Simulating Authenticated Broadcasts
to Derive Simple Fault-Tolerant

Algorithms '

T K. Srikanth
Sam Toueg
TR 84-623

July 1984
(April 1985)

Department of Computer Science
Cornell University
[thaca.

To oppean va " Dustidudedt Gomuidiing 7 (Springen 4 Veadag)

Simulating authenticated broadcasts
to derive simple fault-tolerant algorithmst

T K. Srikanth
Sam Toueg

Cornell University
Ithaca, New York 14853

ABSTRACT

Fault-tolerant algorithms for distributed systems are simpler to develop and prove
correct if messages can be authenticated. However, using digital signatures for
message authentication usually incurs substantial overhead in communication and
.computation. To exploit the simplicity provided by authentication without this
overhead, we present a broadcast primitive that simulates properties of authenti-
cated broadcasts. This gives a methodology for deriving non-authenticated algo-
rithms. Starting with an authenticated algorithm, we replace signed communica-
tion with the broadcast primitive to obtain an equivalent non-authenticated algo-
rithm. We have applied this approach to various problems and in each case
obtained simpler and more efficient solutions than those previously known.

1. Introduction

Fault tolerance is an important issue in distributed systems. However, rea-
soning about distributed computations is difficult, and particularly so when arbi-
trary types of failures can occur. In this paper, we study techniques that impose
restrictions on the visible behavior of faulty processes and thereby simplify the
task of designing fault-tolerant algorithms.

To illustrate our approach, we first consider the problem of reaching agree-
ment among processes when some of them may be faulty. This problem, called the
Byzantine Generals Problem or Byzantine Agreement, is a central issue in the
design of fault-tolerant systems [Moha83, Garc84|. Formally, Byzantine Agreement
requires that when a message is sent by a transmitter to a set of processes,

(1) All correct processes agree on the same message,
(2) If the transmitter is correct, then all correct processes agree on its message.

We assume a set of n processes, of which no more than ¢ are faulty. A process
is correct if it always follows the algorithm; it is faulty otherwise. Correct processes
must reach agreement on a message m ¢ M U {sender faulty”}, where M is the set
of messages the transmitter can send. We make no assumptions about the behavior
of faulty processes — they can even be malicious in attempting to foil agreement.
We assume a completely connected network and a reliable message system in

* Partial support for this work was provided by the National Science Foundation under grant MCS 83-03135.

which a process receiving a message can identify the immediate sender of the mes-
sage.

One way to restrict the visible behavior of faulty processes is to assume that
the message system is authenticated [Lamp82, Dole83, Merr84, etc]. Informally,
authentication prevents a process from changing a message it relays, or introduc-
ing a new message into the system and claiming to have received it from some
other process.

We first consider synchronized algorithms to achieve Byzantine Agreement.
These algorithms proceed in synchronized phases where processes first send mes-
sages (according to their states), then wait to receive messages sent by other
processes in the same phase, and then change their states accordingly.

If authentication is not available, the best known Byzantine Agreement algo-
rithm requires 2¢+3 phases and has a message complexity of O(nt+t*logt) bits
[Dole82b]. This algorithm is unintuitive and hard to understand, as are most non-
 authenticated algorithms. On the other hand, Dolev and Strong derive an authen-
ticated Byzantine Agreement algorithm that is easy to understand and prove
correct [Dole82a]. Thus, we see that the assumption that messages are authenti-
cated simplifies the development of fault-tolerant algorithms. This is because
authentication imposes restrictions on the otherwise arbitrary behavior of faulty
processes.

Cryptographic techniques that provide digital signatures can be used for mes-
sage authentication [Rive78]. However, all known cryptographic schemes have
disadvantages. They all require some computational and communication overhead.
Furthermore, none of them has been proven unconditionally secure from attacks by
malicious processes. In fact, malicious processes can break such schemes by com-
puting or guessing the signature of another process. Although the probability of
such an occurrence can be very small, it is nevertheless non-zero.

Our goal is to exploit some of the advantages of authentication without paying
the price of digital signatures. In this paper, we present a methodology for deriving
non-authenticated algorithms. We start with an authenticated algorithm and iden-
tify the properties of authentication it needs. We then derive a broadcast primitive
that has these properties without using signatures. Finally, we replace signed
communication in the authenticated algorithm with this broadcast primitive to get
an equivalent non-authenticated algorithm. Hence, the resulting algorithm is as
simple as the original authenticated algorithm, and furthermore its correctness fol-
lows directly from that of the authenticated algorithm.

Previous work has provided different and more or less unrelated solutions for
the authenticated and non-authenticated versions of a problem. For example, the
simple authenticated algorithm by Dolev and Strong [Dole82a] did not seem to help
solve the non-authenticated version of the problem [Dole82b]. Other examples are
the problems of Byzantine Elections [Merr84] and clock synchronization [Halp84,
Lund84]. Our approach is the first that unifies solutions for the authenticated and
non-authenticated models.

We illustrate this new approach on two synchronous agreement problems. The
first application gives an efficient non-authenticated algorithm for Byzantine

Agreement that improves on known algorithms by terminating in 2¢+1 phases
using O(nt? logn) bits. Further, this algorithm is as simple as the authenticated
algorithm in [Dole82a] from which it is derived.

We then consider the Byzantine Elections problem. This problem was formu-
lated recently by Merritt and was solved assuming message authentication
[Merr84]. By replacing signed communication with our primitive, we automati-
cally obtain the first known non-authenticated algorithm for Byzantine Elections.
Its communication complexity is the same as that of the authenticated algorithm.

We then extend this approach to asynchronous systems and use it to derive a
non-authenticated randomized Byzantine Agreement algorithm from an authenti-
cated one [Toue84a]. The resulting algorithm has a lower message complexity than
the original authenticated one.

