
1

Thread Synchronization:
Too Much Milk

2

Concurrency Problem

Order of thread execution is non-deterministic
ÿ Multiprocessing

v A system may contain multiple processors Ë cooperating
threads/processes can execute simultaneously

ÿ Multi-programming
v Thread/process execution can be interleaved because of time-

slicing

Operations are often not “atomic”
ÿ Example: x = x + 1 is not atomic!

Goal:
ÿ Ensure that your concurrent program works under ALL possible

interleaving

3

The Fundamental Issue

In all these cases, what we thought to be an atomic
operation is not done atomically by the machine

Definition: An atomic operation is one that executes to
completion without any interruption or failure

An atomic operation has “an all or nothing” flavor:
ÿ Either it executes to completion, or
ÿ it did not execute at all, and
ÿ it executes without interruptions

Atomic = no one can see a partially-executed state !
Key challenge: how to implement atomic semantics?

Atomic = no one can see a partially-executed state !
Key challenge: how to implement atomic semantics?

4

Critical Sections

A critical section is an abstraction that
ÿ consists of a number of consecutive program instructions
ÿ all code within the section executes atomically

Critical sections are used profusely in an OS to protect data
structures (e.g., queues, shared variables, lists, …)

A critical section implementation must be:
ÿ correct: for a given k, only k thread can execute in the critical

section at any given time (usually, k = 1)
ÿ efficient: getting into and out of critical section must be fast
ÿ concurrency control: a good implementation allows maximum

concurrency while preserving correctness
ÿ flexible: a good implementation must have as few restrictions

as practically possible

5

Safety and Liveness

Safety property : “nothing bad happens”
ÿ holds in every finite execution prefix

v Windows™ never crashes
v if one general attacks, both do
v a program never terminates with a wrong answer

Liveness property: “something good eventually happens”
ÿ no partial execution is irremediable

v Windows™ always reboots
v both generals eventually attack
v a program eventually terminates

6

A really cool theorem

Every property is a combination of a safety property
and a liveness property

(Alpern and Schneider)

7

Nice, but… what’s your point?

Safety: At most k threads are concurrently in the critical
section

Liveness: A thread that wants to enter the critical section,
will eventually succeed

Anything else?
ÿ Bounded waiting: If a thread i is in entry section, then there is

a bound on the number of times that other threads are allowed
to enter the critical section before thread i’s request is
granted

Is bounded waiting a safety or a liveness property?Is bounded waiting a safety or a liveness property?

8

Critical Section: Implementation

Basic idea:
ÿ Restrict programming model
ÿ Permit access to shared variables only

within a critical section

General program structure
ÿ Entry section

v “Lock” before entering critical section
v Wait if already locked
v Key point: synchronization may involve

wait
ÿ Critical section code
ÿ Exit section

v “Unlock” when leaving the critical
section

Object-oriented programming style
ÿ Associate a lock with each shared

object
ÿ Methods that access shared object are

critical sections
ÿ Acquire/release locks when

entering/exiting a method that defines
a critical section

Textbook shows
non-OO examples;

much easier to
think OO

Textbook shows
non-OO examples;

much easier to
think OO

9

Thread Coordination: Reality TV!

Jack
Look in the fridge; out of
milk
Leave for store
Arrive at store
Buy milk
Arrive home; put milk away

Jill

Look in fridge; out of milk
Leave for store
Arrive at store
Buy milk
Arrive home; put milk away
Oh, no!

Too much milk!

Fridge and milk are shared data structuresFridge and milk are shared data structures
10

Formalizing “Too Much Milk”

Shared variables
ÿ “Look in the fridge for milk” – check a variable
ÿ “Put milk away” – update a variable

Safety property
ÿ At most one person buys milk

Liveness
ÿ Someone buys milk when needed

How can we solve this problem?

11

Too Much Milk: Solution #0

Will this solution work?
Safe? Yes!
ÿ Must have turn to buy milk!

Live?
ÿ What if the other guy never comes around to check the milk…

Bounded waiting?
ÿ Sure, and the bound is 1!

while(turn ≠ Jack); // relax
while (Milk); // relax
buy milk;
turn := Jill

while(turn ≠ Jack); // relax
while (Milk); // relax
buy milk;
turn := Jill

Introduce the concept of a note
vLeave a note = lock
vRemove note = unlock
vDon’t buy if note = wait

while(turn ≠ Jill); // relax
while (Milk); // relax
buy milk;
turn := Jack

while(turn ≠ Jill); // relax
while (Milk); // relax
buy milk;
turn := Jack

12

Too Much Milk: Solution #1

Will this solution work?
Safe? No!
ÿ Threads can get context switched after checking whether there is a

note, but before leaving a note
Live? Yes!
ÿ A note left will be eventually removed

Bounded waiting?

