
1

OS Structure,
Processes & Process Management

2

Recap

OS functions
ÿ Coordinator

v Protection
v Communication
v Resource management

ÿ Service provider
v File system, device handler, …

Questions:
ÿ How can the OS perform these functions?
ÿ How is an OS invoked?
ÿ What is the structure of the OS?

3

An Operating System in Action

CPU loads boot program from ROM (e.g. BIOS in PC’s)

Boot program:
ÿ Examines/checks machine configuration (number of CPU’s, how

much memory, number & type of hardware devices, etc.)
ÿ Builds a configuration structure describing the hardware
ÿ Loads the operating system, and gives it the configuration

structure

Operating system initialization:
ÿ Initialize kernel data structures
ÿ Initialize the state of all hardware devices
ÿ Creates a number of processes to start operation (e.g. getty in

UNIX, the Windowing system in NT, e.g.)

4

O.S. in Action (Cont’d)

After basic processes have started, the OS runs user
programs, if available, otherwise enters the idle loop

In the idle loop:
ÿ OS executes an infinite loop (UNIX)
ÿ OS performs some system management & profiling
ÿ OS halts the processor and enter in low-power mode

(notebooks)

OS wakes up on:
ÿ Interrupts from hardware devices
ÿ Exceptions from user programs
ÿ System calls from user programs

Two modes of execution
ÿ User mode: Restricted execution mode (applications)
ÿ Supervisor mode: Unrestricted access to everything (OS)

5

Control Flow in an OS

Operating System Modules

Idle
Loop

From boot

Initialization

RTI

Interrupt System call
main()

Exception

Supervisor ModeSupervisor Mode

Return to
user mode

Return to
user mode

6

On Interrupts

Hardware calls the operating system at a pre-specified
location
Operating system saves state of the user program
Operating system identifies the device and cause of
interrupt
Responds to the interrupt
Operating system restores state of the user program (if
applicable) or some other user program
Execute an RTI instruction to return to the user program
User program continues exactly at the same point it was
interrupted.

Key Fact: None of this is visible to the user program

7

On Exceptions

Hardware calls the operating system at a pre-specified
location
Operating system identifies the cause of the exception (e.g.
divide by 0)
If user program has exception handling specified, then OS
adjust the user program state so that it calls its handler
Execute an RTI instruction to return to the user program
If user program did not have a specified handler, then OS
kills it and runs some other user program, as available

Key Fact: Effects of exceptions are visible to user programs
and cause abnormal execution flow

8

On System Calls

User program executes a trap instruction (system call)
Hardware calls the operating system at a pre-specified
location
Operating system identifies the required service and
parameters (e.g. open(filename, O_RDONLY))
Operating system executes the required service
Operating system sets a register to contain the result of
call
Execute an RTI instruction to return to the user program
User program receives the result and continues

Key Fact: To the user program, it appears as a function call
executed under program control

9

Operating System
(process/device/memory management,

file systems, interprocess communication, …)

Operating System
(process/device/memory management,

file systems, interprocess communication, …)

Operating System Today
High-level software architecture

Memory

Instruction Execution & Interrupt Processing

User ApplicationsUser Applications

Window
System

Command
Interpreter

I/O Devices

“Middleware”“Middleware”

10

Operating System Structures

Monolithic OS (e.g., Unix) Micro-kernel OS (e.g.,
Mach, Exokernel, …)

Memory ManagementMemory Management

CPU SchedulingCPU Scheduling

Process ManagementProcess Management

HardwareHardware

Network SupportNetwork Support

SecuritySecurity

File SystemFile System

Command InterpreterCommand Interpreter

Device ManagementDevice Management

Network
Support

Network
Support

Memory
Mgmt.

Memory
Mgmt.

Window
Server

Window
Server

File
Server
File

Server

......

HardwareHardware

CPU
Scheduling

CPU
Scheduling

Device
Drivers

Device
Drivers

Interrupt
Handler

Interrupt
Handler

Boot and
Init.

Boot and
Init.

Message PassingMessage Passing ……

APIAPI

11

Summary

An OS is just a program:
ÿ It has a main() function, which gets called only once (during

boot)
ÿ Like any program, it consumes resources (such as memory), can

do silly things (like generating an exception), etc.

But it is a very strange program:
ÿ It is “entered” from different locations in response to external

events
ÿ It does not have a single thread of control, it can be invoked

simultaneously by two different events (e.g. system call & an
interrupt)

ÿ It is not supposed to terminate
ÿ It can execute any instruction in the machine

12

Processes and Process Management
What is a Program? How to run a Program?

A program consists of code and data

On running a program, the loader:
ÿ reads and interprets the executable file
ÿ sets up the process’s memory to contain the code & data from

executable
ÿ pushes “argc”, “argv” on the stack
ÿ sets the CPU registers properly & calls “__start()”

Program starts running at _start()
_start(args) {

ret = main(args);
exit(ret)

}
we say “process” is now running, and no longer think of “program”

When main() returns, OS calls “exit()” which destroys the
process and returns all resources

13

So, What is a Process?