This approach has also been applied to derive a simple, efficient early-stopping
Byzantine Agreement algorithm [Toue84b], and to derive algorithms for synchron-
- izing clocks [Srik84].

2. Properties of authenticated broadcasts

Consider an algorithm that proceeds in synchronous rounds™ and uses authen-
ticated broadcasts. A process p broadcasts a message m in round k£ by sending
signed copies of the triple (p,m,k) to all other processes. A process that receives
(p,m,k) accepts it if it can verify p’s signature. We denote these two operations by
broadcast (p,m,k) and accept (p,m,k).

Since a message broadcast by a correct process in a synchronous system is
received by all correct processes in the same round, and since signatures of correct
processes cannot be forged, authenticated broadcasts satisfy the following two pro-
perties:

1. (Correctness) If correct process p broadcasts (p,m,k) in round k, then every
correct process accepts (p,m.k) in the same round.

2. (Unforgeability) If correct process p does not broadcast (p,m,k), then no correct
process ever accepts (p,m,k).

A process accepting a signed message in a certain round can relay this mes-
sage to all other processes and thus ensure that all processes accept this message
by the next round. Therefore, if processes immediately relay every message they
accept, then we have the following additional property:

3. (Relay) If a correct process accepts (p,m,k) in round r=Fk, then every other
correct process accepts (p,m,k) in round r+1 or earlier.

By Property 1, broadcasts by correct processes are accepted by all correct
processes in the same round. On the other hand, a message broadcast by a faulty
process p and later relayed by other processes might be accepted by a correct pro-
cess many rounds after it was first broadcast by p. Thus, a correct process might
accept (p,m,k) in some round r=k.

* For the present, a round 1% a phase.

It should be noted that receiving a relayed message m with p’s signature does
not necessarily imply that p is indeed the originator of the message. In fact, p
could have been malicious and given its signature to another process. This process
could then originate m “signed by p” [Lamp82]. Therefore, a process that accepts
(p,m,k) can only infer that, if p is correct, then p is the originator of the message
(Property 2).

3. An algorithm using authenticated broadcasts

We now consider an authenticated algorithm for Byzantine Agreement. The
algorithm presented in Figure 1 is a simple modification of that in [Dole83]. For
simplicity, round numbers are omitted from messages. In this algorithm, a process
extracts some messages from among the messages it receives. Informally, a process
extracts a message m if it believes that the transmitter indeed sent m and if it can
convince others about this.

- Theorem 1: Byzantine Agreement can be achieved in ¢+1 phases with O(n’tlogn)
message bits using the authenticated algorithm in Figure 1.

Proof: The proof of correctness of the algorithm of Figure 1 is similar to that in
[Dole83] and is outlined below.

Case 1: The transmitter s is correct. By Property 1, every correct process accepts
(s,m) in round 1 and extracts m. The transmitter, being correct, does not broadcast
any other message, and by Property 2, no correct process accepts any other

Round 1: the transmitter s broadcasts (s,m);
Round i +1,i=12, ..., t: each process q:

if accepted (p,m) from at least ¢ distinct processes p,
including the transmitter s, in rounds 1 to ¢
then extract m;

if m is the first or second message extracted
and m has not been extracted before
then broadcast (q,m) and
relay all the : messages that caused m to be extracted;

Decision:
if extracted exactly one message m then decide m

else decide “sender faulty”.

Figure 1. An authenticated algorithm for Byzantine Agreement
using signed broadcasts.

én

message from s. Hence, every correct process extracts only the message m and
decides m.

Case 2: The transmitter is faulty.

(i) If some correct process q extracts m at the end of round i <t +1, then it must
have accepted messages (p,m) from i distinct processes including the
transmitter s. If it has extracted fewer than two messages so far, ¢ broadcasts
(q,m) in round :+1. By Properties 1 and 3, every correct process accepts
(q,m) and all the : messages (p,m) by round i+1 and hence extracts m if it
has not already done so.

(i1) If some correct process q extracts m at the end of round ¢+1, it must have
accepted (p,m) from at least t+1 distinct processes. At least one of these
processes must be correct, must have extracted m in round :<¢+1, and broad-
cast m in round i +1. From (i), every correct process extracts m by the end of
round ¢ +1.

Therefore, either every correct process extracts the same message m and
decides m, or all correct processes extract more than one message each and decide
that the sender is faulty.

The algorithm requires ¢+1 rounds. Each correct process broadcasts at most
two messages and relays O(¢) signed messages. Thus, correct processes send a total
of O(n?t) messages. Assuming that each signature requires O(log n) bits, the algo-
rithm requires O(n*tlogn) bits of information exchange. []

4. An implementation of authenticated broadcasts

The proof of the authenticated algorithm of Figure 1 shows that Properties 1,
2 and 3 are the only properties of authenticated broadcasts that this algorithm
needs. One way to provide these three properties is to implement authentication
using digital signatures. However, the correctness of the authenticated algorithm
does not depend on this particular implementation, and any other implementation
providing these properties could be used instead. In this section, we describe a
broadcast primitive that achieves these three properties without using signatures.
This primitive requires that n>3¢. We later show that if n <3¢, then no broadcast
primitive can provide the three properties without using signatures.

The primitive is a modification of the Echo primitive presented in [Brac83,
Toue84a]. Two kinds of messages are used: init sent out initially by the sender to
all other processes, and echo sent by the other processes according to the algorithm
described below. When a process receives sufficient echoes of a message it accepts
the message. The primitive in Figure 2 simulates the authenticated broadcast of a
message m by a process p during round % of a synchronized algorithm.

With this primitive, it takes two phases of synchronized message exchange for
a broadcast by a correct process to be accepted. Therefore, each round of the
authenticated algorithm requires two phases of the primitive: round r corresponds
to phases 2r —1 and 2r of the primitive.

