
1

FuDiCo III, June 2007

Large-Scale Byzantine Fault
Tolerance: Safe but Not Always Live

Petr Kouznetsov, Max Planck Institute for Software Systems

Join work (in progress!) with:

Bobby Bhattacharjee, Univ. Maryland
Rodrigo Rodrigues, INESC-ID and Tech. Univ. Lisbon

2

Big picture

Choosing an adequate model to implement a
system is crucial

 Optimistic: the system is very efficient but likely
to fail

 Conservative: the system is very robust but
inefficient (or impossible to implement)

How to find a good balance?

2

3

Prepare for the worst and hope for the
best

 How good is the best and how bad is the worst?
Best case – failures are few
Worst case – almost everything can be faulty

 What do we mean by “prepare” and “hope”?
The system is very efficient in the best case
The system never produces inconsistent output (even

in the worst case), but …

May become unavailable in the (rare) “intermediate”
case

4

The context: clients and services

 A client issues a request to a service
 The service executes the request and returns a

response to the client

response

request

3

5

The fault-tolerant computing challenge

 Even if some system components (clients or
service units) fail, the correct clients still get
something useful from the service

 Failures can be Byzantine: a component can
arbitrarily deviate from its expected behavior

response

request

6

The replication approach
[Lamport, 1990; Schneider, 1990]

 Replicate the service
 Correct clients treat the distributed service as one

correct server:
Requests are totally ordered, respecting the precedence

relation (safety)
Every request issued by a correct client is served (liveness)

 Byzantine fault-tolerance (BFT) [Castro and Liskov,1999]

response

request

4

7

BFT: costs and optimistic assumptions

 A request (a batch of requests) involves a three-
phase agreement protocol to be executed

 A large fraction (more than 2/3) of the service
replicas (servers) must be correct
Ok if faults are independent (hardware failures)

Questionable for software bugs or security attacks
An obstacle for scalability (unlikely to hold for large

number of replica groups)

8

Why 2/3?
 Safety: every two requests should involve at least

one common correct server

A goes first B goes first

A B

5

9

Why 2/3?

n – number of servers
x – quorum size (number of servers involved in processing a

request)
f – upper bound on the number of faulty servers

2x-n ≥ f+1 or x ≥ (n+f+1)/2 (safety)
 => n ≥ 3f+1

n-f ≥ x (liveness)

x x

2x-n

n

10

Trading off liveness for safety

 Every request involves at least (n+f+1)/2 servers
=> safety is ensured as long as f or less servers
fail

 Liveness will be provided if not more than
n-(n+f+1)/2= (n-f-1)/2 servers fail

 n=10, f=7: liveness tolerates at most one failure

6

11

Trading off liveness for safety

 f<n/3
Both safety and liveness are ensured with quorums of

size 2/3n+1
 f=n-1

Safety: n-1 or less faulty servers
Liveness: no fault-tolerance at all

12

Unexpected benefits!

 Large quorums may make things faster!

 Very fast in the good case
 Very slow (unavailable) in the (rare) intermediate

case
 But always correct

 Holds only for the special case f=n-1?

7

13

Using the trade-off

 A “bimodal” failure model?
Few failures is the common case
Many failures is a possible (but rare) case (f >> n/3)

● Software bugs and security attacks?

 Modified BFT looks like a perfect fit!

14

Challenge: scalable BFT

 Farsite, Rosebud, OceanStore,…
All of them use multiple BFT groups
A group is responsible for a part of the system state (an

object)
Each group is supposed to be safe and live (the 2/3

assumption is not violated)
 The more groups we have - the more likely one of

them fails: the system safety is in danger

 Going beyond 2/3 per group?

8

15

Using the trade-off: scalable BFT

 The (large) bound on the number of faulty servers
per group is never exceeded

 Each group runs the modified BFT: can be seen
as a crash-fault processor

16

Addressing liveness

 Primary-backup: from p to p2

Every object is associated with a pair of groups
 Speculative executions [Nightingale et al.,2005]

Primary group produces tentative results
Backup group assist in committing them

9

17

Normal case

Client
 Run operations on the primary group tentatively
 Check whether the tentative results turned into

definitive (the state was successfully transferred
to the backup group)

Backup-primary
 Periodically transfer the system state from

primary to backup

18

Liveness checks and recovery

Takeover protocol: when the primary fails the backup takes
over the speculative execution

 Primary fails: backup takes over in speculative executions

 Backup fails: select a new backup

 Configuration changes: elect new primary and backup (at
least one of the old ones must remain live until the state is
transferred)

10

19

Properties

 Safety: always
 Liveness: as long as at least one group is

available

20

Related work
 BFT, Castro and Liskov, 1999
 “Scalable” BFT: OceanStore, 2000; Farsite, 2002;

Rosebud, 2003,…

 Safety-liveness trade-offs, Lamport, 2003

 Fork consistency, Li and Mazieres, 2007
 Singh et al., 2007

 Speculative executions, Nightingale et al., 2005

 Fault isolation, Douceur et al., 2007

11

21

Conclusions and Future

 Safety at the expense of liveness [HotDep07]
Security and tolerance to software errors
Scalability

 Safety + conditional liveness
Crash fault computing: safe algorithms + failure detectors
Software transactional memory: optimistic STMs + contention

managers

 Does this stuff work?
Fault model analysis
Multiple backups: from p2 to pk

Paxos?
 Implementation

