
1

Mutual Exclusion:
Primitives and

Implementation Considerations

2

Too Much Milk: Lessons

Last solution works, but it is really unsatisfactory
ÿ Solution is complicated; proving correctness is tricky

even for the simple example
ÿ While thread is waiting, it is consuming CPU time

How can we do better?
ÿ Define higher-level programming abstractions to simplify

concurrent programming
ÿ Use hardware features to eliminate busy waiting
ÿ Stay tuned…

3

Introducing Locks

Locks – a higher-level programming abstraction
ÿ Two methods

v Lock::Acquire() – wait until lock is free, then grab it
v Lock::Release() – release the lock, waking up a waiter, if

any

With locks, too much milk problem is very easy!

Lock‡Acquire();
if (noMilk) {
 buy milk;
}
Lock‡Release();

Lock‡Acquire();
if (noMilk) {
 buy milk;
}
Lock‡Release();

How can we implement locks?How can we implement locks?
4

Implementing Locks

Generally requires some level of hardware support

Two common implementation approaches
ÿ Disable interrupts

v Uni-processor architectures only

ÿ Atomic read-modify-write instructions
v Uni- and multi-processor architectures

Other implementation alternatives
ÿ Busy-waiting implementation

5

Disabling Interrupts

Key observations:
ÿ On a uni-processor, an operation is atomic if no context-

switch is allowed in the middle of the operation
ÿ Context switch occurs because of:

v Internal events: system calls and exceptions
v External events: interrupts

ÿ Mutual exclusion can be achieved by preventing context
switch

Prevention of context switch
ÿ Eliminate internal events: easy (under program control)
ÿ Eliminate external events: disable interrupts

v Hardware delays the processing of interrupts until
interrupts are enabled

6

Lock Implementation: A Naïve Solution

Will this work on a uni-processor?

What is wrong with this solution?
ÿ Once interrupts are disabled, the thread can’t be

stopped Ë Can starve other threads
ÿ Critical sections can be arbitrarily long Ë Can’t bound

the amount of time needed to respond to interrupts

Lock::Acquire() { disable interrupts; }
Lock::Release() { enable interrupts;}

Lock::Acquire() { disable interrupts; }
Lock::Release() { enable interrupts;}

7

A Better Solution

Class Lock{
 int value = FREE;
}

Class Lock{
 int value = FREE;
}

Lock::Acquire() {
 Disable interrupts;
 while (value != FREE) {

Enable interrupts;
Disable interrupts;

 }
 value = BUSY;
 Enable interrupts;
}

Lock::Acquire() {
 Disable interrupts;
 while (value != FREE) {

Enable interrupts;
Disable interrupts;

 }
 value = BUSY;
 Enable interrupts;
}

Lock::Release() {
 Disable interrupts;
 value = FREE;
 Enable interrupts;
}

Lock::Release() {
 Disable interrupts;
 value = FREE;
 Enable interrupts;
}

Why do we need to enable interrupt
inside the while loop in Acquire?

Why do we need to enable interrupt
inside the while loop in Acquire?

8

Atomic Read-Modify-Write (ARMW)

Disabling interrupts works only on uni-processors

For uni- and multi-processor architectures: implement locks
using atomic read-modify-write instructions
ÿ Atomically

1. read a memory location into a register, and
2. write a new value to the location

ÿ Implementing ARMW is tricky in multi-processors
v Requires hardware support on memory bus

Examples:
ÿ Test&set instructions (most architectures)

v Reads a value from memory
v Write “1” back to memory location

ÿ Compare & swap (68000), exchange (x86), …
v Test the value against some constant
v If the test returns true, set value in memory to different value
v Report the result of the test in a flag

9

Implementing Locks with Test&set

If lock is free, then test&set
reads 0 and sets value to 1 Ë lock
is set to busy and Acquire
completes

If lock is busy, the test&set reads
1 and sets value to 1 Ë no change
in lock’s status and Acquire loops

If lock is free, then test&set
reads 0 and sets value to 1 Ë lock
is set to busy and Acquire
completes

If lock is busy, the test&set reads
1 and sets value to 1 Ë no change
in lock’s status and Acquire loops

Class Lock{
 int value = 0;
}

Class Lock{
 int value = 0;
}

Lock::Acquire() {
while (test&set(value) == 1);
}

Lock::Acquire() {
while (test&set(value) == 1);
}

Lock::Release() {
 value = 0;
}

Lock::Release() {
 value = 0;
}

10

Locks and Busy Waiting

Busy-waiting:
ÿ Threads consume CPU cycles while waiting

Limitations
ÿ Inefficient
ÿ What happens if threads have different priorities?

v Busy-waiting thread remains runnable
v If the thread waiting for a lock has higher priority than the thread

occupying the lock, then ???