Rules for broadcasting and accepting (p,m,k):

Round k:
Phase 2k —1: process p sends (init,p,m,k) to all processes;
Phase 2k: each process executes the following for any m ¢ M:

if received (init,p,m.k) from p in phase 2k —1
and received only one init message from p in phase 2k —1
then send (echo,p,m k) to all;

if received (echo,p,m,k) from at least n —t distinct processes in phase 2k
then accept (p,m,k);

"Round r=k+1:
Phase 2r —1,2r: each process executes the following for any m ¢ M:

if received (echo,p,m k) from at least n —2¢ distinct processes in previous phases
and not sent (echo,p,m k)
then send (echo,p,m,k) to all;

if received (echo,p,m,k) from at least n —t¢ distinct processes in previous phases
then accept (p,m,k);

Figure 2. A broadcast primitive to simulate authenticated broadcasts.

Before describing the properties of this primitive, we prove the following lemma.

Lemma 1: If a correct process sends (echo,p,m,k) then p must have sent
(init,p,m,k) to at least one correct process in phase 2k —1.

Proof: Let [be the earliest phase in which any correct process q sends (echo,p,m k).
If I =2k, q must have received (init,p,m,k) in phase 2k —1. If [>2k, process ¢ must
have received (echo,p,m,k) messages from at least n —2¢ distinct processes. There-
fore, it must have received (echo,p,m,k) from at least one correct process in phase

[—1 or earlier. Hence, some correct process sends (echo,p,m,k) before phase [, a
contradiction. []

Theorem 2: The broadcast primitive in Figure 2 has the properties of correctness,
unforgeability and relay, and in addition the following property:

4. (Uniqueness) If a correct process accepts (p,m,k) in round k, no correct process
accepts (p,m’,k) in round £ where m = m’.
Proof:

Property 1 (Correctness): Since p is correct, every process receives (init,p,m,k)
in phase 2k —1 and every correct process sends (echo,p,m,k) in phase 2k. Hence,

every process receives (echo,p,m,k) from at least n—t¢ distinct processes in phase
2k and every correct process accepts (p,m,k) in phase 2k, i.e., in round k.

Property 2 (Unforgeability): If p is correct and does not broadcast (p,m,k), it
does not send any (init,p,m,k) message in phase 2k —1. If any correct process
accepts (p,m,k), it must have received (echo,p,m,k) messages from at least n—t¢
processes. Hence, at least n —2¢ correct processes must have sent (echo,p,m,k) mes-
sages. By Lemma 1, p must have sent (init,p,m,k) to at least one correct process in
phase 2k —1, a contradiction.

Property 3 (Relay). Let q have accepted (p,m,k) during phase i, where
i=2r—1 or 2r. Process ¢ must have received (echo,p,m,k) from at least n—t dis-
tinct processes by phase i. Hence, every correct process receives messages
(echo,p,m.k) from at least n —2¢ distinct processes by phase i, and therefore sends
(echo,p,m.k) by phase i +1. Hence, every correct process receives (echo,p,m,k) from
at least n—t distinct processes by phase :+1 and accepts (p,m,k) by the end of
. phase i+1, i.e,, in round r +1 or earlier.

Property 4 (Uniqueness): Assume that two correct processes accept (p,m,k) and
(p,m',k) respectively in round k, with m = m’. Then at least n —t processes sent
(echo,p,m,k) and at least n—t processes sent (echo,p,m’',k) in phase 2k. This
implies that at least one correct process sent both (echo,p,m,k) and (echo,p,m’,k) in
phase 2k, a contradiction. []

As presented here, the broadcast primitive does not terminate in a fixed
number of rounds. If the broadcaster is faulty, other faulty processes can collude
with the sender so that arbitrarily many rounds elapse before any correct processes
accepts the message. However, in an application that terminates in r rounds,
processes stop executing the primitive at the end of round r.

In computing the message complexity of the primitive, we consider only mes-
sages sent by correct processes. It is not possible to restrict the number of messages
sent by faulty processes.

Lemma 2: The total number of messages sent by all the correct processes for each
broadcast by a correct process p is O(n?).

Proof. Since each correct process sends an (echo,p,m,k) messages to all the
processes when p broadcasts (p,m,k), the total number of messages sent by all
correct processes is O(n?). []

To reduce the message complexity, we isolate a set of 3¢t+1 processes called
the reflectors, and execute the primitive with n=3¢+1 as follows: only reflectors
send echo messages to all the other processes, other processes only receive these
messages and accept messages according to the primitive. It can be verified that
the properties of Theorem 2 still hold. Since there are O(¢) reflectors, the total
number of messages sent by all correct processes for each broadcast by a process p
is O(nt).

However, each faulty process, in collusion with other faulty processes, can
cause correct processes to send O(n?) messages for each round of the algorithm. The
number of messages can be reduced by using the modified broadcast primitive
described in the Appendix.

5. A simple non-authenticated algorithm for Byzantine Agreement

The broadcast primitive of Figure 2 achieves all the properties of authenti-
cated broadcasts required for the correctness of the authenticated algorithm of Fig-
ure 1. Replacing signed communication with this primitive directly yields an
equivalent non-authenticated algorithm. In addition, the relay property of the
primitive ensures that messages that are accepted by correct processes are
automatically relayed to all other processes. Hence, processes need not relay
accepted messages. The non-authenticated algorithm is presented in Figure 3. As
described earlier, each logical round of the algorithm corresponds to two phases of
the underlying primitive.

Theorem 3: Byzantine Agreement can be achieved in 2¢+2 phases with
O(n’tlogn) message bits using the non-authenticated algorithm in Figure 3.

Proof: The proof of correctness is identical to that of the authenticated algorithm in
Theorem 1.