This solution is worse than before!!
ÿ It works sometime and doesn’t some other times

If (noMilk) { // check milk
 if (noNote) { // check if roommate is getting milk
 leave Note;
 buy milk;
 remove Note;
 }
}

If (noMilk) { // check milk
 if (noNote) { // check if roommate is getting milk
 leave Note;
 buy milk;
 remove Note;
 }
}

What if we switch the
order of checks?

13

Too Much Milk: Solution #2

Safe?

Live?

What happens if note has no color?

Jack
Leave Blue note
If (noNote Pink)
 if (noMilk) {
 buy milk;
 }
}
Remove Blue note

Jack
Leave Blue note
If (noNote Pink)
 if (noMilk) {
 buy milk;
 }
}
Remove Blue note

Jill
Leave Pink note
If (noNote Blue) {
 if (noMilk) {
 buy milk;
 }
}
Remove Pink note

Jill
Leave Pink note
If (noNote Blue) {
 if (noMilk) {
 buy milk;
 }
}
Remove Pink note

14

Solution #3 (a.k.a. Peterson’s algorithm):
combine ideas of 0 and 2

Variables:
ÿ ini: thread Ti is executing , or attempting to execute, in CS
ÿ turn: id of thread allowed to enter CS if multiple want to

Claim: We can achieve mutual exclusion if the following invariant holds
before entering the critical section:

{(¬inj ⁄ (inj Ÿ turn = i)) Ÿ ini}
CS
………

 ini = false

((¬in0 ⁄ (in0 Ÿ turn = 1)) Ÿ in1) Ÿ
((¬in1 ⁄ (in1 Ÿ turn = 0)) Ÿ in0)

 fi
((turn = 0) Ÿ (turn = 1)) = false

15

Towards a solution

The problem boils down to establishing the following right after
entryi

(¬inj ⁄ (inj Ÿ turn = i)) Ÿ ini = (¬inj ⁄ turn = i) Ÿ ini

How can we do that?

entryi = ini := true;
while (inj Ÿturn ≠ i);

16

We hit a snag

Thread T0

while (!terminate) {
in0:= true
{in0}
while (in1 Ÿturn ≠ 0);
{in0 Ÿ (¬ in1 ⁄ turn = 0)}
CS0

………

}

Thread T1

while (!terminate) {
in1:= true
{in1}
while (in0 Ÿturn ≠ 1);

 {in1 Ÿ (¬ in0 ⁄ turn = 1)}
CS1

………

} The assignment to in0
invalidates the invariant!

17

What can we do?

Thread T0

while (!terminate) {
in0:= true;
turn := 1;
{in0}
while (in1 Ÿturn ≠ 0);
{in0 Ÿ (¬ in1 ⁄ turn = 0 ⁄ at(a1))}
CS0

in0 := false;
NCS0

}

Thread T0

while (!terminate) {
in0:= true;
turn := 1;
{in0}
while (in1 Ÿturn ≠ 0);
{in0 Ÿ (¬ in1 ⁄ turn = 0 ⁄ at(a1))}
CS0

in0 := false;
NCS0

}

Thread T1

while (!terminate) {
in1:= true;
turn := 0;
{in1}
while (in0 Ÿturn ≠ 1);

 {in1 Ÿ (¬ in0 ⁄ turn = 1 ⁄ at(a0))}
CS1

in1 := false;
NCS1

}

Thread T1

while (!terminate) {
in1:= true;
turn := 0;
{in1}
while (in0 Ÿturn ≠ 1);

 {in1 Ÿ (¬ in0 ⁄ turn = 1 ⁄ at(a0))}
CS1

in1 := false;
NCS1

}

Add assignment to turn to establish the second disjunct

a0 a1

18

Safe?

