular, they find that an adaptive version of pollingrexe nical ConferenceJanuary 1996.

a lower server load than an invalidation protocol if the jpagjl

algorithm is allowed to return stale data 4% of the time. We [7] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
arrive at different conclusions. In particular, much of the narayanan, R. Sidebotham, and M. West. Scale and Per-
apparent advantage of weak consistency over strong consis- formance in a Distributed File SysterACM Transac-
tency in terms of network traffic comes from clients reading tions on Computer Systent1):51-81, February 1988.

[5] C. Gray and D. Cheriton. Leases: An Efficient Fault-
Tolerant Mechanism for Distributed File Cache Consis-
tency. InProceedings of the Twelfth ACM Symposium
on Operating Systems Principlgsages 202-210, 1989.

(8]

[9]

[10]

[11]

[12]

C. Liu and P. Cao. Maintaining Strong Cache Consis-
tency in the World-Wide Web. IfProceedings of the
Seventeenth International Conference on Distributed
Computing SystemMay 1997.

M. Nelson, B. Welch, and J. Ousterhout. Caching in
the Sprite Network File SystemACM Transactions on
Computer System6(1), February 1988.

C. Plaxton, R. Rajaram, and A. Richa. Accessing nearby
copies of replicated objects in a distributed environ-
ment. InProceedings of the Ninth Annual ACM Sym-
posium on Parallel Algorithms and Architecturgsges
311-320, June 1997.

R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Con-
siderations for Distributed Caching on the Internet. In
Proceedings of the Nineteenth International Conference
on Distributed Computing Systenhday 1999.

J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume
Leases to Support Consistency in Large-Scale Systems.
IEEE Transactions on Knowledge and Data Engineer-
ing, February 1999.

Static (N total=1m, N active = 200k) Dynamic (N total=1m, N active = 200k)

800 T T T T T 800 T T T T T
flat flat
two level ------- two level -------
three level ------ three level ------
700 - four level 1 700 - four level
600 [~ 1 600
B 500
£ £
z - g 400
g g
5 g
5 3
300 — 300
200 — 200
100 - 1 100
0 - o
1e-05 0.0001 0.001 0.01 01 1 10 1le-05 0.0001 0.001 0.01 01 1 10
Read Frequency (reads per volume lease period) Read Frequency (reads per volume lease period)

(a) Static (b) Dynamic

Figure 1: Average read latency as the per-client read frequencyried/dor a hierarchy of one million clients, of which
200,000 access the volume in question. (a) Shows perfomnahthe static hierarchy and (b) shows performance of the
dynamic hierarchy. For each figure, the lines show perfomaéor the algorithms running on static trees of differenkimaum
depths. The falling average latency for very high requédssrander the flat hierarchy is due to volume lease reneveahhthe
clients, themselves.

Static (N total=1m, T read = 0.1Tvolume) Dynamic (N total=1m, T read = 0.1Tvolume)
800 T T T T) 800 T T T T
flat —— flat ——
one level ------- one level -------
two level ------ two level ------
700 - three level 1 700 1 three level
600 [~ 1 600
500 |- B 500
£ £
z g 400
g g
5 g
5 3

200
100
0 o
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
Number of Clients Accessing the Volume (N active) Number of Clients Accessing the Volume (N active)

(a) Static (b) Dynamic

Figure 2: Average read latency as the number of active clients véoiea hierarchy of one million clients, each issuing
requests to a volume at a rate of 0.1 requests per volumepeasel.

Static (N total=100k, N active = 20k) Dynamic (N total=100k, N active = 20k)
800 T T T T T 800 T T T T T
flat flat
wo level —------ two level -------
three level ------ three level ------
700 - four level 1 700 1 four level
600 [~ 1 600

500 4 500 -

Latency (ms)
.
Latency (ms)
IS
8
8

— 200
g 100
0 o -
1e-05 0.0001 0.001 0.01 01 10 1le-05 0.0001 0.001 0.01 01 10
Read Frequency (read per volume lease period) Read Frequency (read per volume lease period)

(a) Static (b) Dynamic

Figure 3: Average read latency as the per-client read frequencyrisd/éor a hierarchy of 100,000, of which 20,000 access
the volume in question.