The algorithm requires 2¢t+2 phases since each round of the algorithm is
implemented by two phases of the underlying primitive. Since each correct process
executes a maximum of two broadcasts, correct processes send a total of O(n?t)
messages if the primitive described in the Appendix is used. Assuming that each
message is O(log n) bits long, correct processes exchange a total of O(ntlog n) bits.

[

Round 1: the transmitter s broadcasts (s,m);
Round i +1,:=1,2, ... ,t: each process q:

if accepted (p,m) for at least ¢ distinct processes p,
including the transmitter s, in rounds 1 to ¢
then extract m;

if m is the first or second message extracted
and m has not been extracted before
then broadcast (q,m);

Decision:
if extracted exactly one message m then decide m

else decide “sender faulty”.

Figure 3. A non-authenticated algorithm for Byzantine Agreement
using the broadcast primitive of Figure 2.

Although the authenticated algorithm (in Figure 1) can handle any number of
faulty processes, the broadcast primitive requires n >3t processes, and therefore,
the equivalent non-authenticated algorithm has the same requirement. It is well-
known that no non-authenticated Byzantine Agreement algorithm exists for n <3¢
[Lamp82]. Therefore, if n <3¢, no broadcast primitive can provide Properties 1 to 3
without using signatures. Hence, our broadcast primitive is optimal with respect to
the number of faulty processes that can be tolerated.

We now outline some simple optimizations to reduce the message and time
complexity of the non-authenticated algorithm. The first optimization is to reduce
the message complexity by isolating a set of 3t+1 active processes [Dole82b,
Dole83]. The remaining processes are denoted passive. Only active processes
broadcast messages according to the algorithm. Passive processes only accept mes-
sages, and extract a value m if they accept this message from ¢t+1 distinct
processes. The decision procedure for passive processes is the same as that for

active ones. The proof of Theorem 3 can be easily extended to show the correctness
" of this algorithm. Since there are O(t) active processes, each broadcasting at most
twice, we have the following result:

Corollary 1: Byzantine Agreement can be achieved in 2t+2 phases using
O(nt®logn) bits.

It is clear that in the authenticated algorithm, the messages broadcast in the
last round will not be relayed further. Hence, processes need not sign these mes-
sages. Therefore, they can simply broadcast unsigned messages in round ¢+1 of
the non-authenticated algorithm, thus saving one phase. In round ¢, we use a sim-
ple modification of the broadcast primitive so that if a correct process accepts a
message in round ¢, every other correct process does so by the next phase. Thus we
have the following result:

Corollary 2: Byzantine Agreement can be achieved in 2¢t+1 phases using
O(nt*logn) bits.

The communication complexity can be further reduced at the cost of an extra
phase, with another well-known technique [Dole82b, Dole83]. The 3t+1 active
processes described earlier run the agreement algorithm strictly among themselves,
and broadcast their decision directly to all the passive processes only at the end.
The passive processes decide on the majority value. Since there are O(¢) active
processes which reach agreement in 2t+1 phases, this algorithm terminates in
2t +2 phases and requires O(nt +¢3logt) message bits.

6. Byzantine Elections

The problem of Byzantine Elections [Merr84] involves the forecasting of elec-
tion results in a synchronous network of unreliable processes. If an election is not
close, these algorithms allow accurate forecasting of results in less than ¢+1
rounds. Thus, although processes might not agree on the votes of individual
processes until the algorithm terminates, they obtain enough information to predict
the outcome of the election in fewer than ¢+1 rounds. No non-authenticated algo-
rithm for Byzantine Election was known. In this section, we derive one from the

.10-

authenticated algorithm proposed by Merritt [Merr84] using our broadcast primi-
tive.

Consider a system in which the processes have to agree on the votes of a set of
v processes called voters. In this paper, we only consider the algorithm for Notar-
ized Elections [Merr84], where a set of w processes are assigned to be witnesses,
with w=2¢. Witnesses do not themselves vote, they just sign and forward messages
from the voters and other witnesses. During each round of the algorithm, each pro-
cess (voter or witness) choses a value as the vote of each voter. We assume there
are a total of n=v+2¢ processes.

The requirements of an algorithm for Byzantine Elections are :

(1) During any round j of the algorithm, there is never any disagreement on a
correct process’s vote.

(2) All correct processes reach Byzantine Agreement on every vote when the algo-
rithm terminates.

'(3) After round j, 1<;<t+1, values chosen as the votes of at most t—j+1
processes are different from those eventually chosen. This allows processes to
arrive at a decision earlier than round ¢+1 if the election is not close.

An authenticated algorithm for Notarized Byzantine Elections from [Merr84]
is presented in Figure 4. A value signed by a voter i is an i —vote. The signature of
a witness of an i —vote is an affidavit for that i —vote.

The complete proof of correctness of this algorithm is found in [Merr84]. The
proof is outlined below, highlighting those portions that identify the properties of
authentication required by the algorithm.

(1) If a process accepts an affidavit from a correct witness p for an i—vote in
round j, then every process accepts the i —vote and at least ¢ affidavits for it
by round j+1. This follows from the fact that if a correct witness finds an
i —vote valid, it broadcasts an affidavit for that vote and also relays the vote
and all the affidavits that caused it to find the i —vote valid. Hence, by Proper-
ties 1 and 3, every correct witness finds the i—vote valid in round j, and
broadcasts an affidavit.

(2) If a correct process changes its decision for some process ¢ after round j, then
at least j—1 witnesses are faulty. This is shown by considering the various
situations in which a correct process could change its decision. In each case,
either the j —1 witnesses that caused it to decide on a value at round j or the
witnesses that cause it to later change its decision are faulty.

(3) There is never any disagreement on the vote of correct processes. A correct
process [broadcasts its vote to all other processes in round 1. By property 2,
every correct process accepts this message in round 1, and decides on this
value. Since process ¢ does not broadcast any other vote, by Property 2, no
correct process finds any other 1 —vote valid.

