Large-Scale Byzantine Fault
Tolerance: Safe but Not Always Live

Petr Kouznetsov, Max Planck Institute for Software Systems
Join work (in progress!) with:

Bobby Bhattacharjee, Univ. Maryland
Rodrigo Rodrigues, INESC-ID and Tech. Univ. Lisbon

FubDiCo III, June 2007

Big picture

Choosing an adequate model to implement a
system is crucial

» Optimistic: the system is very efficient but likely
to fail

» Conservative: the system is very robust but
inefficient (or impossible to implement)

How to find a good balance?

Prepare for the worst and hope for the
best

» How good is the best and how bad is the worst?
v'Best case - failures are few
v'Worst case — almost everything can be faulty

» What do we mean by “prepare” and “hope”?
v'The system is very efficient in the best case

v'The system never produces inconsistent output (even
in the worst case), but ...

v'"May become unavailable in the (rare) “intermediate”
case

The context: clients and services

» A client issues a request to a service

» The service executes the request and returns a
response to the client

request

response

The fault-tolerant computing challenge

» Even if some system components (clients or
service units) fail, the correct clients still get
something useful from the service

» Failures can be Byzantine: a component can
arbitrarily deviate from its expected behavior

request
o0 —— =
W —

response I

The replication approach
[Lamport, 1990; Schneider, 1990]

» Replicate the service
= Correct clients treat the distributed service as one

correct server:
v'Requests are totally ordered, respecting the precedence
relation (safety)
v'Every request issued by a correct client is served (liveness)

» Byzantine fault-tolerance (BFT) [Castro and Liskov,1999]

request

g — 0008

response

BFT: costs and optimistic assumptions

» A request (a batch of requests) involves a three-
phase agreement protocol to be executed

= A large fraction (more than 2/3) of the service
replicas (servers) must be correct
v' Ok if faults are independent (hardware failures)

v'Questionable for software bugs or security attacks

v'An obstacle for scalability (unlikely to hold for large
number of replica groups)

Why 2/3?

» Safety: every two requests should involve at least
one common correct server

.- ><C ~
., / ~ \

/ \

/ ’ \ \
—— — / — — = "
. = / = = =
| 1 \ !
! ! | |
\ \ | |
\ \ / /
\ \ / /

\ \ / /

\ \ / /

. . 7 e

ol

ﬂ@ /Agoe;f‘i;; ;;;;;;; Bgoes first\\ m

Why 2/3?

n — number of servers

X — quorum size (number of servers involved in processing a
request)

f — upper bound on the number of faulty servers

2x-n =2 f+1 or x = (n+f+1)/2 (safety)
=> n = 3f+1

n-f 2 x (liveness)

J

\
s

)
)
|
)

=

&R
=
=R

A

[

~

%4
x
©

Trading off liveness for safety

= Every request involves at least (n+f+1)/2 servers
=> safety is ensured as long as f or less servers

fail
» Liveness will be provided if not more than
n-(n+f+1)/2= (n-f-1)/2 servers fail

= n=10, f=7: liveness tolerates at most one failure

Trading off liveness for safety

= f<n/3

v'Both safety and liveness are ensured with quorums of
size 2/3n+1

= f=n-1
v'Safety: n-1 or less faulty servers
v'Liveness: no fault-tolerance at all

Unexpected benefits!

Large quorums may make things faster!

Very fast in the good case

Very slow (unavailable) in the (rare) intermediate
case

But always correct

Holds only for the special case f=n-17?

Using the trade-off

= A “bimodal” failure model?
v'Few failures is the common case

v'Many failures is a possible (but rare) case (f >> n/3)
o Software bugs and security attacks?

» Modified BFT looks like a perfect fit!

Challenge: scalable BFT

» Farsite, Rosebud, OceanStore, ...
v'All of them use multiple BFT groups
v'A group is responsible for a part of the system state (an
object)
v'Each group is supposed to be safe and live (the 2/3
assumption is not violated)
» The more groups we have - the more likely one of
them fails: the system safety is in danger

» Going beyond 2/3 per group?

Using the trade-off: scalable BFT

» The (large) bound on the number of faulty servers
per group is never exceeded

= Each group runs the modified BFT: can be seen
as a crash-fault processor

Addressing liveness

= Primary-backup: from p to p2
v'Every object is associated with a pair of groups

» Speculative executions [Nightingale et al.,2005]
v'Primary group produces tentative results
v'Backup group assist in committing them

Normal case

Client
= Run operations on the primary group tentatively

» Check whether the tentative results turned into
definitive (the state was successfully transferred
to the backup group)

Backup-primary
» Periodically transfer the system state from
primary to backup

Liveness checks and recovery

Takeover protocol: when the primary fails the backup takes
over the speculative execution

= Primary fails: backup takes over in speculative executions
= Backup fails: select a new backup

= Configuration changes: elect new primary and backup (at
least one of the old ones must remain live until the state is
transferred)

Properties

» Safety: always

» Liveness: as long as at least one group is
available

Related work

= BFT, Castro and Liskov, 1999

= “Scalable” BFT: OceanStore, 2000; Farsite, 2002;
Rosebud, 2003,...

= Safety-liveness trade-offs, Lamport, 2003

= Fork consistency, Li and Mazieres, 2007
= Singh et al., 2007

= Speculative executions, Nightingale et al., 2005

= Fault isolation, Douceur et al., 2007

20

10

Conclusions and Future

= Safety at the expense of liveness [HotDep07]
v’ Security and tolerance to software errors
v’ Scalability

= Safety + conditional liveness
v'Crash fault computing: safe algorithms + failure detectors

v’ Software transactional memory: optimistic STMs + contention
managers

= Does this stuff work?
v'Fault model analysis
v'Multiple backups: from p? to pk
v Paxos?
v’ Implementation

21

11