A process is an abstraction that supports running programs

A process is the basic unit of execution in an operating
system

Different processes may run several instances of the same
program

At a minimum, process execution requires following
resources:
ÿ Memory to contain the program code and data
ÿ A set of CPU registers to support execution

14

Anatomy of a Process

Code

Header

Initialized data

Executable File Code

Initialized data

Heap

Stack

DLL’s

mapped segments

Process’s
address space

PC
Stack Pointer

Registers
PID
UID

Priority
List of open files

…

PC
Stack Pointer

Registers
PID
UID

Priority
List of open files

…

Process Control
Block

15

Process Life Cycle

Processes are always either executing, waiting to
execute or waiting for an event to occur

RunningRunningReadyReady

WaitingWaiting

StartStart DoneDone

16

Process Contexts
Example: Multiprogramming

Operating SystemOperating System

“System Software”“System Software”

User Program 1User Program 1

User Program 2User Program 2User Program 2User Program 2

User Program nUser Program n

...

Program 1 Program 2OS I/O
Device

k: read()

k+1:

startIO()

endio{ interrupt

main{

main{

}

read{

}

}

schedule()

Memory

save
state
save
state schedule()

restore
state

restore
state

save
state
save
state

17

Process Manipulation

Basic process manipulation: creation, program loading,
exiting, …

Example: Unix Operating system
ÿ Creation and deletion: fork(), exec(), wait(), exit()
ÿ Process signaling: kill()
ÿ Process control: ptrace(), nice(), sleep()

18

Process Manipulation in Unix

The system creates the first process (sysproc in Unix)

The first process creates other processes such that:
ÿ the creator is called the parent process
ÿ the created is called the child process
ÿ the parent/child relationships can be expressed by a process

tree

In Unix, the second process is called init
ÿ it creates all the gettys (login processes) and daemons
ÿ it should never die
ÿ it controls the system configuration (num of processes,

priorities…)

Unix system interface includes a call to create processes
ÿ fork()

19

Unix’s fork()

Creates a child process such that it inherits:
ÿ identical copy of all parent’s variables & memory
ÿ identical copy of all parent’s CPU registers (except one)

Both parent and child execute at the same point after fork()
returns:
ÿ for the child, fork() returns 0
ÿ for the parent, fork() returns the process identifier of the

child

Simple implementation of fork():
ÿ allocate memory for the child process
ÿ copy parent’s memory and CPU registers to child’s
ÿ Expensive !!

Can one reduce this overhead without changing semantics?Can one reduce this overhead without changing semantics?
20

main {
 int childPID;
 S1;

 childPID = fork();

 if(childPID == 0)
 <code for child process>
 else {
 <code for parent process>
 wait();
 }

 S2;
 }

Unix’s fork(): Example Usage

The execution context for the child process is a copy of the
parent’s context at the time of the call

CodeCode

DataData

StackStack

CodeCode

DataData

StackStack

Parent Child

fork()

childPID
= 0

childPID
= 0

childPID
= xxx

childPID
= xxx

21

Program Loading: exec()

The exec() call allows a process to “load” a different
program and start execution at _start

It allows a process to specify the number of arguments
(argc) and the string argument array (argv)

If the call is successful
ÿ it is the same process …
ÿ but it runs a different program !!

Two implementation options:
ÿ overwrite current memory segments with the new values
ÿ allocate new memory segments, load them with the new values,

and deallocate old segments
22

General Purpose Process Creation

In the parent process:
main()
…
int pid = fork(); // create a child
if(pid == 0) { // child continues here

exec(“program”, argc, argv0, argv1, …);
}
else { // parent continues here
…
}

23

Properties of the fork/exec sequence

In 99% of the time, we call exec() after calling fork()
ÿ the memory copying during fork() operation is useless
ÿ the child process will likely close the open files & connections
ÿ overhead is therefore high
ÿ might as well combine them in one call (OS/2)

vfork()
ÿ a system call that creates a process “without” creating an

identical memory image
ÿ sometimes called lightweight fork()
ÿ child process is understood to call exec() almost immediately

24

Orderly Termination: exit()

After the program finishes execution, it calls exit()

This system call:
ÿ takes the “result” of the program as an argument
ÿ closes all open files, connections, etc.
ÿ deallocates memory
ÿ deallocates most of the OS structures supporting the process
ÿ checks if parent is alive:

v If so, it holds the result value until parent requests it; in this case,
process does not really die, but it enters the zombie/defunct state

v If not, it deallocates all data structures, the process is dead

ÿ cleans up all waiting zombies

25

The wait() System Call

A child program returns a value to the parent, so the parent
must arrange to receive that value

The wait() system call serves this purpose
ÿ it puts the parent to sleep waiting for a child’s result
ÿ when a child calls exit(), the OS unblocks the parent and

returns the value passed by exit() as a result of the wait call
(along with the pid of the child)

ÿ if there are no children alive, wait() returns immediately
ÿ also, if there are zombies waiting for their parents, wait()

returns one of the values immediately (and deallocates the
zombie)

26

Process Control

OS must include calls to enable special control of a process:

Priority manipulation:
ÿ nice(), which specifies base process priority (initial priority)
ÿ In UNIX, process priority decays as the process consumes CPU

Debugging support:
ÿ ptrace(), allows a process to be put under control of another

process
ÿ The other process can set breakpoints, examine registers, etc.

Alarms and time:
ÿ Sleep puts a process on a timer queue waiting for some number

of seconds, supporting an alarm functionality

27

Tying it All Together: The Unix Shell

while(! EOF) {
read input
handle regular expressions
int pid = fork(); // create a child
if(pid == 0) { // child continues here

exec(“program”, argc, argv0, argv1, …);
}
else { // parent continues here
…
}

 Translates <CTRL-C> to the kill() system call with SIGKILL

 Translates <CTRL-Z> to the kill() system call with SIGSTOP

 Allows input-output redirections, pipes, and a lot of other stuff that
we will see later