(4) At the end of round ¢+1, correct processes agree on every vote. By (3), agree-
ment is guaranteed on votes of correct processes. If a correct witness broad-
casts an affidavit for an ¢ —vote, then it also relays the : —vote and all the affi-
davits that caused it to find the i —vote valid. Hence, by Properties 1 and 3,

-11-

Round 1:

Each voter signs and broadcasts its vote.

Round j , 2<j<t+1:

Each witness w does the following:
For every voter i:
if witness w has accepted an i —vote with at least j —2 distinct affidavits
then the vote is valid.
Sign any new valid i —votes, producing a new affidavit.
broadcast every valid i —vote or affidavit for a valid vote that
was not broadcast by w in earlier rounds.

Decision procedure for round j, 1<;<¢+1:

if process p has accepted exactly one i —vote with at least j —1
distinct affidavits (including its own, if p is a witness),

then decide on the value signed as process i’s vote,

else decide error as i’s vote.

Figure 4. Authenticated algorithm for Notarized Byzantine Elections [Merr84].

(5)

every process finds the i —wvote valid in the next round and further, every
correct witness also broadcasts an affidavit for this i —vote. If a process finds
an [—vote valid at the end of round ¢+1, it must have accepted the i—wvote
and accepted affidavits from at least ¢ witnesses. If voter 1 is faulty, at least
one of these witnesses is correct and hence every other correct process finds
the i —vote valid. From this, it can be seen that correct process either agree
on an [—vote or decide on error as the vote.

In (2), we saw that if any value is changed after round j, there are at least
Jj—1 faulty witnesses. Hence, at most t—j+1 voters are faulty, and hence
correct processes always agree on the votes of the remaining (correct) voters.
That is, agreement is reached on max(0,v+j—¢t—1) votes.

Each witness relays a vote and O(t) affidavits for each voter. Thus, the total

number of messages exchanged is Otnut?).

From the proof outlined above, we see that the properties of authentication

required by the algorithm are the three properties described in Section 2. Hence,
the broadcast primitive of Figure 2 can be used in place of authenticated communi-
cation, resulting in an equivalent non-authenticated algorithm for Byzantine Elec-
tions. Once again, processes need not relay accepted votes or affidavits since the
underlying primitive achieves this. The non-authenticated algorithm is described in
Figure 5. This algorithm requires a total of n>3¢ processes, of which at least 2¢
are designated as witnesses.

-12-

Round 1:
Each voter broadcasts its vote.

Round j,2<;<t+1:
Each witness w does the following:
For every voter i:
if witness w has accepted an i —vote with at least j —2 distinct affidavits
then the vote is valid.
broadcast an affidavit for a valid vote that
was not broadcast by w in earlier rounds.

Decision procedure for round j, 1<;<t+1:
if process p has accepted exactly one | —vote with at least j —1
distinct affidavits (including its own, if p is a witness),
then decide on process i’s vote,
else decide error as i’s vote.

Figure 5. A non-authenticated algorithm for Notarized Byzantine Elections.

Theorem 4: Byzantine Elections without authentication can be solved in t+1
rounds or 2¢t +2 phases with O(nut?) messages with the algorithm of Figure 5.

Proof : The proof of correctness is exactly the same as that of the authenticated
algorithm [Merr84], stated in terms of the three properties of authenticated sys-
tems.

Each witness broadcasts an affidavit for each vote of each voter, hence the
total number of messages broadcast is O(nuvt?), the same as that in the original
authenticated algorithm. []

7. Asynchronous authenticated broadcasts

We now consider systems where communication is asynchronous. Messages
sent by correct processes are eventually received by all correct processes, but this
could take an arbitrarily long time. Hence, there can be no fixed bound on the
duration of a phase, and the phases of processes are not synchronized. The proper-
ties that authenticated broadcasts in asynchronous systems satisfy are therefore
weaker versions of those described in Section 2, and can be stated as follows:

1. (Correctness) If correct process p broadcasts (p,m,k), then every correct process
accepts (p,m,k).

2. (Unforgeability) If correct process p does not broadcast (p,m,k), then no correct
process ever accepts (p,m.k).

-13-

Rules for broadcasting and accepting (p,m,k):

Round k (phase k): process p sends (init,p,m k) to all processes.
Each process executes the following for any m ¢ M:

if received (init,p,m,k) from p and received only one (init,p,_,k) from p
then send (echo,p,m,k) to all;

if received (echo,p,m k) from at least n —¢ distinct processes in previous phases
then accept (p,m,k);

if received (echo,p,m,k) from at least n —2¢ distinct processes in previous phases
and not sent (echo,p,m k)
then send (echo,p,m,k) to all;

Figure 6. A primitive to simulate asynchronous authenticated broadcasts.

3. (Relay) If a correct process accepts (p,m,k), then every other correct process
accepts (p,m,k).

The synchronous broadcast primitive of Figure 2 can be easily modified to
derive an asynchronous primitive with the three properties described above (Figure
6).

Theorem 5: The primitive of Figure 6 achieves the properties of correctness, unfor-
geability, and relay in asynchronous systems.

Proof: The proof closely follows that of Theorem 2 for synchronous systems. We use
our assumption that messages sent out by correct processes are eventually received
by all correct processes. []

As in the synchronous system, we can show that a broadcast by a correct pro-
cess using the primitive of Figure 6 requires O(n%) messages. However, in each
round, each faulty process can again cause each correct process to send
O(n - min(t,|M|)) messages. It is possible to modify this asynchronous primitive, so
that each correct process sends only O(n) messages for each process in each round.

In general, the asynchronous primitive of Figure 6 can be used in developing
non-authenticated algorithms that do not proceed in synchronized phases. An
example of this is clock synchronization, as shown in [Srik84]. Another example is
presented in the next section.