Thread T0

while (!terminate) {
in0:= true;
turn := 1;
{in0}
while (in1 Ÿturn ≠ 0);

{in0 Ÿ (¬ in1 ⁄ turn = 0 ⁄ at(a1))}
CS0

in0 := false;
NCS0

}

Thread T0

while (!terminate) {
in0:= true;
turn := 1;
{in0}
while (in1 Ÿturn ≠ 0);

{in0 Ÿ (¬ in1 ⁄ turn = 0 ⁄ at(a1))}
CS0

in0 := false;
NCS0

}

Thread T1

while (!terminate) {
in1:= true;
turn := 0;
{in1}
while (in0 Ÿturn ≠ 1);

 {in1 Ÿ (¬ in0 ⁄ turn = 1 ⁄ at(a0))}
CS1

in1 := false;
NCS1

}

Thread T1

while (!terminate) {
in1:= true;
turn := 0;
{in1}
while (in0 Ÿturn ≠ 1);

 {in1 Ÿ (¬ in0 ⁄ turn = 1 ⁄ at(a0))}
CS1

in1 := false;
NCS1

}

a0 a1

If both in CS, then

in0 Ÿ (¬in1 ⁄ at(a1) ⁄ turn = 0) Ÿ in1 Ÿ (¬in0 ⁄ at(a0) ⁄ turn = 1) Ÿ

Ÿ ¬ at(a0) Ÿ ¬ at(a1) = (turn = 0) Ÿ (turn = 1) = false

19

Live?

Thread T0

while (!terminate) {
{S1: ¬in0 Ÿ (turn = 1 ⁄ turn = 0)}
in0:= true;
{S2: in0 Ÿ (turn = 1 ⁄ turn = 0)}
turn := 1;
{S2}
while (in1 Ÿturn ≠ 0);
{S3: in0 Ÿ (¬ in1 ⁄ at(a1) ⁄ turn = 0)}
CS0

{S3}
in0 := false;
{S1}
NCS0

}

Thread T0

while (!terminate) {
{S1: ¬in0 Ÿ (turn = 1 ⁄ turn = 0)}
in0:= true;
{S2: in0 Ÿ (turn = 1 ⁄ turn = 0)}
turn := 1;
{S2}
while (in1 Ÿturn ≠ 0);
{S3: in0 Ÿ (¬ in1 ⁄ at(a1) ⁄ turn = 0)}
CS0

{S3}
in0 := false;
{S1}
NCS0

}

Thread T1

while (!terminate) {
{R1: ¬in0 Ÿ (turn = 1 ⁄ turn = 0)}
in1:= true;
{R2: in0 Ÿ (turn = 1 ⁄ turn = 0)}
turn := 0;
{R2}
while (in0 Ÿturn ≠ 1);
{R3: in1 Ÿ (¬ in0 ⁄ at(a0) ⁄ turn = 1)}
CS1

{R3}
in1 := false;
{R1}
NCS1

}

Thread T1

while (!terminate) {
{R1: ¬in0 Ÿ (turn = 1 ⁄ turn = 0)}
in1:= true;
{R2: in0 Ÿ (turn = 1 ⁄ turn = 0)}
turn := 0;
{R2}
while (in0 Ÿturn ≠ 1);
{R3: in1 Ÿ (¬ in0 ⁄ at(a0) ⁄ turn = 1)}
CS1

{R3}
in1 := false;
{R1}
NCS1

}

a0 a1

Non-blocking: T0 before NCS0, T1 stuck at while loop

S1 Ÿ R2 Ÿ in0 Ÿ (turn = 0) = ¬in0 Ÿ in1 Ÿ in0 Ÿ (turn = 0) = false
Deadlock-free: T1 and T0 at while, before entering the critical section

S2 Ÿ R2 Ÿ (in0 Ÿ (turn = 0)) Ÿ (in1 Ÿ (turn = 1)) fi (turn = 0) Ÿ (turn = 1) = false
20

Bounded waiting?

Yup!

Thread T0

while (!terminate) {
in0:= true;
turn := 1;
while (in1 Ÿturn ≠ 0);
CS0

in0 := false;
NCS0

}

Thread T0

while (!terminate) {
in0:= true;
turn := 1;
while (in1 Ÿturn ≠ 0);
CS0

in0 := false;
NCS0

}

Thread T0

while (!terminate) {
in1:= true;
turn := 0;
while (in0 Ÿturn ≠ 1);
CS0

in1 := false;
NCS0

}

Thread T0

while (!terminate) {
in1:= true;
turn := 0;
while (in0 Ÿturn ≠ 1);
CS0

in1 := false;
NCS0

}

21

Too Much Milk: Lessons

Last solution works, but it is really unsatisfactory
ÿ Solution is complicated; proving correctness is tricky

even for the simple example
ÿ While thread is waiting, it is consuming CPU time

How can we do better?
ÿ Define higher-level programming abstractions to simplify

concurrent programming
ÿ Use hardware features to eliminate busy waiting
ÿ Stay tuned…