Lock::Acquire() {
while (test&set(value) == 1);
}

Lock::Acquire() {
while (test&set(value) == 1);
}

Can we do better?Can we do better?

11

Implementing Locks without Busy Waiting
Using operating system kernel

Eliminate busy-waiting through the use of multi-programming

When a thread needs to block inside Acquire()
ÿ Suspend the currently executing thread
ÿ Dispatch a ready thread

RunningRunningReadyReady

WaitingWaiting

Head

Tail

system ready/run
queue

Head

Tail

Lock queues
(1 per lock)

Class Lock{
 int value = 0;
 int numWaiting = 0;
 Queue queue;
}

Class Lock{
 int value = 0;
 int numWaiting = 0;
 Queue queue;
}

12

Implementing Locks without Busy Waiting
Using Disable Interrupts

Lock::Acquire() {
 Disable interrupts;
 while (value ≠ FREE) {

Enable interrupts;
Disable interrupts;

 }
 value := BUSY;
 Enable interrupts;
}

Lock::Acquire() {
 Disable interrupts;
 while (value ≠ FREE) {

Enable interrupts;
Disable interrupts;

 }
 value := BUSY;
 Enable interrupts;
}

With busy-waiting

Lock::Release() {
 Disable interrupts;
 value := FREE;
 Enable interrupts;
}

Lock::Release() {
 Disable interrupts;
 value := FREE;
 Enable interrupts;
}

Lock::Acquire() {
 Disable interrupts;
 if (value ≠ FREE) {
 Put TCB on wait queue for lock;
 Switch(); // dispatch a ready thread
 }
 else { value := BUSY; }
 Enable interrupts;
}

Lock::Acquire() {
 Disable interrupts;
 if (value ≠ FREE) {
 Put TCB on wait queue for lock;
 Switch(); // dispatch a ready thread
 }
 else { value := BUSY; }
 Enable interrupts;
}

Without busy-waiting

Lock::Release() {
 Disable interrupts;
 if wait queue is not empty {
 Move a waiting thread to ready queue; }
 else {value := FREE; }
 Enable interrupts;
}

Lock::Release() {
 Disable interrupts;
 if wait queue is not empty {
 Move a waiting thread to ready queue; }
 else {value := FREE; }
 Enable interrupts;
}

13

Interrupts and Switch(): An Aside

Context switch operation is sandwiched between disable and
enable interrupt operations

Thread A
…
Disable interrupts;
Switch();

Return from Switch();
Enable interrupts;
…

Thread A
…
Disable interrupts;
Switch();

Return from Switch();
Enable interrupts;
…

Thread B

Return from Switch();
Enable interrupts;
…
Disable interrupts;
Switch();

Thread B

Return from Switch();
Enable interrupts;
…
Disable interrupts;
Switch();

Invariant: Interrupts are turned off before calling Switch()
And turned back on when Switch() returns

Invariant: Interrupts are turned off before calling Switch()
And turned back on when Switch() returns

14

Implementing Locks without Busy Waiting
Using Test&Set

Lock::Acquire() {
while (test&set(value) == 1);
}

Lock::Acquire() {
while (test&set(value) == 1);
}

Lock::Release() {
 value := 0;
}

Lock::Release() {
 value := 0;
}

With busy-waiting

Lock::Acquire() {
if (test&set(value) == 1) {
 Put TCB on wait queue for lock;
 Switch(); // dispatch a ready thread
 }
}

Lock::Acquire() {
if (test&set(value) == 1) {
 Put TCB on wait queue for lock;
 Switch(); // dispatch a ready thread
 }
}

Without busy-waiting

Lock::Release() {
if (wait queue is not empty) {
 Move a waiting thread to ready queue;
 }
 else { value := 0; }
}

Lock::Release() {
if (wait queue is not empty) {
 Move a waiting thread to ready queue;
 }
 else { value := 0; }
}

Does this work?