8. Randomized Byzantine Agreement

A randomized algorithm for Byzantine Agreement was presented by Rabin
[Rabi83]. This was improved by Toueg [Toue84a] to overcome malicious failures of
up to a third of the processes. The latter algorithm consists of iterations with two
rounds. The first round uses authenticated broadcasts and the second round uses a

non-authenticated broadcast primitive described in that paper. The algorithm is
presented in Figure 7. The algorithm reaches agreement in an expected number of
iterations that is a small constant independent of n and ¢.

In the original algorithm, a process p justifies the message it sends in the
second round by broadcasting the list of signed messages it receives in the first
round. From the proof of correctness of the algorithm [Toue84a], we see that the
only properties of authentication needed by this algorithm are the three properties
that are described in Section 7 and are provided by our asynchronous broadcast
primitive. Therefore, we can translate this authenticated algorithm to a non-
authenticated one by simply replacing the direct authenticated broadcast used in
the first round with the primitive of Figure 6.

With our primitive, signed messages accepted by process p in the first round
are automatically relayed to all, and therefore, p does not have to explicitly relay
(broadcast) this list of accepted messages. Hence, the translation reduces the origi-
_nal communication complexity by a factor of n.

As in Rabin’s algorithm [Rabi83], the resulting algorithm still requires that a
correct dealer use encryption to distribute shares of the secret random bits to each

Process P;: M:= M,
for k=1 to k=R do
(* Round 1 #*)

broadcast M;
wait to accept M-messages from n —¢ distinct processes;
proof := set of accepted messages;
count(l) := number of accepted messages with M = 1,
if count(l) = n—2¢t then M := 1

else M := 0;

(* Round 2 *)

echo_broadcast [M, proof];
wait to accept [M, proof]-messages, with correct proofs, from n —¢ distinct processes;
count(l) := number of accepted messages with M =1,

s, := compute_secret(k);
if (s; = 0 and count(1) =1) or (s, = 1 and count(l) =2¢+1) then M := 1
else M .= 0;
od

Figure 7. An authenticated asynchronous binary agreement protocol [Toue84al.

process individually, before the agreement algorithm starts.

9. Discussion

The Crusader Agreement problem, a weaker version of the Byzantine Agree-
ment problem, has been defined in [Dole82¢]. The Crusader Agreement algorithm
proposed in [Dole82c] achieves the properties of correctness, unforgeability and
uniqueness. However, this solution does not have the relay property, and therefore
it cannot model the relaying of signed messages which is crucial in simulating
authentication. The first two phases of our primitive achieve Crusader Agreement.

In some authenticated algorithms such as those in [Dole83, Halp84], a process
accepting a message appends its signature to this message and then broadcasts it.
When a process receives a message with a list of signatures, it can verify from
these signatures that each process on the list actually broadcast the message. Non-
authenticated algorithms can be derived from such algorithms in one of two ways.
_ The first approach involves modifying the authenticated algorithm so that when a
process accepts a message, it signs the message, and also relays all the messages
that caused it to accept the message. Thus, messages contain exactly one signature
each. We used this approach for the authenticated Byzantine Agreement algorithm
in Section 3.

Another approach is to require that when a process q accepts a message of the
form m:p,:;p, - - - :pp, where each p, is the signature of a process, g considers the
message to be valid only if has also accepted each prefix of the message, i.e., it has
also accepted each of m:p,, mp,:p,, ..., mp;:py, - - :pp_,. This provides a sim-
ple and direct, although inefficient, method for deriving a non-authenticated algo-
rithm from the authenticated one.

10. Conclusions

Non-authenticated algorithms for systems with arbitrary failures are gen-
erally regarded as complicated, unintuitive, and difficult to derive and prove
correct. On the other hand, authenticated algorithms are usually much simpler and
easier to derive. However, there are disadvantages to known cryptographic imple-
mentations of authentication. Furthermore, developing authenticated solutions did
not generally help in deriving non-authenticated solutions.

To take advantage of the simplicity of authenticated algorithms without incur-
ring the disadvantages of digital signatures, we developed a broadcast primitive
that achieves the properties of authenticated broadcasts. Using this broadcast prim-
itive, we presented a methodology for deriving non-authenticated algorithms.
Informally, one starts by developing an authenticated algorithm. Replacing
authenticated communication in this algorithm with the primitive gives an
equivalent non-authenticated algorithm.

In this paper, we have applied this approach to several problems. The first
application gave a Byzantine Agreement algorithm requiring 2¢+1 rounds of mes-
sage exchange and O(nt? log n) message bits. This algorithm is conceptually as
simple as the original authenticated algorithm and has the same proof of correct-
ness. The best previously known such algorithm needed 2¢+3 rounds for the same

-16-

message complexity.

We then applied this methodology to the Byzantine Elections problem, and it
resulted in the first known solution that does not use authentication. This solution
is as simple as, and has the same message complexity as, the authenticated algo-
rithm from which it is derived.

We then extended the primitive to asynchronous systems. We translated an
authenticated randomized Byzantine Agreement algorithm [Toue84a] to produce a
non-authenticated algorithm with lower message complexity and no extra phases.

More recently, the approach outlined in this paper has been adopted to derive
a simple and efficient early-stopping Byzantine Agreement algorithm [Toue84b],
and to achieve optimal clock synchronization [Srik84].

We believe that the methodology we have described is one of the first powerful
tools for understanding and developing non-authenticated algorithms. The proper-
ties of the broadcast primitive effectively restrict the visible behavior of faulty
" processes, and therefore simplify the problem of designing algorithms for systems
with arbitrary types of failures.

Acknowledgements

We would like to thank Ozalp Babaoglu, John Gilbert and Fred Schneider for
their helpful comments and suggestions on earlier drafts of this paper.