Static (N total=1m, N active = 200k)

1e+06

10000 |

1000 |

100 1

Server Messages per Volume Lease Period

T T T T
flat

Figure 4 : Average server load for handling renewal requests as theligait read frequency is varied for a hierarchy of one

L
0.0001

. .
0001 001 01 1
Read Frequency (reads per volume lease period)

(a) Static

Server Messages per Volume Lease Period

1e+06

10000

1000

100

Dynamic (N total=1m, N active = 200K)

flat ——

two level ------- two level ------
three level - three level -
four level four level
100000 |- 100000

L L
0.001 0.01 0.1 1
Read Frequency (reads per volume lease period)

L
0.0001

(b) Dynamic

million clients, of which 200,000 access the volume in giogst

Figure 5: Server lease renewal load as the per-client read frequsmayied for a static server cluster hierarchy serving one

Server Messages per Volume Lease Period

Static (N total=1m, N active = 200k)

1e+06 |

100000

10000 |

1000 |

T T T T
flat
two level
three level -
four level

1
le-05

0.0001

0.001 0.01 01 1 10
Read Frequency (reads per volume lease period)

million clients, of which 200,000 access the volume in gioest

Static (N total=1m, N active = 200k)

800 T T T T T 800 T T T T T
flat flat
server-proxy-client ~------ server-proxy-client -
700 - H 700
600 - | 600
500 - g 500
g £
3 400 | 4 g a0
2 15
5 k|
= =
300 H 300
200 H 200
wl e 1 wo b T
0] o -
le-05 0.0001 0.001 0.01 0.1 1 10 1le-05 0.0001 0.001 0.01 01 1 10

Read Frequency (reads per volume lease period)

(a) Static

Static (N total=1m, N active = 200k)

Read Frequency (reads per volume lease period)

(b) Dynamic

Figure 6 : Average read latency as the per-client read frequencyrisd/gor a server-proxy-client hierarchy of one million
clients, of which 200,000 access the volume in questionhérserver-proxy-client hierarchy the internal nodes indbesis-
tency hierarchy are all proxies serving 10,000 clients each

Static (N total=1m, N active = 200k) Static (N total=1m, N active = 200k)

T T T T T T T T T T
L flat —— | L flat —— |
1ev08 server-proxy-client ------- 1e106 server-proxy-client -------

g 3
€ 100000 | € 100000
5 5

10000 |

10000 |

1000 | 1000 |-

r Messages per Volume Lease P

100 1

100 |

ver Messages per Volume Lease P

10 F

1 L L L L L 1 L L L L L
1e-05 0.0001 0.001 0.01 01 1 10 1e-05 0.0001 0.001 0.01 0.1 1 10

Read Frequency (reads per volume lease period) Read Frequency (reads per volume lease period)

(a) Static (b) Dynamic

Figure 7 : Server lease renewal load as the per-client read frequsnayied for a server-proxy-client hierarchy serving one
million clients, of which 200,000 access the volume in gioest

Med 1 Med 2 Med 3 Med 4
flat static dyn | flat static dyn| flat static dyn| flat static dyn
Latency (ms) 160.5 129.4 1354 99.0 895 92.1 556 61.2 57.3 276.3 297.0 279.7
Load (server msgs/read) 0.41 0.23 0.27| 0.25 0.16 0.20 0.14 0.12 0.14 0.69 057 0.64
(a) Trace results for four medium-loaded volumes.

Large 1 Large 2 Large 3 Large 4
flat static dyn| flat static dyn| flat static dyn| flat static dyn
Latency (ms) 84.1 30.8 30.7 123.2 51.1 51.2 133.0 46.7 46.7 68.9 39.3 39.6
Load (server msgs/read)0.21 0.03 0.03 0.31 0.05 0.05 0.33 0.03 0.03 0.18 0.06 0.07

(b) Trace results for four heavily-loaded volumes.

Figure 8: Average read latency and fraction of renewal requests teetite server for the four medium-loaded and four
heavily-loaded volumes from the DEC trace workload undegraes/proxy/client hierarchy in which the internal nodetlie
consistency hierarchy is the proxy serving the DEC clients.

10