References

Brac83 G. Bracha and S. Toueg, Resilient consensus protocols, Proc. 2nd Sympo-
sium on the Principles of Distributed Computing, Montreal, Canada, pp.
12-26, Aug. 1983.

Dole82a D. Dolev and R. Strong, Polynomial algorithms for multiple process
agreement, Proc. 14th Annual ACM Symposium on Theory of Comput-
ing, San Francisco, California, pp. 404-407, May 1982,

Dole82b D. Dolev, M.J. Fischer, R. Fowler, N.A. Lynch, H.R. Strong, An efficient
Byzantine Algorithm without authentication, Technical Report RJ3428,
IBM, Mar. 82.

Dole82¢c D. Dolev, The Byzantine Generals Strike again, J. Algorithms 3,1
(1982), pp. 14-30.

Dole83 D. Dolev and H. R. Strong, Authenticated algorithms for Byzantine
Agreement, SIAM J. Comput., vol. 12, no. 4, pp. 656-666, Nov. 1983.

Fisc83 M.J. Fischer, The consensus problem in unreliable distributed systems
(A Brief Survey), YALEU/DCS/RR-273, June 1983.

Garc83 H. Garcia-Molina, F. Pittelli, and S. Davidson, Applications of Byzantine
Agreement in database systems, Technical Report TR 316, Princeton
University, June 1984,

Halp84 J.Y. Halpern, R. Strong, and D. Dolev, Fault-tolerant clock synchroniza-
tion, Proceedings Third Annual ACM Symposium on Principles of Distri-
buted Computing, Vancouver, Canada, pp. 89-102, Aug. 1984.

Lamp82

Lund84

Lync82

Merr84

Moha83

Peas80

Rabi83

Rive78

Srik84

Toue84a

Toue84b

-17-

L. Lamport, R. Shostak, and M. Pease, The Byzantine Generals problem,
ACM Transactions on Programming Languages and Systems 4, pp. 382-
401, 1982.

J. Lundelius and N. Lynch, A new fault-tolerant algorithm for clock syn-
chronization, Proceedings Third Annual ACM Symposium on Principles
of Distributed Computing, Vancouver, Canada, pp. 75-88, Aug. 1984.

N. Lynch, M. Fischer, and R. Fowler, A simple and efficient Byzantine
Generals algorithm, Proc. Second IEEE Symposium on Reliability in Dis-
tributed Software and Data Base Systems, Pittsburgh, Pennsylvania, pp.
46-52, 1982,

M. Merritt, Elections in the presence of faults, Proc. 3rd Symposium on
the Principles of Distributed Computing, Vancouver, Canada, Aug. 1984.

C. Mohan, H.R. Strong, and S. Filkenstein, Method for distributed tran-
saction commit and recovery using Byzantine Agreement within clusters
of processors, Proc. 2nd Symposium on the Principles of Distributed Com-
puting, Montreal, Canada, pp.89-103, Aug. 1983.

M. Pease, R. Shostak and L. Lamport, Reaching agreement in the pres-
ence of faults, Journal of the ACM, vol. 27, no. 2, pp. 228-234, April
1980.

M. Rabin, Randomized Byzantine generals, Proc. 24th Symposium on
Foundations of Computer Science, Tucson, Arizona, pp. 403-409, Nov.
1983.

R.L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Communications of the ACM,
21,2, pp. 120-126, Feb. 1978

T.K. Srikanth and S. Toueg, Optimal Clock Synchronization, Technical
Report TR 84-656, Cornell University, Dec. 1984. To appear in the Proc.
4th Symposium on the Principles of Distributed Computing, Minaki,
Canada, Aug. 1985.

S. Toueg, Randomized asynchronous Byzantine Agreements, Proc. 3rd
Symposium on the Principles of Distributed Computing, Vancouver,
Canada, Aug. 1984.

S. Toueg, K.J. Perry and T.K. Srikanth, Fast Distributed Agreement,
Technical Report TR 84-621, Cornell University, July 1984. To appear
in the Proc. 4th Symposium on the Principles of Distributed Computing,
Minaki, Canada, Aug. 1985.

-18-

Appendix

In this appendix, we modify the primitive of Section 4 to restrict the number
of broadcasts executed by faulty processes to that dictated by the algorithm. Specif-
ically, if correct processes execute at most R broadcasts throughout an algorithm,
then by applying this primitive, faulty processes are also restricted to executing
O(R) broadcasts. For example, in the authenticated algorithm of Figure 1, R =2.
We introduce additional types of messages: init’ sent by processes in the third
phase of a broadcast, and echo’ sent by processes in the remaining phases of the
broadcast. The primitive is described in Figure 8. As before, each round r
corresponds to phases 2r —1 and 2r of the primitive.

Lemma 3: If a correct process sends (echo’',p,m,k), then p must have sent
(init,p,m,k) to at least one correct process in phase 2k —1.

Proof: Let [be the earliest phase in which any correct process ¢ sends
(echo',p,m,k). If =2k +2, q must have received (init',p,m,k) from at least n—¢
- processes in phase 2k +1. At least n —2¢ of these processes are correct and each of
them must have received at least n —2t (echo,p,m,k) messages in phase 2k. Hence,
at least one correct process must have sent (echo,p,m,k) in phase 2k and it must
have received (init,p,m,k) from p in phase 2k —1. If [=2k +3, process ¢ must have
received (echo’,p,m,k) messages from at least n —2¢ distinct processes, i.e., it must
have received (echo’,p,m,k) from at least one correct process in phase [—1 or ear-
lier. Hence, some correct process sends (echo’,p,m,k) before phase [, a contradiction.

]

Theorem 6: The broadcast primitive in Figure 8 has the properties described in
Section 2, namely correctness, unforgeability, relay, and uniqueness.

Correctness: Since p is correct, every correct process receives (init,p,m,k) in
phase 2k —1 and sends (echo,p,m,k) in phase 2k. Hence, every process receives
(echo,p,m,k) from at least n —¢ correct processes in phase 2k and every correct pro-
cess accepts (p,m,k) at the end of phase 2k, i.e. at the end of round k.

Unforgeability: If p is correct and does not execute broadcast(p,m,k), it does
not send any message (init,p,m,k) in phase 2k —1, and no correct process sends
(echo,p,m,k) in phase 2k. Hence, no correct process can accept (p,m,k) in phase 2k.
If some correct process accepts (p,m,k) at the end of phase 2k +2 or later, it must
have received (echo’,p,m,k) messages from at least n—¢ distinct processes, i.e., it
must have received (echo',p,m.k) from at least n —2¢ correct processes. By Lemma
3, p must have sent (init,p,m.,k) to at least one correct process in phase 2k —1, a
contradiction. Thus, no correct process ever accepts (p,m,k).

Relay: If r=Fk, then q must have received (echo,p,m,k) from at least n—¢ dis-
tinct processes in phase 2k. Hence, in the same phase, every correct process
receives (echo,p,m.k) from at least n —2¢ distinct processes and sends (init' p,m,k)
in phase 2k +1. Therefore, every correct process sends (echo’,p,m,k) during phase
2k +2 and every correct process accepts (p,m,k) at the end of phase 2k +2, ie.,
round r+1. If r=k+1, let q accept (p,m,k) in phase : where i=2r—1 or 2r. gq
must have received (echo',p,m.,k) from at least n—¢ distinct processes by phase i.
Hence, every correct process receives (echo',p,m,k) from at least n—2t distinct
processes by phase i, and therefore sends (echo',p,m,k) at or before phase :+1.

-19-

Rules for broadcasting and accepting (p,m,k):
/* Processes execute at most R broadcasts in the algorithm in which this primitive is applied. */
Round k:

Phase 2k —1: process p sends (init,p,m,k) to all processes.

Each process executes the following for any m ¢ M:
Phase 2k:

if received (init,p,m,k) from p in phase 2k —1

and received only one (init,p, ,k) message in phase 2k —1

and received at most R (init,p,—,) messages in all previous phases
then send (echo,p,m,k) to all;

if received (echo,p,m,k) from at least n —t distinct processes in phase 2k
then accept (p,m,k),

Round % +1;
Phase 2k +1:

if received (echo,p,m,k) from at least n —2¢ distinct processes ¢ in phase 2k
and received only one (echo,p, k) message from each such q in phase 2k
and received at most R (echo,p,_,_) messages from q in all previous phases
then send (init’',p,m,k) to all;

Phase 2k +2:

if received (init',p,m,k) from at least n —¢ distinct processes in phase 2k +1
then send (echo',p,m,k) to all;

if received (echo’,p,m,k) from at least n —¢ distinct processes in phase 2k +2
then accept (p,m,k);

Round r=k +2:
Phase 2r —1,2r:

if received (echo’,p,m,k) from at least n—2¢ distinct processes in previous phases
and not sent (echo',p,m k)
then send (echo’,p,m,k) to all;

if received (echo’,p,m,k) from at least n —t distinct processes in previous phases
then accept (p,m,k),

Figure 8. A primitive that permits up to R authenticated broadcasts per process.

Every correct process receives (echo’,p,m,k) from at least n—t¢ distinct processes by
phase i +1 and accepts (p,m,k) by the end of phase i +1, i.e., in round r+1 or ear-
lier.

(Uniqueness): Assume that two correct processes accept (p,m,k) and (p,m’'.k)
respectively in round £k, with m #m'. Then at least n—t processes sent
(echo,p,m,k) and at least n—t processes sent (echo,p,m’ k) in phase 2k. This
implies that at least one correct process sent both (echo,p,m k) and (echo,p,m’,k) in
phase 2k, a contradiction. []

As before, in computing the message complexity of the primitive, we consider
messages sent only by correct processes.

Lemma 4: In an algorithm in which the primitive of Figure 8 is applied, each
correct process sends a total of O(Rn) (_,p,_,.) messages for each process p.

Proof: Consider a given process p. Each correct process p, accepts at most R
(init,p,,) messages from p and thus sends at most R (echo,p,_,_) messages. A
" process p, considers at most one (echo,p,,k) message from each other process p; for
each £ and at most R such messages throughout the algorithm. Since p, sends
(init',p,m,k) only on receiving at least n—2¢t (echo,p,m,k) messages, and since
n=3t+1, each correct process sends at most |[Rn/(n—2t) <2R (init',p,_,_) mes-
sages. For a correct process to send a (echo’,p,m,k) message in phase 2k +2, it must
receive (init',p,m k) messages from at least n —t processes, i.e., from at least n —2¢
correct processes. Since each correct process sends at most 2R (init'p, ,) mes-
sages, there can be at most |[2R(n —t)/(n—2t)] <3R distinct (echo’,p,_,) messages
sent by each correct process. Hence, each correct process sends at most 6R (_,p,—,)
messages to all the processes. That is, each correct process sends O(Rn) (_p,_,)
messages. [|

Corollary 3: The total number of (_,p, .) messages sent by all correct processes
throughout an algorithm for each process p is O(n?).

To reduce the message complexity further, we isolate a set of 3¢+1 processes
called the reflectors, and execute the primitive with n=3¢t+1 as follows: only
reflectors send init’, echo and echo’ messages to all the other processes and other
processes only receive these messages and accept messages according to the primi-
tive. It can be verified that the properties of Theorem 6 and Lemma 3 still hold.
Since there are O(t) reflectors, by Lemma 3, the total number of (_,p, ,) messages
sent by all correct processes for each process p is O(nt).

